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eMethods 

Slide Preparation and Image Digitization 

For each case in the validation set, fresh tissue sections were cut from deaccessioned tissue 
blocks beyond the 10-year Clinical Laboratory Improvement Amendments (CLIA) archival 
requirement. Five serial sections (of approximately 5-micron thickness) were cut in total from 
each block; sections 1, 3, and 5 were hematoxylin-and-eosin (H&E)-stained, while section 4 was 
triple-stained with the PIN4 immunohistochemistry cocktail. Slides from each of the 4 data 
sources (ML1, ML2, UH, and TTH) were cut and stained by 4 separate laboratories. In total, 
1339 cases were initially scanned for the validation set; 752 were subsequently used based on 
urologic specialist review availability and exclusion criteria. Development set slides from ML1 
followed a similar procedure to those above without obtaining a triple-stained PIN4 cocktail for 
each case, while development slides from TTH were obtained by scanning slides within the 10-
year CLIA archival requirement. From UH, anonymized digital H&E slides were obtained. Slides 
from TTH, ML1, and ML2 were digitized for purposes of this study using a Leica Aperio AT2 
scanner at a resolution of 0.25 μm/pixel (“40X magnification”), while digital slides obtained from 
UH were each previously scanned on a Hamamatsu NanoZoomer S360 scanner at a resolution 
of 0.23 μm/pixel (“40X magnification”) or 0.46 μm/pixel (“20X magnification”).  

Biopsy Reviews for DLS Development 

For DLS development, 9 urologic subspecialist pathologists (A.E., A.S., C.C., J.S., M.A., M.Z., 
P.H., R.A., T.K.) assessed 524 biopsies, with a median of one review per biopsy (range 1-6). In 
addition to providing biopsy-level reviews as is performed in routine clinical practice, more 
precise glandular-level annotations were made to enable the DLS to recognize glandular level 
Gleason patterns. For these glandular annotations, board-certified general pathologists outlined 
individual glands or regions (eg, groups of glands) and annotated them as one of four 
categories: non-tumor, GP3, GP4, or GP5. These region-level categorizations were 
subsequently reviewed and corrected as appropriate by one of the nine subspecialists. 

Glandular Annotations 

Detailed “region-level annotations” that label glands or regions such as groups of glands were 
collected in a similar manner as previously described (see Supplemental Methods of previous 
study).1 Annotations were performed in a custom histopathology viewer using free-drawing 
tools, typically between 5X and 20X magnifications (available range of magnification was 0.04X 
to 40X). Pathologists outlined regions as “Non-tumor”, and Gleason patterns (GP): “GP3”, 
“GP4”, and “GP5”. In cases of true histological ambiguity, annotators were given the ability to 
assign mixed-grades (e.g. “3+4”); these annotations were used at training time as the primary 
GP (e.g. “3”).  

Deep Learning System 

The Deep Learning System consists of two stages: a convolutional neural network (CNN) that 
classifies image patches within each biopsy, followed by a second machine learning model (a 
support vector machine, or SVM) that uses features extracted from the resulting heatmap to 
classify the biopsy’s overall Grade Group (GG). We first describe the development of the 

https://paperpile.com/c/2X1fkR/kUhdw
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custom CNN architecture for Gleason grading, followed by the training and tuning of the 
discovered network, and lastly the training and tuning of the second-stage SVM. Tensorflow2 
version 1.14.0 was used in construction of the convolutional neural network, while Scikit-learn3 
version 0.20.0 was used for SVM development.  
 
The first stage of the DLS operates on 128x128µm-sized regions referred to as image patches. 
Each image patch and its surrounding image context (total input image size, 512µmx512µm) is 
evaluated by the deep convolutional neural network which provides its interpretation of the 
relative likelihood of each of four classes (non-tumor, GP3, GP4, and GP5) being present in the 
image patch. 
 
For each slide, the region-level predictions are then assembled into a “heatmap” for the slide. 
The heatmap for the slide is then summarized by numerical features that characterize the 
biopsy: percentage of the prostate biopsy slide containing tumor and the relative percentages of 
each Gleason pattern. The second stage of the DLS uses these features as input to a second 
machine learning model (a support vector machine), to provide a GG classification for the 
biopsy. 

