Supplementary material S1: the two-pool MT model

The two-pool magnetisation transfer (MT) model is used in this paper in both simulations and in vivo analyses. The model describes the evolution of the magnetisation of two exchanging ¹H pools, i.e. free protons in bulk water and protons bound to macromolecules (Henkelman et al., 1993), in presence of off-resonance irradiation $b_{1,\text{off}}(t)$ with carrier frequency $f_0 + \Delta f_c$ (with Δf_c being the offset with respect to water resonance frequency f_0), assumed to be played out at times $0 \le t \le$ $t_{\rm off}$. On-resonance excitation is then assumed to be played out at $t > t_{\rm off}$, after a generic delay t_{delay} .

Let us indicate with \mathbf{m}^{F} $f(t) \stackrel{\text{\tiny def}}{=} \begin{bmatrix} m_x^{\text{F}}(t) & m_y^{\text{F}}(t) & m_z^{\text{F}}(t) \end{bmatrix}^{\text{T}}$ and \textbf{m}^{B} $\mathbf{m}^{\text{B}}(t) \stackrel{\text{def}}{=}$ $\begin{bmatrix} m_x^{\rm B}(t) & m_y^{\rm B}(t) & m_z^{\rm B}(t) \end{bmatrix}^{\rm T}$ the free and bound proton magnetisations during the offresonance irradiation, and with T_1^F and T_1^B and with T_2^F and T_2^B their respective longitudinal and transverse relaxation times (Portnoy and Stanisz, 2007). Let us also indicate with k the exchange rate between free to bound protons, with BPF the bound pool fraction (fraction of protons belonging to the bound pool) and with γ the proton gyromagnetic ratio ($\frac{\gamma}{2\pi} \cong 42.577 \frac{\text{MHz}}{\text{T}}$).

The MT-weighting factor w in Eq. 5 (main manuscript) is defined as the value of the free pool longitudinal magnetisation at the end of off-resonance irradiation, i.e.:

$$
w = m_{z}^{\mathrm{F}}(t = t_{\mathrm{off}}). \qquad (S1.1)
$$

The value of w in Eq. S1.1 is obtained directly by numerical integration of the two-pool Bloch equations, which are written as:

$$
\frac{d}{dt} \begin{bmatrix} m_{x}^{F} \\ m_{y}^{F} \\ m_{z}^{F} \\ m_{z}^{F} \\ \end{bmatrix} (t)
$$
\n
$$
= \begin{bmatrix}\n0 & 0 & 0 & 0 & 0 & 0 \\
0 & -\frac{1}{T_{z}^{F}} & 2\pi \Delta f_{c} & 0 & 0 & 0 \\
0 & -2\pi \Delta f_{c} & -\frac{1}{T_{z}^{F}} & \gamma b_{1, \text{off}}(t) & 0 & 0 \\
\frac{1}{T_{1}^{F}} & 0 & -\gamma b_{1, \text{off}}(t) & -\left(\frac{1}{T_{1}^{F}} + k\right) & k \frac{(1 - BPF)}{BPF} \\ \frac{1}{T_{1}^{F}} \frac{BPF}{(1 - BPF)} & 0 & 0 & k & -\left(\frac{1}{T_{1}^{B}} + R_{RF}^{B} + k \frac{(1 - BPF)}{BPF}\right)\end{bmatrix} \begin{bmatrix} \frac{1}{Z} \\ m_{x}^{F} \\ m_{y}^{F} \\ m_{z}^{F} \\ m_{z}^{F} \\ \end{bmatrix} (t).
$$

 $(S1.2)$

For the integration of equation S1.2, it is assumed that $\mathbf{m}^{\mathrm{F}}(t=0) \stackrel{\text{def}}{=}$ $[0 \quad 0 \quad (1 - BPF)]^T$, $\mathbf{m}^B(t = 0) \stackrel{\text{def}}{=} [0 \quad 0 \quad BPF]^T$, $m_x^B(t = t_{off}) = m_y^B(t = t_{off}) \approx 0$ and that the bound pool off-resonance absorption can be modelled based on a super-Lorentzian line shape. Under this assumption, the absorption term $R_{\rm RF}^{\rm B}$ is a function of $(t, \Delta f_c, T_2^{\text{B}})$ and is modelled as (Portnoy and Stanisz, 2007):

$$
R_{\text{RF}}^{\text{B}}(t, \Delta f_c, \mathbf{T}_2^{\text{B}})
$$

= $\pi \gamma^2 b_{1,\text{off}}^2(t) \int_0^{\frac{\pi}{2}} \left[\frac{2}{\pi} \frac{\sin(\varphi)}{|3 \cos^2(\varphi) - 1|} \mathbf{T}_2^{\text{B}} \exp\left(-2 \left(\frac{2\pi \Delta f_c \mathbf{T}_2^{\text{B}}}{3 \cos^2(\varphi) - 1}\right)^2\right) d\varphi$ (S1.3).

For the practical integration of Eq. S1.2, it is assumed that $T_1^B \approx 1 \text{ s}$ (Battiston et al., 2018), and that the free pool longitudinal relaxation time (i.e. T_1^F) is linked to the observable T_1 relaxation time as (Portnoy and Stanisz, 2007):

$$
\frac{1}{T_1^F} \approx \frac{1}{T_1} - \frac{k\left(\frac{1}{T_1^B} - \frac{1}{T_1}\right)}{\frac{1}{T_1^B} - \frac{1}{T_1} + k\left(\frac{1 - \text{BPF}}{\text{BPF}}\right)}.
$$
 (S1.4)

References

Battiston, M., Grussu, F., Ianus, A., Schneider, T., Prados, F., Fairney, J., Ourselin, S., Alexander, D.C., Cercignani, M., Gandini Wheeler‐Kingshott, C.A., 2018. An optimized framework for quantitative magnetization transfer imaging of the cervical spinal cord in vivo. Magnetic resonance in medicine 79, 2576-2588.

Henkelman, R.M., Huang, X., Xiang, Q.S., Stanisz, G., Swanson, S.D., Bronskill, M.J., 1993. Quantitative interpretation of magnetization transfer. Magnetic resonance in medicine 29, 759-766.

Portnoy, S., Stanisz, G.J., 2007. Modeling pulsed magnetization transfer. Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine 58, 144-155.