
1	Trial	protocol	L
---	-------	----------	---

3	A Multicenter Randomized Controlled Trial Comparing Chemotherapy plus
4	Locoregional Radiotherapy with Chemotherapy Alone for Primary Metastatic
5	Nasopharyngeal Carcinoma
6	
7	FINAL PROTOCOL
8	Version: 2014/3/20
9	Principal Investigator: Dr. Ming-Yuan Chen
10	Sponsor: Sun Yat-sen University Cancer Center
11	Collaborators:
12	Guangdong Provincial People's Hospital
13	Study coordinator: Dr. Hong-Dan Zhang
14	The First Affiliated Hospital, Sun Yat-sen University
15	Study coordinator: Dr. Bi-Xiu Wen
16	
17	
18	

19	Contents
20	SCHEMA
21	1.0 Background
22	2.0 Objectives
23	3.0 Subject Enrollment
24	4.0 Treatment Plan
25	5.0 Observation and Assessment
26	6.0 Follow-Up and Recording of Events
27	7.0 Security Measures and Quality Control
28	8.0 Statistical Analysis
29	9.0 Ethical Considerations
30	10.0 References
31	Appendix I
32	Appendix II

33 SCHEMA

35 **1.0 Background**

Nasopharyngeal carcinoma (NPC) is one of the most common malignant tumors in 36 China and has the highest incidence rate in South China and Hong Kong. The 37 38 incidence exceeds 20/100,000 people worldwide. According to the GLOBOCAN 2008 data published by the International Cancer Institute, there were 33,101 newly 39 40 diagnosed NPC patients and 20,899 deaths related to NPC in China in 2008, accounting for 40% of newly diagnosed NPC patients worldwide. Among other 41 malignant tumors, NPC has an incidence rate that ranks 10th and a mortality rate that 42 ranks 9th in China. The age of onset for NPC is approximately 40 to 50 years, and this 43 44 disease has major impacts on society, the economy, and family members, and NPC also affects the ability to work. Radiation therapy is the main treatment for NPC. The 45 46 5-year overall survival (OS) rate of early-stage patients treated with intensity-modulated radiotherapy (IMRT) alone is over 90% (1). For advanced 47 locoregional NPC patients without distant metastasis treated with radiotherapy (RT) 48 49 and chemotherapy, the 5-year OS rate can reach 68-74.5% (2-3). Although NPC is a special type of head and neck squamous cell carcinoma (HNSCC), NPC differs from 50 51 other HNSCCs in terms of epidemiology, pathology, clinical manifestations and treatment response, and NPC is the most invasive and most likely to metastasize of all 52 53 HNSCCs. Approximately 6-10% of patients with NPC were diagnosed with distant 54 metastases at the initial visit (4-6). Metastatic NPC (mNPC) is considered to be incurable, and palliative systemic chemotherapy is the primary treatment; these 55 patients have a median OS of only 10-15 months (7). Therefore, exploring a 56 57 comprehensive treatment model to improve the survival time of mNPC has become a hot topic for current research. 58

59 In the past, active primary tumor treatment for epithelial cancer with distant

60 dissemination was not considered beneficial for patient survival and was not routinely 61 used. Furthermore, studies have shown that surgically excising primary tumors may interrupt the dormancy of micrometastases, thereby accelerating the progression of 62 63 metastases (8). However, there is increasing evidence that radical surgical resection or RT for primary tumors can significantly improve OS in patients with distant 64 metastases. In 2001, the New England Journal of Medicine and The Lancet published 65 66 two prospective studies that evaluated the value of nephrectomy in distant metastatic renal-cell carcinoma. Both studies found that radical nephrectomy combined with 67 68 postoperative interferon alpha-2b systemic drug therapy could significantly prolong 69 the median survival time of patients compared with interferon alpha-2b therapy alone. 70 The median survival time increased from 8.1 to 11.1 months and from 7 months to 17 71 months, with P values of 0.05 and 0.03, respectively (9-10). In addition, the 72 combination treatment regimen was associated with a longer disease-free survival 73 time than with interferon alpha-2b therapy alone (from 3 months to 5 months, P =74 0.04) (10). To date, only two prospective studies have evaluated the role of locoregional treatment in patients with distant metastatic cancer. Elisabetta Rapiti and 75 76 colleagues evaluated 300 patients with newly diagnosed metastatic breast cancer and found that patients who underwent radical mastectomy with negative margins had a 77 78 40% reduction in the risk of death compared with those who did not undergo surgery 79 (P=0.049). Interestingly, the study also found that patients who underwent radical mastectomy but had positive margins did not experience this survival benefit (11), 80 81 suggesting that completely removing the primary lesion is beneficial for the survival 82 outcomes of newly diagnosed patients with metastatic breast cancer. Ruiterkamp conducted a meta-analysis of 10 retrospective studies that investigated local surgical 83 84 treatment for metastatic breast cancer and found a combined-effects hazard ratio (HR)

of 0.65 (95% CI, 0.59-0.72) (12). Similarly, studies have shown that RT for primary
lesions is also beneficial for the survival outcomes of metastatic breast cancer patients.
Several retrospective studies have also found that radical prostatectomy or local RT to
prostate lesions is also beneficial in prolonging the survival time of patients with
distant metastases (14-18).

As early as January 1889, Stephen Paget first proposed and interpreted the "seed and 90 91 soil" hypothesis of tumor metastasis. He believed that the distant organs are either not 92 completely passive or that they have no choice but to develop metastatic lesions. Now, 93 120 years later, Paget's theory has been extended to the fact that radical treatment for primary tumors can interfere with the "soil" in addition to killing the "seeds", thus 94 95 improving the survival outcomes of patients with distant metastases. In August 2011, 96 Nature Review Clinical Oncology published a review article by Scott C. Morgan and 97 Chris C. Parker, which systematically reviewed the role of local treatment on primary tumors and boldly speculated that local radical treatment can block the progression of 98 99 distant metastatic lesions and prolong the OS time of patients with distant metastases. 100 The article also advocates for a prospective study similar to the aforementioned 101 clinical trials for kidney cancer, with OS as the primary end point (19).