Architecture Development 

To develop a CNN architecture specifically for Gleason grading, we use a version of Neural 
Architecture Search (TuNAS).4 Briefly, the neural networks were defined by combining a set of 
modules, and each module had multiple different configurations. TuNAS programmatically 
searched through a prespecified configuration search space to create the final neural network 
architecture. The search space was constructed by specifying the number of modules in the 
network and allowing each module to vary among several predefined configurations. In each 
iteration, TuNAS sampled a neural network, evaluated the performance, and updated the 
parameters of the search algorithm. To estimate the performance of a sampled network, we 
trained the network and computed the loss function on a held-out subset of the development 
set. The final neural network used was obtained by selecting the configuration with the highest 
score for each module.  
 
In the architecture search, a basis is required for the design of search space, termed a 
“backbone”. In this case, we used the Xception5 architecture, a performant network at image 
classification and segmentation tasks, and constructed a search space to allow for flexibility in 
the receptive field of the network.  
 
Specifically, the Xception architecture consists of twelve total modules bracketed by skip 
connections6 (3 in the “entry flow”, 8 in the “middle flow” and 1 in the “exit flow”), with each 
module having two or three 3x3 convolutions. In the search space, we included alternate 
configurations in place of these ones: modules composed of 5x5 convolutions or 7x7 
convolutions. Similarly, the search space also included the choice of swapping the last two 3x3 
convolutions for two 5x5 convolutions or two 7x7 convolutions respectively. Skipping of the 
“middle flow” modules (i.e. an identity operation module) was also permitted such that the 
search could trade off depth and width as necessary. As such, the search space consisted of 
approximately 16 million possible architectures, one of which is the original Xception network.  
 
The architecture search was conducted using the dataset (from previous work) for Gleason 
Grading of prostatectomies because of the larger number of glandular (“region-level”) 
annotations in that dataset.1 This dataset was split into training and tuning sets as previously 
described: 3 million patches were sampled from the training set for use as the search process’s 

https://paperpile.com/c/2X1fkR/kNqeT
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training set, and 1 million patches were subsampled from the tuning set for use as the search 
process’s tuning set. Hyperparameters for the search are presented in eTable 8, and the 
discovered network is presented in eFigure 1.  

Architecture Training and Ensembling 

The top discovered architecture was then retrained and tuned using the full prostatectomy 
development and validation sets from the previous study. As previously described1, color 
augmentations, orientation randomization, and stain normalization were employed to improve 
performance, and hyperparameters were tuned using Google Vizier7. See eTable 8 for resulting 
hyperparameters.  
 
Next, the network was refined using annotated biopsies (eTable 1 below). Annotated biopsy 
slides were randomly split into three folds, and three separate networks were initialized from the 
same prostatectomy-trained weights and refined using each of the dataset folds. In addition to 
color augmentation, orientation randomization, and stain normalization, cutout augmentations8 
were additionally used to improve model performance. Hyperparameters for each fold were 
tuned using Google Vizier (eTable 8).7 An ordinal loss function9 was used for training and 
refinement.  
 
Finally, at evaluation time, nine models were trained and ensembled (three models for each of 
the three folds) by taking the geometric mean across all model predictions for each patch.  
 
Thresholding and Stage 2 Features 
The DLS’s first stage assigned the probabilities (in the range [0, 1]) of each patch to be one of 
four classes: non-tumor or GP3, GP4, or GP5. To map these probabilities to a predicted class, 
we thresholded the predictions. First, a patch was categorized as non-tumor if the predicted 
non-tumor probability exceeded 0.2. Otherwise, the top two GPs’ predicted probabilities were 
re-normalized to sum to 1.0, and compared against a threshold based on the specific GPs. The 
thresholds were 0.65 for GP3/4, 0.94 for GP 3/5, and 0.90 for GP4/5; the more severe GP was 
assigned if the threshold was exceeded. These thresholds were selected empirically via 10-fold 
cross validation on the development set to optimize slide-level agreement with subspecialist-
provided Gleason pattern percentages.  
 
Features were then extracted from both the predicted probabilities for each patch and the 4-
class categorization. A SVM then used these features to classify each biopsy as: non-tumor, 
GG1, GG2, GG3, or GG4-5. The features were the percent of biopsy classified as non-tumor, 
percent of tumor classified as GP4, and GP5 respectively, the lowest predicted patch-wise non-
tumor probability, and the 98th percentile of the patch-wise predicted probabilities for GP4 and 
GP5 respectively. Hyperparameters for the SVM were tuned using 10-fold cross validation 
across the biopsy-level dataset (eTable1) and are presented in eTable 8. The predicted 
probabilities of the SVM for each category were summed for the purposes of receiver operating 
characteristic (ROC) analyses. For example, among non-tumor cases, plotting the ROC of GG1-
2 vs GG3-5 involved summing for each case the SVM’s predicted probability values of GG1 and 
GG2, versus GG3 and GG4-5. 

Statistical Analysis 

 To evaluate the DLS, it was compared to the majority-vote of at least 2 expert 
subspecialists from a panel of expert 6 (Methods section of main text). We used this majority-
vote approach instead of panel review based on preliminary data for 50 biopsies (independent 
of the validation dataset) suggesting that panel discussion rarely helped resolve disagreements 

https://paperpile.com/c/2X1fkR/kUhdw
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between experts, as well as being extremely time-consuming and therefore impractical for a 
dataset of this size. 

To compute 95% confidence intervals, we used a slide resampling bootstrap approach. 
In each iteration of the bootstrap, we sampled with replacement a set of slides of the same size 
as the original set, and compute the metric of interest. After 1000 iterations, we report the 2.5th 
and 97.5th percentiles as the confidence interval bounds. 

With regard to Grade Group Classification, we performed several sub-analyses and 
sensitivity analyses. First, to evaluate generalization of the DLS to a datasource with different 
staining, scanning, and patient characteristics, we considered biopsies from the external 
validation set only (ML2, n=175, Main Figure 1). Next, we considered the subset of tumor-
containing cases with GG consensus among subspecialists (n=328, eTable 4). Then, we further 
carried out an analysis treating GG4 and GG5 separately, rather than combining them into a 
single category (eTable 7). Finally, sensitivity analysis of the DLS-subspecialist agreement with 
respect to individual subspecialists’ annotations are provided in eTables 9 and 10, and 
sensitivity analysis of the DLS agreement with respect to the DLS-internal Gleason pattern 
thresholding is presented in eFigure 6.  

The DLS’s Gleason grading agreement with the majority opinion of subspecialists was 
additionally evaluated by area under the receiver operating characteristic curve (Area under 
ROC, AUC) analysis. The AUCs were estimated using the Wilcoxon (Mann-Whitney) U statistic, 
a standard nonparametric method employed by most modern software libraries. To obtain 
binary outcomes necessary for AUC analysis, the five categories of Gleason scores were 
dichotomized using clinically important cutoffs. Specifically, we used ROC analysis to evaluate 
DLS grading of slides as GG1 vs. GG2-5, a distinction representing the clinically significant 
threshold for potential eligibility for active surveillance versus prostatectomy/definitive 
treatment10,11. We also evaluated the tumor versus non-tumor threshold to represent the 
important diagnostic step of establishing a prostatic adenocarcinoma diagnosis. Lastly we 
evaluated GG1-2 versus GG3-5 as some patients with GG2 may still be managed with active 
surveillance if only a very low amount of Gleason pattern 4 was present10,11. 

https://paperpile.com/c/2X1fkR/jJiRm+whxYL
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eFigure 1. Overview of the reviews provided by expert subspecialists for the validation 
set and an overview of the deep learning system. 

(A) Six urologic expert subspecialists with an average of 25 years of experience (range: 18-34) 
contributed to the subspecialists’ majority opinion in this study. Levels and 
immunohistochemistry were available for every biopsy to reduce diagnostic uncertainty around 
“tangential cuts” and non-tumor vs. tumor delineations. Two specialists initially reviewed each 
slide, and in cases of classification disagreements (on non-tumor vs. Grade Groups 1, 2, 3, or 4-
5), a third specialist review was collected. (B) Overview of the two-stage deep learning system 
and customized neural network architecture for Gleason grading. The search space consisted of 
thirteen modules, each with several possible configurations, resulting in approximately 16 million 
possible architectures in total (see “Architecture Development”). Each of the discovered 
architecture’s finalized thirteen configurations is highlighted in pink, yellow, and blue for modules 
containing 7x7, 5x5, and 3x3 convolutions respectively. (C) A cohort of 19 pathologists provided 
reviews on overlapping subsets of the validation set with access to multiple levels for each 
biopsy to reflect typical clinical workflows.  
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eFigure 2. Example Overcalls by the DLS on Biopsies Without Tumor 