According to the NCCN guidelines (version 2.2011), platinum-based systemic 102 103 chemotherapy is the main treatment for mNPC. RT is only suitable for 104 nasopharyngeal tumors and regional metastatic lymph nodes to control local symptoms, such as headaches or nosebleeds, or for a small number of patients with 105 106 isolated metastatic lesions or small lesions (20-21). However, a recent case report 107 indicated that a small number of patients who received systemic cisplatin-based chemotherapy and local high-dose RT could achieve tumor-free survival between 29 108 109 and 91 months (22). Another report retrospectively analyzed 105 mNPC patients who

110 received more than 30 Gy of locoregional RT. Of these patients, 96 patients (91%) 111 received systemic chemotherapy, and 71 patients (68%) received more than 65 Gy of primary RT. The median OS time was 25 months, and the 2- and 5-year OS rates were 112 50% and 17%, respectively (23), which were significantly higher than the previously 113 114 reported 2- and 3-year OS rates of 35% and 18% (24). Further univariable analysis also showed that patients who received more than 65 Gy during primary RT had a 115 116 median OS time of 27 months, which was significantly longer than that of patients 117 who received less than 65 Gy of locoregional RT (median survival: 12 months, P 118 =0.05) (23). However, these results were based on retrospective studies, and the 119 evidence was still not convincing. For example, the finding that patients who received 120 comprehensive therapy had better prognoses than those who did not receive 121 comprehensive therapy might be attributed to the patient selection bias. Therefore, the 122 value of locoregional RT for mNPC need to be further validated in rigorous prospective clinical trials. 123

124 Previous studies have shown that the number of chemotherapy cycles is also an 125 independent prognostic factor. The 3-year OS rate of patients who received more than 126 6 cycles of chemotherapy is significantly higher than those who received fewer than 6 cycles of chemotherapy (32% vs. 14.0%, P < 0.001) (24). However, several studies 127 128 have shown that there is no correlation between the number of chemotherapy cycles 129 and survival outcomes in patients who received locoregional RT. Lin Shaojun and colleagues showed that patients treated with more than 4 cycles of chemotherapy had 130 a median OS time of 26 months, and those who received fewer than 4 cycles had a 131 132 median survival time of 22 months (P=0.16). However, additional studies showed that induction chemotherapy was an independent prognostic factor in patients treated with 133 134 comprehensive treatment, and the risk of death for patients who received induction

135 chemotherapy was significantly lower than that for patients who did not receive 136 induction chemotherapy (HR, 0.5; P = 0.007) (25). These findings suggest that 137 induction chemotherapy might help improve survival for mNPC patients, but the 138 survival outcomes might not be further improved with excessive cycles of systemic 139 chemotherapy (>6).

In addition to the number of chemotherapy cycles, the dose of locoregional RT is also 140 closely related to the OS of mNPC patients. As systemic chemotherapy is the main 141 142 treatment for mNPC patients and locoregional RT is often used to control the 143 symptoms of primary tumors, radical doses of locoregional RT are rarely used. Approximately 18.2-30.8% of patients were only treated with less than 66 Gy of 144 145 locoregional RT (23,25). Lin Shaojun and colleagues reported that the median OS 146 time of patients who received more than 65 Gy of radical RT was 27 months, which is 147 significantly longer than that of patients who received less than 65 Gy of RT (median OS time: 12 months, P=0.05) (23). Our study also showed that in patients who 148 149 received combined locoregional RT and systemic chemotherapy (n=176), radical locoregional RT (>66 Gy) was associated with favorable survival outcomes (median 150 151 survival time: 51.0 vs. 23.3, P=0.001). Moreover, according to the multivariable Cox model, more than 66Gy of radical RT is an independent prognostic factor (HR, 0.4, P 152 153 = 0.001) (25). Therefore, according to the previous findings, moderate induction 154 chemotherapy (approximately 6 cycles) and radical locoregional RT (\geq 66 Gy) should lead to significant survival benefits for mNPC patients. 155

Therefore, we designed this open-label multicenter randomized controlled clinical trial to compare the efficacy, therapeutic toxicity, and resulting quality of life of induction chemotherapy combined with radically dosed primary RT with those of systemic chemotherapy alone for the treatment of chemotherapy-sensitive mNPC 160 patients. The difference between therapies is intended to clearly answer the following

161 clinical scientific question that currently needs to be addressed: "Can primary radical

162 RT extend the survival time of NPC patients with distant metastasis?"

163 2.0 Objectives

164 2

2.1 The Primary Objectives

165 To evaluate and compare the short-term and long-term effects on OS between the 166 chemotherapy plus RT group and chemotherapy alone group in 167 chemotherapy-sensitive mNPC patients

168 **2.2 The Secondary Objectives**

To evaluate the tumor remission rates and progression-free survival between the chemotherapy plus RT group and the chemotherapy alone group in chemotherapy-sensitive mNPC patients and to evaluate and compare the acute toxicities including oral mucosa, dermatologic, hematologic, hepatic, and renal toxicities and long-term toxicities including neurotoxicity, ototoxicity, radiation damage, etc. between the chemotherapy plus RT group and the chemotherapy alone group in chemotherapy-sensitive mNPC patients.