Overcalls were generally on small regions near tissue artifacts. These overcalls are unlikely to 
mislead pathologists using the DLS as a decision support tool by also reviewing these gland-
level predictions. 
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A, Non-tumor vs. Tumor 
(across all biopsies) 

 
AUC=0.981 

B, GG1 vs. GG2-5 
(tumor-containing biopsies only) 

 
AUC=0.922 

C, GG1-2 vs. GG3-5  
(tumor-containing biopsies only) 

 
AUC=0.972  

eFigure 3. Validation Set Performance for Gleason Grading and Tumor Detection  

Each plot shows the receiver operating characteristic curves of sensitivity and specificity of the 
DLS. The DLS made five-category determinations for each case. To obtain the sensitivity and 
specificity, we grouped the Grade Group determinations for binary analysis. For example, a 
categorization of GG4 would be considered a true positive for the grouping GG3-5 versus GG1-
2. The DLS was able to provide a predicted probability for each of the five categories, and the 
predicted probability for each grouping was the sum of all predicted probabilities within the 
group, such as GG1 and GG2 for the group GG1-2. This grouped predicted probability was 
used to plot the continuous receiver operating characteristics curves. Three clinically important 
cutoffs are shown: non-tumor versus tumor (A); GG1 versus GG2-5 on tumor-containing slides 
(B); and GG1-2 versus GG3-5 on tumor-containing slides (C). 
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eFigure 4. Evaluation of Inter-Subspecialist Agreements  

(A) Agreement of each individual subspecialist with the other subspecialist that graded the same 
case. (B) Head-to-head comparison of subspecialist:subspecialist agreement with 
DLS:subspecialist agreement on tumor-containing slides. Each subspecialist graded a subset of 
the images, with every image being graded by two of the six subspecialists. The grey bars show 
all 15 (6 choose 2) pairwise inter-subspecialist agreement measurements on the cases graded 
in common. The two blue bars paired with each grey bar represent the agreement of the DLS 
with each of the associated two subspecialists, on the exact same set of images. The pairs of 
subspecialists are sorted in order of decreasing number of images, with n<50 on the right. The 
mean inter-subspecialist agreement (66%) is greater than the mean inter-pathologist agreement 
(53%) provided in eTable 6 below.  
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eFigure 5. Comparison of the Deep Learning System (DLS) With Individual Subspecialists 

on Tumor-Containing Slides  

(A) Break down of discordances between individual expert subspecialists. Relative to the 
individual subspecialist, the blue and red bars represent the proportion of cases where the other 
subspecialist assigned a higher and lower grade, respectively. (B) Break down of 
DLS:subspecialist discordances. Relative to the individual subspecialist, the blue and red bars 
represent the proportion of cases where the DLS assigned a higher and lower grade, 
respectively. Error bars represent the 95% confidence intervals. Potential reasons for 
disagreements among expert subspecialists may include inherent uncertainty in the two-
dimensional interpretation of a three-dimensional specimen, ambiguity in grading guidelines, 
inexactness of visual quantitation, and cognitive factors such as anchoring. However, this 
analysis suggests that some discordances may be due to systematic differences in “grading 
calibration” (consistently over- or under-grading relative to other subspecialists).  
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eFigure 6. Sensitivity of the DLS’s Gleason Grade Group Classification Accuracy to 

Differences in Gleason Pattern (GP) Thresholds for GP 3 vs 4, 4 vs 5, and 3 vs 5  

See “Thresholding and Stage 2 Features” in the Supplementary Methods for more details. 
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eTable 1. Characteristics of the Development Set  

The development set contains prostate biopsy cases from a large tertiary teaching hospital 
(TTH), a medical laboratory (ML1), and a University Hospital (UH). Biopsy-level pathologic 
reviews were obtained from ML1 and TTH, while detailed region-level annotations were 
obtained from all three sources. 

Biopsy-Level Reviews 

Urologic 
subspecialist 
reviews 

Medical 
Laboratory 1  

Tertiary Teaching 
Hospital 

 Total 

Non-tumor  72 50  
 122 

Grade Group 1 30 172  202 

Grade Group 2 19 111  120 

Grade Group 3 5 42  47 

Grade Group 4-5 37 42  79 

Total 
165 reviews / 135 

biopsies / 
135 cases 

417 reviews / 
389 biopsies / 

225 cases 

 
580 reviews / 
524 biopsies / 

360 cases 

Region-Level Annotated Biopsy Patches 

Urologic 
subspecialist 
reviews  

Medical 
Laboratory 1  

Tertiary Teaching 
Hospital  

University Hospital  Total  

Non-tumor 182,938 620,916 495,715 1,299,569  

Gleason  
Pattern 3 

15,790 43,998 82,740 142,528 

Gleason  
Pattern 4 

28,207 112,120 59,897 200,224 

Gleason Pattern 5 2,742 28,158 8,066 38,966 

Total  
229,677 patches / 

73 biopsies 
805,192 patches / 

156 biopsies 
646,418 patches / 

115 biopies 

1,681,287 patches 
/ 

344 biopsies 
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eTable 2. Breakdown of Discordances (A) Between Subspecialists, (B) Between the 
Majority Opinion of Subspecialists and the Deep Learning System, DLS, and (C) Between 
the Majority Opinion of Subspecialists and General Pathologists 

The diagonal values (in bold) represent agreement; the region below the diagonal represents 
relative undergrading; and the region above the diagonal right region represents relative 
overgrading. Relative to the majority opinion of subspecialists, the Cohen’s kappa for the DLS 
was 0.71, while the mean Cohen’s kappa amongst general pathologist was 0.61. 

 
A 

Subspecialist Classification 

Subspecialist Classification 

Non-
tumor 

GG1 GG2 GG3 GG4-5 

Non-tumor 33.8% 1.9% 0.0% 0.0% 0.0% 

GG1  25.0% 10.6% 0.9% 0.1% 

GG2   8.2% 4.8% 0.2% 

GG3    4.3% 3.9% 

GG4-5     6.3% 

B 

Majority opinion of 
subspecialists 

DLS 
(n=752 reviews across 752 biopsies) 

Non- 
tumor 

GG1 GG2 GG3 GG4-5 

Non-tumor 31.0% 0.9% 0.4% 1.5% 0.0% 

GG1 2.7% 26.2% 3.7% 0.3% 0.0% 

GG2 0.0% 4.7% 10.1% 1.5% 0.0% 

GG3 0.3% 0.3% 2.4% 6.0% 0.4% 

GG4-5 0.0% 0.0% 0.1% 2.5% 5.2% 
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C 

Majority opinion of 
subspecialists 

Pathologists 
(n=2239 reviews across 752 biopsies) 

Non- 
tumor 

GG1 GG2 GG3 GG4-5 

Non-tumor 32.5% 0.8% 0.0% 0.0% 0.0% 

GG1 3.4% 20.4% 7.1% 0.9% 0.4% 

GG2 0.2% 3.5% 8.1% 3.7% 1.2% 

GG3 0.2% 0.2% 1.3% 4.1% 3.8% 

GG4-5 0.1% 0.0% 0.1% 0.8% 7.1% 
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eTable 3. Individual Pathologist Gleason Scoring Agreement With Subspecialist Majority 
Opinion for the 19 Pathologists 

Each pathologist reviewed overlapping subsets of the validation set. Agreement with the 
majority opinion in classifying each slide (as non-tumor, or Grade Groups 1, 2, 3, or 4-5) ranged 
from 49-87% (mean: 72%). On tumor-containing biopsies, accuracies ranged from 27-75% 
(mean: 58%). Bold indicates the higher accuracy within all slides or tumor-containing slides. 