- 176 **3.0 Subject Enrollment**
- 177 **3.1 Eligibility Criteria**
- a. Histologically confirmed NPC
- b. Clinically staged as T1-4N0-3M1, stage IVc at diagnosis (according to the 7th
 AJCC edition)
- 181 c. No previous systemic chemotherapy
- d. Age between 18-65 years
- e. Adequate organ function (white blood cell count of at least 4.0x10⁹ per L;
 absolute neutrophil of at least 2.0x10⁹ per L; hemoglobin concentrations of at

185	least 90 g/L; platelet cell count of at least 100 x10 ⁹ per L; aspartate
186	transaminase and alanine transaminase levels less than 2.5 times the upper
187	normal limit; and creatinine clearance rate at least 60 mL/min)
188	f. Satisfactory performance status: Karnofsky scale (KPS)>=70
189	g. Achieve a partial response (PR)/complete response (CR) after 3 cycles of
190	chemotherapy
191	h. Properly informed about the investigational nature of this study and give
192	written informed consent.
193	3.2 Exclusion Criteria
194	a. Recurrent metastatic nasopharyngeal carcinoma, which developed distant
195	metastases after primary treatment.
196	b. Age > 65 or < 18 years
197	c. Prior RT, chemotherapy or surgery for the primary tumor or nodes
198	d. Progressive disease (PD)/stable disease (SD) after 3 cycles of chemotherapy
199	e. Pregnancy or lactation
200	f. Any severe intercurrent disease, which may cause unacceptable risk factors or
201	affect compliance with the trial, for example, severe heart diseases (cardiac
202	functional grade of 3 or lower), severe pulmonary dysfunction (pulmonary
203	function grade of 3 or lower), renal diseases, severe metal diseases.
204	g. Other invasive malignant diseases within the past 5 years, other than excised
205	basal cell skin carcinoma, cervical carcinoma in situ, and superficial bladder
206	tumors (Ta, Tis, and T1)
207	3.3 Criteria for Removal from Protocol Treatment
208	a. More than a 2-week delay in treatment due to prolonged drug toxicity
209	b. Unacceptable toxicity

- 210 c. Disease progression
- d. Intercurrent diseases that affect the assessments of clinical status to a
 significant degree or require discontinuation of the drugs, or both
- e. Withdrawal from the study at any time for any reason
- 214 **4.0 Treatment Plan**
- 215 **4.1 Chemotherapy**
- **4.1.1 Cisplatin Plus Fluorouracil Regimen (Experimental and Control Arm)**
- 217 Cisplatin is intravenously given at a dose of 100 mg/m^2 on day 1 and once every
- 218 3 weeks for a maximum of six cycles
- Fluorouracil is given at a dose of 5 g/m^2 via a continuous intravenous infusion over 120 h once every 3 weeks for a maximum of six cycles.
- 221 *Note:*

* If severe tumor compression and destruction symptoms occur during follow-up,
including severe pain, pathological fracture, etc., then according to the clinical
needs to control local symptoms and improve quality of life, the appropriate
treatment will be provided, including surgery, RT and local chemotherapy (e.g.,
TACE for the treatment of liver metastases).

227 4.1.2 Administration

To prevent the nephrotoxic effects of cisplatin, we apply a 4-day hydration protocol before and during the administration of cisplatin (D0-D3) and used furosemide (D1) and mannitol (D1-D2). We use antiemetic drugs, such as the $5-HT_{3-}$ receptor antagonist dexamethasone, to prevent chemotherapy-induced nausea and vomiting.

233 4.1.3 Dosage Adjustments

4.1.3.1 Patients will be examined and graded each day when chemotherapy is

- administered and weekly while receiving RT for subjective/objective evidence of
- 236 developing toxicity according to the CTCAE, v.3.0.
- 4.1.3.2 There is no dose escalation for cisplatin and fluorouracil.

	Cisplatin Dose Levels	
-2	-1	Starting Dose
60 mg/m^2	80 mg/m^2	100 mg/m^2

238

Fluorouracil Dose Levels			
-2	-1	Starting Dose	
3000 mg/m ²	4000 mg/m ²	5000 mg/m ²	

239

Dose Adjustment for Hematologic Toxicity				
Absolute Neutrophil Count		Platelet Count	Cisplatin Dose	Fluorouracil Dose
			Adjustment	Adjustment
>1.50x10 ⁹ /L	and	>75.00x10 ⁹ /L	Full dose	Full dose
1.00-1.49 x10 ⁹ /L	and/or	50.00-74.99 x10 ⁹ /L	Decrease 1 Level	Full dose
<1.00 x10 ⁹ /L	and/or	<50.00 x10 ⁹ /L	Decrease 2 Level	Decrease 1 Level

240

Dose Adjustment for Renal Toxicity					
Absolute Creatinine		Creatinine	Cisplatin Dose	Fluorouracil Dose	
		Clearance Rate ¹	Adjustment	Adjustment	
\leq 1.5x upper normal value	and/or	\geq 50 mL/min	Full dose	Full dose	
> 1.5x upper normal value	and	40-50 mL/min	Decrease 1 Level	Full dose	

> 1.5x upper normal value	and	<40 mL/min	Withhold drug ²

241

242

Dose Adjustment for Mucosal Toxicity					
Oral Mucositis Diarrhea Fluorouracil Dose Adjustme					
\leq Level 2	or	\leq Level 2	Full dose		
Level 3	or	Level 3	Decrease 1 Level		
Level 4	or	Level 4	Decrease 2 Level		

243¹. The creatinine clearance is calculated with the Cockcroft formula.

². If the creatinine clearance rate remains <40 mL/min, and/or the bilirubin level is
more than 2 times the upper normal limit, then the patient will not receive additional
cisplatin or fluorouracil.