Pathologist 

Among all slides Among tumor-containing slides only 

Agreement 
with 

subspecialist 
majority 

opinion (%, 
95% CIs) 

DLS agreement 
with 

subspecialist 
majority opinion 
on same subset 
of slides (95% 

CIs) 

Number 
of 

slides 

Agreement 
with 

subspecialist 
majority 

opinion (%, 
95% CIs) 

DLS agreement 
with 

subspecialist 
majority opinion 
on same subset 
of slides (95% 

CIs) 

Number 
of 

slides 

1 48.8 (34.9, 62.8) 74.4 (60.5, 86.0) 43 26.7 (10.0, 43.3) 66.7 (50.0, 83.3) 30 

2 59.5 (48.6, 71.6) 71.6 (60.8, 81.1) 74 49.1 (36.4, 61.8) 61.8 (49.1, 74.5) 55 

3 61.6 (51.2, 72.1) 79.1 (69.8, 87.2) 86 55.9 (44.1, 67.6) 77.9 (67.6, 88.2) 68 

4 64.7 (59.3, 69.9) 73.4 (68.6, 78.2) 312 62.1 (56.2, 68.0) 71.7 (66.2, 76.8) 272 

5 66.7 (57.6, 75.8) 83.8 (75.8, 90.9) 99 43.6 (30.9, 58.2) 74.5 (63.6, 85.5) 55 

6 69.2 (62.5, 76.0) 79.8 (74.0, 85.6) 208 51.5 (43.1, 60.0) 71.5 (63.8, 79.2) 130 

7 70.2 (55.3, 83.0) 80.9 (68.1, 91.5) 47 63.2 (47.4, 78.9) 76.3 (63.2, 89.5) 38 

8 71.4 (61.9, 81.0) 78.6 (69.0, 86.9) 84 50.0 (35.4, 64.6) 70.8 (56.2, 83.3) 48 

9 71.9 (59.4, 82.8) 82.8 (73.4, 90.6) 64 61.7 (48.9, 74.5) 76.6 (63.8, 89.4) 47 

10 72.3 (64.8, 79.2) 74.8 (67.9, 81.8) 159 61.7 (53.0, 70.4) 69.6 (61.7, 77.4) 115 

11 72.7 (66.7, 77.9) 76.3 (71.1, 81.1) 249 61.1 (53.1, 67.9) 67.9 (61.1, 74.7) 162 

12 74.1 (64.2, 82.7) 77.8 (67.9, 86.4) 81 64.4 (52.5, 76.3) 76.3 (66.1, 86.4) 59 

13 75.6 (61.0, 87.8) 78.0 (63.4, 90.2) 41 63.0 (44.4, 81.5) 70.4 (51.9, 85.2) 27 

14 76.1 (67.3, 84.1) 81.4 (74.3, 87.6) 113 48.0 (34.0, 62.0) 66.0 (52.0, 80.0) 50 

15 77.9 (67.6, 86.8) 79.4 (69.1, 88.2) 68 58.3 (41.7, 75.0) 63.9 (47.2, 80.6) 36 

16 81.6 (73.5, 88.8) 77.6 (69.4, 85.7) 98 75.0 (65.3, 84.7) 76.4 (66.7, 86.1) 72 

17 81.7 (77.5, 85.6) 81.4 (76.8, 85.6) 306 67.1 (60.0, 73.5) 72.9 (66.5, 79.4) 170 

18 83.6 (73.8, 91.8) 86.9 (77.0, 95.1) 61 74.4 (59.0, 87.2) 82.1 (69.2, 92.3) 39 

19 87.0 (76.1, 95.7) 80.4 (67.4, 91.3) 46 64.7 (41.2, 88.2) 47.1 (23.5, 70.6) 17 
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eTable 4. DLS Performance For Gleason Grading Compared to the Majority Opinion of 
Subspecialists  

Numbers indicate agreement with the majority opinion, with 95% confidence intervals in 
parenthesis, and sample size reported. 

 Entire validation set 
Subset where first 2 
subspecialists were 

concordant 

Subset from 
independent data 

source (ML2) 

All biopsies 
0.785 (0.755, 0.814); 

n=752 
0.835 (0.804, 0.864); 

n=576 
0.801 (0.757-0.845); 

n=322 

Tumor-
containing 
biopsies 

0.717 (0.679, 0.753); 
n=503 

0.774 (0.729, 0.817); 
n=328 

0.714 (0.657, 0.777); 
n=175 
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eTable 5. Confusion Matrix (5 × 5 Contingency Table) Showing the Breakdown of 
Classifications for the DLS on Biopsies From ML2 

Majority opinion of subspecialists 

DLS 
(n=322 reviews across 322 biopsies) 

Non-
tumor 

GG1 GG2 GG3 GG4-5 

Non-tumor 41.3% 0.9% 0.9% 2.5% 0.0% 

GG1 2.2% 17.1% 3.7% 0.62% 0.0% 

GG2 0.0% 3.1% 8.4% 2.2% 0.0% 

GG3 0.6% 0.0% 0.6% 5.3% 0.3% 

GG4-5 0.0% 0.0% 0.0% 2.2% 8.1% 
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eTable 6. Interpathologist Agreement on Tumor-Containing Slides 

Inter-pathologist agreement, grouped by every individual pathologist. Each individual 
pathologist’s reviews are compared against all reviews from other pathologists available on the 
same cases. Resulting inter-pathologist agreement ranges from 38-72% with a mean inter-
pathologist agreement of 52%.  The mean inter-pathologist agreement (53%) is lower than the 
mean inter-subspecialist agreement (66%) provided in eFigure 4 above.  

Pathologist 
Agreement with other 
pathologists (95% CIs) 

Number of comparisons 

1 38.6 (27.1, 50.0) 70 

2 37.7 (30.0, 46.9) 130 

3 43.5 (35.1, 51.9) 131 

4 49.2 (45.0, 53.6) 524 

5 45.8 (37.5, 54.2) 120 

6 54.5 (48.8, 60.7) 242 

7 50.0 (39.3, 59.5) 84 

8 50.0 (39.6, 58.5) 106 

9 51.9 (42.6, 61.1) 108 

10 60.7 (54.1, 66.9) 242 

11 53.7 (48.7, 58.7) 339 

12 50.0 (41.4, 58.6) 128 

13 55.6 (44.4, 66.7) 63 

14 58.2 (49.1, 67.3) 110 

15 57.8 (48.0, 66.7) 102 

16 64.5 (57.2, 71.7) 152 

17 55.0 (49.6, 59.8) 353 

18 72.3 (62.7, 80.7) 83 

19 48.8 (34.1, 63.4) 41 
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eTable 7. Sensitivity Analysis When Separating GG4 and GG5 into Separate Classification 
Categories 

In the main analyses, GG4-5 were combined due to their low incidence and often similar 
treatment implications. A sensitivity analysis treating GG4 and GG5 separately is presented 
here. In this new analysis, 11 of the 752 biopsies were excluded because the first two 
subspecialists’  reviews were discordant between GG4 and GG5 and so a third review wasn’t 
collected.  
A 

Subspecialists’ majority 
opinion 

Deep Learning System 

Non-
tumor 

GG1 GG2 GG3 GG4 GG5 

Non-tumor 32.1% 0.8% 0.3% 0.5% 0.3% 0.3% 

GG1 3.2% 26.5% 3.4% 0.1% 0.1% 0.0% 

GG2 0.4% 5.0% 9.6% 1.3% 0.1% 0.0% 

GG3 0.3% 0.4% 2.4% 5.4% 0.4% 0.5% 

GG4 0.0% 0.0% 0.0% 0.8% 1.1% 0.9% 

GG5 0.0% 0.0% 0.0% 0.3% 0.3% 3.1% 

B 

Subspecialists’ majority 
opinion 

General pathologists 

Non-
tumor 

GG1 GG2 GG3 GG4 GG5 

Non-tumor 33.1% 0.9% 0.0% 0.0% 0.0% 0.0% 

GG1 3.5% 20.7% 7.2% 0.9% 0.4% 0.1% 

GG2 0.2% 3.6% 8.2% 3.7% 1.0% 0.3% 

GG3 0.2% 0.2% 1.3% 4.1% 2.6% 1.2% 

GG4 0.1% 0.0% 0.0% 0.3% 1.8% 0.7% 

GG5 0.0% 0.0% 0.0% 0.3% 0.7% 2.6% 
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eTable 8. Hyperparameters for the Deep Learning System  

Headings are bolded for visual clarity. 