247 **4.2 Radiotherapy**

Patients are examined and graded for subjective/objective evidence of acute
toxicities according to the CTCAE toxicity criteria.

250 4.2.1 Radiotherapy Adjustments for Nonhematologic Toxicity:

The side effects of RT may include mucositis and skin reactions. The 251 investigators manage these conditions according to the clinical practice at the 252 institution. We do not allow RT dose modifications. Treatment interruptions are 253 allowed if the symptomatic mucositis or skin reactions that occur warranted a 254 break in treatment, as judged by the attending clinician. The treatment is 255 completed according to the protocol and allowed for treatment breaks up to and 256 including 14 days. If the break exceeds 14 days, the patient will be removed from 257 the protocol treatment, the completion of treatment is at the discretion of his or 258 her physician, but the patient will be still followed up and included in the 259

analysis.

261 **4.2.2 Radiotherapy Adjustments for Hematologic Toxicity:**

262 RT will be withheld until the absolute neutrophil count is >500 and platelet count
263 is >25000.

264 **4.2.3 Target Volume Determination for IMRT:**

RT is required to be given through IMRT techniques. The target volumes are delineated using pre-chemotherapy imaging data according to a previously described institutional treatment protocol and in accordance with the International Commission on Radiation Units and Measurements reports 50 and 62. The principles of target volume determination for IMRT and prescribed dose and fractionation are as follows:

Term	Definition	Note
Gross tumor volume	The gross tumor determined by physical	
(GTV)	examination, imaging (including MRI and	
	PET/CT) and endoscopic findings,	
	including GTVnx and GTVnd	
GTVnx	The sum of the primary tumor volume and	
	enlarged retropharyngeal nodes	
GTVnd	Volume of the clinically involved gross	
	lymph nodes	
CTV1	GTVnx plus an additional anterior,	The volume also
	superior, inferior and lateral margin of 5	included the entire
	mm to 10 mm and additional posterior	mucosal stratum and 5
	margins of 2 mm to 3 mm (the range of	mm of the
	extension was determined by the	nasopharyngeal

	characteristics of the adjacent structures)	submucosal stratum
CTV2*	CTV1 plus an additional anterior, superior,	The range for
	inferior and lateral margin of 5 mm to 10	prophylactic neck
	mm and an additional posterior margin of 2	radiation extended
	mm to 3 mm (the range of extension was	from the involved
	determined by the characteristics of the	lymph node groups to
	adjacent structures), as well as the GTVnd	1 or 2 adjacent groups
	plus possible tumor-draining lymph node	
	groups that were at risk for potential	
	microscopic spread of disease	
PTV	Generally, PTVnx, PTVnd, PTV1, and	
	PTV2 refers to GTVnx, GTVnd, CTV1,	
	and CTV2 plus an additional margin, an	
	anterior, superior, inferior, lateral extension	
	of 5 mm, and a posterior extension of 3	
	mm, respectively	
Organs at risk	Brainstem, temporal lobe, lens, eyeballs,	Organs could be
	optic nerves, optic chiasm, pituitary,	added or removed
	parotid gland, temporomandibular joint,	according to the actual
	mandible, larynx, oral cavity, salivary	situation
	gland, and inner and middle ear	

*Level Ib was electively irradiated if the following conditions were met: (1) the level Ib lymph nodes (LNs) were involved; (2) the level IIa LNs had extracapsular extension or a diameter \geq 3 cm; (3) there was extensive nodal disease on the ipsilateral neck; or (4) the soft or hard palate, oral cavity, or ipsilateral nasal cavity was grossly involved.

276 **4.2.4 Prescribed Dose and Fractionation:**

- All patients are treated with IMRT using a simultaneously integrated boost with 5
- fractions per week. The prescribed doses are 66–70 Gy to the planning target
- volume (PTV), 56-66 Gy to PTV1, 50-60 Gy to PTV2, and 60–66 Gy to the PTV
- of the involved cervical LNs in 28 to 33 fractions.

281 **4.2.5 Normal Tissue Dose Constraints:**

282 Normal Tissue Dose Constraint Structure

Structure	Dose constraints
Spinal cord	$Dmax^* \le 45 Gy$
Spinal cord_PRV	$D1^{\approx} \leq 54 \text{ Gy}$
Brain stem	$Dmax \le 54 \text{ Gy}$
Brain stem_PRV	$D1 \le 60 \text{ Gy}$
Optic nerves	$Dmax \le 54 \text{ Gy}$
Optic nerves_PRV	$D1 \le 60 \text{ Gy}$
Optic chiasm	$Dmax \le 54 \text{ Gy}$
Optic chiasm_PRV	$D1 \le 60 \text{ Gy}$
Temporal lobe	$Dmax \le 60 \text{ Gy}$
Temporal lobe_PRV	D1 ≤ 65 Gy
Lens	Dmean ^{\overline{\overlin}\overlin{\overline{\overline{\overlin}\overlin{\overlin{\overlin}\overlin{\overlin{\overlin{\overlin}\overlin{\overlin{\overlin{\overlin{\overlin}\overlin{\overlin}\overlin{\overlin{\overlin}\}
Pituitary	$Dmax \le 60 \text{ Gy}$
Eyes	Dmean < 35 Gy
Mandible	$Dmax \le 70 \text{ Gy}$
Temporomandibular joint	$Dmax \le 70 \text{ Gy}$
Parotid	Dmean < 26 Gy

Parotid	V30 ^{&} < 50%
Cochlea	Dmean < 50 Gy
Larynx	Dmean < 45 Gy

283 PRV=planning organ-at-risk volume.

^{*}Maximum point dose to the target volume.

 $^{\approx}$ Dose received by 1% of the target volume.

 $^{\omega}$ Mean dose to the target volume.