Architecture search hyperparameters 

Neural network learning rate 
schedule 

Cosine decay with linear warmup schedule 
Base rate: 4.2 × 10-3 
Decay steps: 50000 
Fraction of training steps used for linear warmup: 
0.025 

Neural network RMSProp optimizer  
Decay: 0.9 
Momentum: 0.9 
Epsilon: 1.0 

Controller Adam optimizer 

Base rate: 2.5 × 10-4 
Momentum: 0.95 
Beta1: 0.000 
Beta2: 0.999 
Epsilon: 1 × 10-8 

Batch size 128 

Network pre-training hyperparameters (prostatectomy data) 

Color perturbations 

Saturation delta: 0.80 
Brightness delta: 0.96 
Contrast delta: 0.17 
Hue delta: 0.02 

Learning rate schedule 

Exponential decay schedule 
Base rate: 0.0042 
Decay rate: 0.95 
Decay steps: 51,733 steps 

RMSProp optimizer 
Decay: 0.95 
Momentum: 0.7 
Epsilon: 0.001 

Other 
Loss function: softmax cross-entropy 
Batch size: 32 

Network refinement hyperparameters (biopsy data) 

 Fold 1 Fold 2 Fold 3 
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Image augmentations 

Saturation delta: 0.53 
Brightness delta: 0.32 
Contrast delta: 0.61 
Hue delta: 0.01 
Cutout box size: 50x50 pixels 

Learning rate schedule (exponential 
decay schedule) 

Base rate: 2.3 × 
10-5 
Decay rate: 0.70 
Decay steps: 
72,466 

Base rate: 3.2 × 
10-5 
Decay rate: 0.50 
Decay steps: 
75,936 

Base rate: 3.8 × 
10-5  
Decay rate: 0.95 
Decay steps: 
28,512 

RMSProp optimizer 

Decay: 0.90 
Momentum: 
0.90  
Epsilon: 1.00 

Decay: 0.95 
Momentum: 
0.90 
Epsilon: 1.0 

Decay: 0.95 
Momentum: 
0.70 
Epsilon: 0.10 

Other 
Loss function: Ordinal cross-entropy 
Batch size: 32 

Support Vector Machine hyperparameters 

Penalty parameter (‘C’) 100 

Kernel RBF, Gamma = 0.25 
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eTable 9. Sensitivity of the DLS-Subspecialist Agreement in Tumor-Containing Cases to 
the Availability of Annotations From Each Individual Subspecialist 

Subspecialist 

Original DLS 
agreement with 
subspecialist 

(95% CI) 

DLS agreement 
with 

subspecialist if 
trained without 

annotations from 
this subspecialist 

(95% CI) 

Number of 
validation cases 
reviewed by the 

subspecialist 

Number of 
excluded training 
cases reviewed 

by the 
subspecialist (%) 

Subspecialist 1 
0.721  (0.655, 

0.782) 
0.697 (0.635, 

0.764) 
n=195 n=162 (21.2%) 

Subspecialist 2 
0.673 (0.606, 

0.740) 
0.646 (0.578, 

0.709) 
n=206 

 
n=105 (13.7%) 

Subspecialist 3 
0.658 (0.568, 

0.748) 
0.654 (0.545, 

0.672) 
n=110 

 
n=30 (3.93%) 

Subspecialist 4 
0.621 (0.558, 

0.683) 
0.609 (0.545, 

0.673) 
n=220 

 
n=55 (7.22%) 

Subspecialist 5 
0.613 (0.500, 

0.725) 
0.632 (0.518, 

0.734) 
n=79 

 
n=58 (7.61%) 

Subspecialist 6 
0.597 (0.527, 

0.672) 
0.521 (0.451, 

0.602) 
n=186 

 
n=22 (2.89%) 
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eTable 10. Sensitivity of the DLS-Subspecialist Agreement in Tumor-Containing Cases to 
the Availability of Annotations From Each Individual Subspecialist 

Subspecialist 
DLS agreement with the subspecialists’ majority opinion 

(95% CI) 

Including all subspecialists 0.717 (0.679, 0.753) 

Excluding subspecialist 1 0.680 (0.636, 0.720) 

Excluding subspecialist 2 0.668 (0.626, 0.708) 

Excluding subspecialist 3 0.690 (0.646, 0.730) 

Excluding subspecialist 4 0.674 (0.630, 0.712) 

Excluding subspecialist 5 0.694 (0.652, 0.734) 

Excluding subspecialist 6 0.692 (0.650, 0.732) 
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