[&]At least 50% of the gland received <30 Gy (was achieved in at least gland)

4.3 Salvage Therapy

Second- or third-line chemotherapy will be provided for patients with disease progression. Local treatment for metastatic lesions, including definitive RT, surgical resection, ablation, or other treatments are used for some patients to control local symptoms and eliminate metastases in the bone, liver, lungs, or other organs. Additionally, locoregional RT are also offered in the chemotherapy alone group.

294 Observation and Assessment

During the initial screening period, eligible mNPC patients are treated with a cisplatin plus fluorouracil regimen. After 3 cycles of chemotherapy, an efficacy evaluation will be performed, and a second screening process (screening confirmation period) will be also performed. The patients who are evaluated to achieve CR or PR after 3 cycles of chemotherapy will be officially registered and enrolled. Patients who are not sensitive to chemotherapy (evaluated as having SD or PD after 3 cycles of chemotherapy) will be excluded.

302 5.1 Initial Screening Period

All patients are under standardized management for NPC, and they need to undergo a series of examinations as well as provide relevant information to confirm their pathologic diagnosis and clinical stage before being admitted into

306	the trial, including the following:
307	a. Medical history review
308	b. Personal data collection
309	c. Review of present medications and treatment
310	d. Body examinations, including height, weight, and vital signs
311	e. Physical examination of the head and neck region, including the
312	nasopharyngeal and cervical LNs
313	f. Physical examination of the nervous system
314	g. Nasal endoscopy and lesion biopsy
315	h. Biopsy or needle aspiration of distant metastases
316	i. Blood routine
317	j. Urine routine
318	k. Blood biochemistry
319	l. Imaging test of the tumor (enhanced MR or enhanced CT of the head and
320	neck (CT was indicated only in patients with contraindications to MRI))
321	m. PET/CT is compulsorily required during the initial screening period*
322	*Patients who underwent PET/CT examinations did not need chest X-rays,
323	abdominal ultrasonography, or ECT bone scans.
324	5.2 Screening Confirmation Period
325	a. PET-CT, MRI and/or CT of the primary tumor and distant metastases, which is
326	performed after treatment, and CR, PR, SD, or PD is evaluated according to the
327	RECIST version 1.1 criteria.
328	b. Physical examinations of the head and neck region, including the
329	nasopharyngeal and cervical LNs
330	5.3 During Treatment

331 The following aspects need to be assessed from the start to the end of treatment.

a. MRI and/or CT of the primary tumor and distant metastases, which is
performed after treatment, and CR, PR, SD, or PD is evaluated according to the
RECIST version 1.1 criteria. The chest films and abdominal ultrasonography are
reexamined after treatment. PET-CT and ECT bone scans are performed as
clinically indicated.

b. General conditions

c. Acute and late toxicities assessment (NCI-CTC, version 3.0), including for
hematological toxicity, gastrointestinal reactions, hepatotoxicity, nephrotoxicity,
mucositis, neurotoxicity, ototoxicity, etc.

341 d. Peripheral neuropathy

e. Laboratory tests: blood routine and blood biochemistry are required within 1week prior to each cycle of chemotherapy and once per week during treatment.

344 **6.0 Follow-Up and Recording of Events**

345 After completing treatment, the patients are followed up every 2 to 3 months until346 death to evaluate the patients' recent and long-term efficacy and safety profiles.

347 Follow-up method: Record of the patient's examination data, a doctor's letter with signature to document the visit, or a doctor's follow-up records collected by telephone 348 349 Follow-up content: Routine examination of the nasopharyngeal lesions and LNs, and 350 B-mode ultrasound, chest X-ray, and CT or MR examinations of the distant metastases every 3 months. PET/CT or bone scintigraphy are performed when 351 clinically indicated. The treatment responses are also evaluated according to the 352 353 RECIST criteria. The earliest date of detecting symptomatic late toxicities and the eventual maximum grade according to the Late Radiation Morbidity Scoring Criteria 354 355 of the Radiation Therapy Oncology Group (RTOG) and European Organization for

356 Research and Treatment of Cancer (EORTC) are recorded.

357 7.0 Security Measures and Quality Control

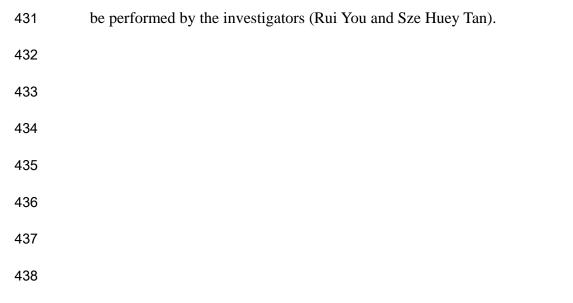
- a. Provide a systemic learning program for every member in the research group 358 359 Assigned one doctor in each center to lead tumor staging, which must be in accordance with the 7th edition AJCC guidelines and to ensure that every patient 360 enrolled is eligible. Patients are assigned to their groups based on random numbers 361 362 b. Make a monitoring plan for adverse effects and an emergency plan c. Research plan is made by all participating centers and approved by the ethics 363 364 committee 365 d. Develop various standard operation procedures related to this study e. Establish a standardized evaluation system to unify the diagnostic criteria, curative 366 367 effect judging criteria, etc. 368 f. Establish professional statistical plans g. Research staff members are trained before the study 369 370 h. Ensure that every participating center conducts the study at the same pace Arrange a quality controller to create a quality control plan and regularly check on 371 i. 372 the study j. Set up a coordination committee, curative effect judging group and follow-up 373 374 team 375 8.0 Statistical Analysis 8.1 Endpoint Definitions 376 **Primary Endpoint** 8.1.1 377 378 OS is defined as the time from random assignment to death from any cause, or the patient was censored at the date of the last follow-up. 379
- 380 8.1.2 Secondary Endpoints

8.1.2.1 Progression-free survival (PFS): PFS is defined as the time from random
assignment to the date of documented local or regional relapse, distant metastasis,
or death from any cause, whichever occurs first.

384 8.1.2.2 Short-term response: Treatment response is assessed by imaging by independent image committee every three cycles until disease progression. The 385 nasopharyngeal tumor, cervical LN, and distant metastasis responses are observed 386 387 and evaluated by physical examinations, nasopharyngoscopy, and MRI/CT imaging. Tumor response is classified according to the RECIST criteria, version 388 389 1.1. CR is defined as the disappearance of all target lesions. Any pathological 390 LNs (whether target or nontarget) must have been reduced in the short axis to <10 mm. PR is defined as an at least 30% decrease in the sum of diameters of the 391 392 target lesions, with the baseline diameter sum serving as the reference. PD is 393 defined as an at least 20% increase in the sum of diameters of the target lesions, with the smallest sum during study serving as the reference (including the 394 395 baseline sum). In addition to a relative increase of 20%, the sum must also 396 demonstrate an absolute increase of at least 5 mm. (Note: the appearance of one 397 or more new lesions is also considered disease progression). SD is defined as both insufficient size reduction to qualify as PR and an insufficient increase to be 398 399 considered PD, with the smallest diameter sum during the study serving as the 400 reference. Proportion of patients who have a confirmed objective response are 401 defined as a CR or PR from the first evaluation after 3 cycles of chemotherapy with PF until disease progression or death according to the RECIST 1.1 criteria). 402 403 Proportion of patients who achieve disease control are defined as an objective response and stable disease. 404

405 8.1.2.3 Safety indicators: Acute toxicities are assessed according to the

406 NCI-CTC version 3.0. The acute toxicities include hematologic toxicity,
407 mucositis, allergic reactions and other adverse events and serious adverse events.
408 Late radiation toxicities are assessed using the RTOG and EORTC late radiation
409 morbidity scoring scheme. The late toxicities include neurotoxicity, ototoxicity
410 and other complications and sequelae.


411 **8.2 Sample Size Estimate**

To confirm the superiority of systemic chemotherapy plus RT over systemic 412 chemotherapy alone regarding OS. On the basis of previous reports^{22,23,24}, we 413 414 assume that 2-year OS rate is 51.0% for patients treated with systemic 415 chemotherapy alone, and 70.0% for patients treated with systemic chemotherapy plus radiotherapy, with a target hazard ratio (HR) of 0.530. The log-rank test is 416 417 used to calculate the sample size. The expected length of the accrual period is 3 418 years, and the expected maximum length of follow-up is 5 years. The two-sided type I error is 0.05 ($\alpha = 0.05$), and the power is 0.90 (1- β). After accounting for a 419 420 10% dropout rate, we estimat that a total of 204 participants are needed, (102 421 participants in each group), in order for 104 events to be observed for the primary 422 analysis of overall survival.

423

424 **8.3 Independent Trial Data Monitoring Committee (IDMC)**

The PI hired Professor Yi-Min Liu as the IDMC for this study. After the enrolled patients are registered, all patient information will be sent to the IDMC, who manage the database, and is involved in the statistical analysis, data interpretation, and toxicity data review. As per institutional (SYSUCC) practice, the data is to be reviewed once a year to evaluate safety. Futility is also assessed to avoid over-treatment of patients with metastatic disease. For the final analysis, this is to

440 Members of the Independent Data Monitoring Committee (IDMC).

Position	Name	Job Title	Specialty
Chairman	Yi-Min	Department of Radiotherapy	Radiotherapy
	Liu	Oncology, Sun Yat-sen Memorial	Oncology
		Hospital, Sun Yat-sen	
		University/Professor	
Member	Wen	School of Public Health, Sun	Health Statistics
	Chen	Yat-sen University/Professor	
Member	Gang Li	Department of	Otorhinolaryngology
		Otorhinolaryngology, Southern	
		Medical University Nanfang	
		Hospital/Professor	
Member	Yi Pan	Department of Radiotherapy	Radiotherapy
		Oncology, Guangdong Provincial	Oncology
		People's Hospital/Professor	
Member	Jing-Qi	The Ethics Committee and	Oncology
	Chen	Department of Medical Oncology	
		of the Second Affiliated Hospital	
		of Guangzhou Medical University	
		Chairman/Professor	

442 **8.4 Stratification/Randomization Scheme**

443 **8.4.1** Stratification

Patients are stratified according to treatment centers (Sun Yat-sen University Cancer Center, Guangdong Provincial People's Hospital, and The First Affiliated Hospital, Sun Yat-sen University), the number of metastatic lesions (1-2 vs \geq 3) and treatment response (complete response vs partial response).

448

8.4.2 Randomization

The patients who are evaluated achieving CR or PR after 3 cycles of 449 450 chemotherapy are officially registered, enrolled and randomized. The eligible 451 patients are randomized using a 1:1 allocation to a chemotherapy plus RT arm and a chemotherapy alone arm. Stratified randomization is performed within each 452 453 stratum based on the number of metastatic lesions, the treatment centers and 454 treatment response. The randomized block design is conducted by the data management team, and the data management team choose the block size so that 455 456 each block contains an equal proportion of patients. This procedure helps to ensure both randomness and investigator blinding (the block sizes are known only 457 by the data management treatment), as recommended by Friedman et al 458 (Friedman J, Furberg, C, DeMets D. Fundamentals of clinical trials. New York: 459 460 Springer-Verlag; 1998). Randomization is performed by the data management 461 team, and the results are placed in opaque, sealed envelopes labeled by stratum, 462 which are only unsealed after patient registration. The patients are identified by a unique subject number that remains consistent for the duration of the study. 463

464

8.5 Case Report Form (CRF)

465 The required CRF is designed before the study to record the detailed medical 466 history, treatment outcomes and follow-up information; the CRF is designed to be 467 easy to fill in and to save in the database.

468 **8.6 Analytical Approach**

The results of our study are analyzed by the intention-to-treat (ITT) approach, and 469 470 all eligible patients are analyzed according to the randomization scheme, 471 including the patients whose treatment plan is changed from chemotherapy plus RT to chemotherapy alone. The Kaplan-Meier estimator is used to estimate the 472 473 survival function from lifetime data, and the log-rank test is used to compare the differences in survivals between the two groups. The response rates and incidence 474 475 of toxicities are compared by the chi-square test. The Cox proportional-hazards model is used to calculate the hazard ratios and 95% confidence intervals. The 476 statistical tests are two-sided, and a P value < 0.05 is considered statistically 477 478 significant.

479 The analyses included the following:

480 General information: The distribution and equilibrium of general factors, such as481 age, sex, and disease stage, are assessed.

482 Adverse effects:

483 Acute and late toxicities, sequelae and complications in each arm are assessed

484 according to NCI-CTC version 3.0

485 Short-term effects:

486 CR, PR, SD, PD, overall response rate, and disease control rate are evaluated487 with the RECIST criteria.

488 Long-term curative effects:

489 24-months OS and PFS rates, median OS, median PFS are calculated according

to follow-up data.

491 **9.0 Ethical Considerations**

492 9.1 This study was approved by an appropriate institutional ethics committee.

- 9.2 Informed consent is obtained from the individual patients. A copy of the
 consent form and contact number for the investigators and ethics committee
 are available to the patients upon request.
- 496 9.3 The advantages and disadvantages of chemotherapy plus RT in treating
 497 mNPC patients are mentioned below:

498 9.3.1 Advantages:

- a. Chemotherapy plus RT is expected to bring significant survival benefits tomNPC patients.
- b. Locoregional RT is expected to significantly improve the compressive and
 destructive symptoms caused by nasopharyngeal and cervical tumors, such as
 headache and bleeding.
- 504 c. Locoregional RT might help minimize the metastatic spread of NPC cells.
- d. Active locoregional RT is beneficial for the patients' determination to fightcancer and improve their mental state.
- 507 9.3.2 Disadvantages:
- a. Chemotherapy plus RT increases the financial burden for mNPC patients.

509 b. Locoregional RT causes radiation injuries such as dry mouth and sore throat,510 thereby affecting the quality of life of some patients.

9.4 Chemotherapy plus RT is expected to bring significant survival benefits to
patients [22-25], to control local symptoms, to reduce further distant metastasis
and to improve the patient's mental state, thus greatly benefiting patients, their
family and society. Moreover, previous studies have shown that most NPC
patients could tolerate RT well and that the complications from radiation were
acceptable, especially in the IMRT era. Although RT could increase the economic

517 burden of patients to a certain extent, distant metastases of NPC are incurable, 518 and proportionally, the RT costs are relatively low over the course of long-term 519 treatment. More importantly, if the use of locoregional RT can help patients 520 achieve a longer tumor remission time and a better survival outcome, then the use 521 of RT will lower the cost of treatment and thus the overall cost. Therefore, the 522 advantages of using locoregional RT for mNPC will outweigh the disadvantages.

- 523 10.0 References
- Su SF, Han F, Zhao C, *et al.* Long-term outcomes of early-stage nasopharyngeal
 carcinoma patients treated with intensity-modulated radiotherapy alone. *Int J Radiat Oncol Biol Phys* 2012;82:327-333.
- 527 2. Xiao WW, Huang SM, Han F, *et al.* Local control, survival, and late toxicities of
 528 locally advanced nasopharyngeal carcinoma treated by simultaneous modulated
 529 accelerated radiotherapy combined with cisplatin concurrent chemotherapy:
 530 long-term results of a phase 2 study. *Cancer* 2011;117:1874-1883.
- 531 3. Lee AW, Tung SY, Chan AT, *et al.* Preliminary results of a randomized study
 532 (NPC-9902 Trial) on therapeutic gain by concurrent chemotherapy and/or
 533 accelerated fractionation for locally advanced nasopharyngeal carcinoma. *Int J*534 *Radiat Oncol Biol Phys* 2006;66:142-151.
- Lee AW, Poon YF, Foo W, et al: Retrospective analysis of 5037 patients with
 nasopharyngeal carcinoma treated during 1976-1985: overall survival and
 patterns of failure. Int J Radiat Oncol Biol Phys, 1992; 23:261-70.
- 5. Teo PM, Kwan WH, Lee WY, et al: Prognosticators determining survival
 subsequent to distant metastasis from nasopharyngeal carcinoma. Cancer, 1996;
 77:2423-31.
- 541 6. Sham JS, Choy D, Choi PH: Nasopharyngeal carcinoma: the significance of neck

- node involvement in relation to the pattern of distant failure. Br J Radiol, 1990;63:108-13.
- 544 7. Loong HH, Ma BB, Chan AT. Update on the management and therapeutic
 545 monitoring of advanced nasopharyngeal cancer. *Hematol Oncol Clin North Am*546 2008; 22:1267-1278.
- 547 8. Demicheli, R. et al. Tumor dormancy and surgery-driven interruption of
 548 dormancy in breast cancer: learning from failures. Nat. Clin. Pract. Oncol. 2007,
 549 4:699–710.
- 550 9. Flanigan RC, Salmon SE, Blumenstein BA, et al: Nephrectomy followed by
 551 interferon alfa-2b compared with interferon alfa-2b alone for metastatic
 552 renal-cell cancer. N Engl J Med, 2001; 345:1655-9.
- 10. Mickisch GH, Garin A, van Poppel H, et al: Radical nephrectomy plus
 interferon-alfa-based immunotherapy compared with interferon alfa alone in
 metastatic renal-cell carcinoma: a randomised trial. Lancet, 2001; 358:966-70.
- 11. Rapiti E, Verkooijen HM, Vlastos G, et al: Complete excision of primary breast
 tumor improves survival of patients with metastatic breast cancer at diagnosis. J
 Clin Oncol, 2006; 24:2743-9.
- 12. Ruiterkamp, J. et al. Impact of breast surgery on survival in patients with distant
 metastases at initial presentation: a systematic review of the literature. Breast
 Cancer Res. Treat. 2010, 120: 9–16.
- 562 13. Le Scodan R, Stevens D, Brain E, et al: Breast cancer with synchronous
 563 metastases: survival impact of exclusive locoregional radiotherapy. J Clin Oncol, 2009;
 564 27:1375-81.

- 565 14. Weckermann, D. *et al.* Perioperative activation of disseminated tumor cells in
 566 bone marrow of patients with prostate cancer. *J. Clin. Oncol*, 2009, 27:1549–
 567 1556.
- 568 15. Widmark, A. *et al.* Endocrine treatment, with or without radiotherapy, in locally
 advanced prostate cancer (SPCG-7/SFUO-3): an open randomised phase III trial. *Lancet*, 2009, 373: 301–308.
- 571 16. Tan, A. & Parker, C. Radiotherapy in locally advanced prostate cancer. *Lancet*,
 572 2009, 373: 274–276.
- 573 17. Thompson IM, Tangen C, Basler J, et al: Impact of previous local treatment for
 574 prostate cancer on subsequent metastatic disease. J Urol, 2002; 168:1008-12,
 575 2002.
- 576 18. Engel, J. *et al.* Survival benefit of radical prostatectomy in lymph node-positive
 577 patients with prostate cancer. *Eur. Urol*, 2010, 57:754–761.
- 578 19. Morgan SC, Parker CC. Local treatment of metastatic cancer--killing the seed or
 579 disturbing the soil? *Nat Rev Clin Oncol* 2011;8:504-506.
- 580 20. Sham JS, Choy D, Choi PH. Nasopharyngeal carcinoma: the significance of neck
 581 node involvement in relation to the pattern of distant failure. *Br J Radiol*582 1990;63:108-113.
- 58321. National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in584Oncology.HeadandNeckCancers(v.2.2011)
- 585 <u>http://www.nccn.org/professionals/ physician_gls/PDF/head-and-</u> neck.pdf.
- 586 22. Setton J, Wolden S, Caria N, *et al.* Definitive treatment of metastatic
 587 nasopharyngeal carcinoma: Report of 5 cases with review of literature. Head
 588 Neck, 2012;34:753-757.
- 589 23. Lin S, Tham IW, Pan J, et al. Combined high-dose radiation therapy and

- systemic chemotherapy improves survival in patients with newly diagnosed
 metastatic nasopharyngeal cancer. Am J Clin Oncol, 2012;35:474-479.
- 592 24. Chen MY, Jiang R, Guo L et al. Locoregional radiotherapy in patients with distant
 593 metastases of nasopharyngeal carcinoma at diagnosis. Chin J Cancer 2013; 32:
- **594 604-613**.

595

596	Appendix I
597	STAGING CRITERIA – the 7 th AJCC edition
598	Tumor
599	• T1 - confined to the nasopharynx, or the tumor extends to the oropharynx
600	and/or nasal cavity without parapharyngeal extension
601	• T2 - tumor with parapharyngeal extension (posterolateral infiltration, i.e.,
602	beyond the pharyngobasilar fascia)
603	• T3 - involves the bony structures and/or paranasal sinuses
604	• T4 - intracranial extension and/or involvement of the cranial nerves,
605	infratemporal fossa, hypopharynx, orbit, or masticator space
606	Nodes
607	• N1 - unilateral nodes (6 cm or less) above the supraclavicular fossa, and/or
608	retropharyngeal LNs 6 cm or less (unilateral or bilateral)
609	• N2 - bilateral nodes (6 cm or less) above the supraclavicular fossa
610	• N3a - lymph nodes greater than 6 cm
611	• N3b - extension to the supraclavicular fossa (defined as the triangular region
612	described by Ho and bounded by the superior margin of the sternal head of the
613	clavicle, the superior margin of the lateral end of the clavicle, and the point
614	where the neck meets the shoulder. These features are present in some level IV as
615	well as level V tumors.)
616	Overall stage
617	• I - T1 N0
618	• II - T1-T2 N1, T2 N0 (i.e., T2 or N1)
619	• III - T3 N0-2, or T1-3 N2 (i.e., T3 or N2)
620	• $IVA = TA NO^2$

620 • IVA - T4 N0-2

• IVB - N3

622 • IVC - M1

623

624 Appendix II

100	No complaints; no evidence of disease
90	Able to carry on normal activity; minor signs or symptoms of
	disease
80	Able to normal activity; some signs or symptoms of disease
70	Cares for self; unable to normal activity or to do active work
60	Requires occasional assistance but is able to care for most of his or
	her personal needs
50	Requires considerable assistance and frequent medical care
40	Disabled; requires special care and assistance
30	Severely disabled; hospitalization indicated, although death not
	imminent
20	Very sick; hospitalization necessary; requires active supportive
	treatment
10	Moribund; fatal processes progressing rapidly
0	Dead

625 Performance status (Karnofsky scale)

626