
Biometrics 00, 1–30 DOI: 10.1111/j.1541-0420.2005.00454.x

December 0000

Web-based Supplementary Materials for “Personalized Schedules for

Surveillance of Low-Risk Prostate Cancer Patients”

Anirudh Tomer1,∗, Daan Nieboer2, Monique J. Roobol3,

Ewout W. Steyerberg2,4, and Dimitris Rizopoulos1

1Department of Biostatistics, Erasmus University Medical Center, the Netherlands
2Department of Public Health, Erasmus University Medical Center, the Netherlands

3Department of Urology, Erasmus University Medical Center, the Netherlands
4Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, the Netherlands

*email: a.tomer@erasmusmc.nl

This paper has been submitted for consideration for publication in Biometrics



Supplementary Materials for “Personalized Schedules” 1

Web Appendix A. Joint Model for Time-to-Event and Longitudinal Outcomes

We start with a short introduction of the joint modeling framework we will use in our

following developments. Let T ∗i denote the true Gleason reclassification (GR) time for the

i-th patient and let S be the schedule of his biopsies. Let the vector of the time of biopsies

be denoted by T S
i = {T S

i0, T
S
i1, . . . , T

S
iNS

i
;T S

ij < T S
ik,∀j < k}, where NS

i are the total number of

biopsies conducted. Because biopsy schedules are periodical, T ∗i cannot be observed directly

and it is only known to fall in an interval li < T ∗i 6 ri, where li = T S
iNS

i −1
, ri = T S

iNS
i

if

GR is observed, and li = T S
iNS

i
, ri = ∞ if GR is not observed yet. Further let yi denote the

ni× 1 vector of prostate-specific antigen (PSA) levels for the i-th patient. For a sample of n

patients the observed data is denoted by Dn = {li, ri,yi; i = 1, . . . , n}.

The longitudinal outcome of interest, namely PSA level, is continuous in nature and thus

to model it the joint model utilizes a linear mixed effects model (LMM) of the form:

yi(t) = mi(t) + εi(t)

= xT
i (t)β + zTi (t)bi + εi(t),

where xi(t) and zi(t) denote the row vectors of the design matrix for fixed and random

effects, respectively. The fixed and random effects are denoted by β and bi, respectively. The

random effects are assumed to be normally distributed with mean zero and q× q covariance

matrix D. The true and unobserved, error free PSA level at time t is denoted by mi(t). The

error εi(t) is assumed to be t-distributed with three degrees of freedom and scale σ (see ??),

and is independent of the random effects bi.

To model the effect of PSA on hazard of GR, joint models utilize a relative risk sub-model.

The hazard of GR for patient i at any time point t, denoted by hi(t), depends on a function

of subject specific linear predictor mi(t) and/or the random effects:

hi(t | Mi(t),wi) = lim
∆t→0

Pr
{
t 6 T ∗i < t+ ∆t | T ∗i > t,Mi(t),wi

}
∆t

= h0(t) exp
[
γTwi + f{Mi(t), bi,α}

]
, t > 0,



2 Biometrics, December 0000

where Mi(t) = {mi(v), 0 6 v 6 t} denotes the history of the underlying PSA levels up

to time t. The vector of baseline covariates is denoted by wi, and γ are the corresponding

parameters. The function f(·) parametrized by vector α specifies the functional form of PSA

levels (Brown, 2009; Rizopoulos, 2012; Taylor et al., 2013; Rizopoulos et al., 2014) that is

used in the linear predictor of the relative risk sub-model. Some functional forms relevant to

the problem at hand are the following: f{Mi(t), bi,α} = αmi(t),

f{Mi(t), bi,α} = α1mi(t) + α2m
′
i(t), with m′i(t) = dmi(t)

dt
.

These formulations of f(·) postulate that the hazard of GR at time t may be associated

with the underlying level mi(t) of the PSA at t, or with both the level and velocity m′i(t)

of the PSA at t. Lastly, h0(t) is the baseline hazard at time t, and is modeled flexibly using

P-splines. More specifically:

log h0(t) = γh0,0 +

Q∑
q=1

γh0,qBq(t,v),

where Bq(t,v) denotes the q-th basis function of a B-spline with knots v = v1, . . . , vQ and

vector of spline coefficients γh0 . To avoid choosing the number and position of knots in the

spline, a relatively high number of knots (e.g., 15 to 20) are chosen and the corresponding

B-spline regression coefficients γh0 are penalized using a differences penalty (Eilers and Marx,

1996).
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Web Appendix A.1 Parameter Estimation

We estimate parameters of the joint model using Markov chain Monte Carlo (MCMC)

methods under the Bayesian framework. Let θ denote the vector of the parameters of the

joint model. The joint model postulates that given the random effects, time to GR and

longitudinal responses taken over time are all mutually independent. Under this assumption

the posterior distribution of the parameters is given by:

p(θ, b | Dn) ∝
n∏

i=1

p(li, ri,yi | bi,θ)p(bi | θ)p(θ)

∝
n∏

i=1

p(li, ri | bi,θ)p(yi | bi,θ)p(bi | θ)p(θ),

p(bi | θ) =
1√

(2π)qdet(D)
exp(bTi D

−1bi),

where the likelihood contribution of longitudinal outcome conditional on random effects is:

p(yi | bi,θ) =
1(√

2πσ2
)ni

exp

(
− ‖yi −X iβ −Zibi‖2

σ2

)
,

X i = {xi(ti1)T , . . . ,xi(tini
)T}T ,

Zi = {zi(ti1)T , . . . ,zi(tini
)T}T .

The likelihood contribution of the time to GR outcome is given by:

p(li, ri | bi,θ) = exp
{
−
∫ li

0

hi(s | Mi(s),wi)ds
}
− exp

{
−
∫ ri

0

hi(s | Mi(s),wi)ds
}
. (1)

The integral in (1) does not have a closed-form solution, and therefore we use a 15-point

Gauss-Kronrod quadrature rule to approximate it.

We use independent normal priors with zero mean and variance 100 for the fixed effects β,

and inverse Gamma prior with shape and rate both equal to 0.01 for the parameter σ2. For

the variance-covariance matrix D of the random effects we take inverse Wishart prior with

an identity scale matrix and degrees of freedom equal to q (number of random effects). For

the relative risk model’s parameters γ and the association parameters α, we use independent

normal priors with zero mean and variance 100.
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Web Appendix A.2 Interval Censoring in Time of Gleason Reclassification

The true time of GR T ∗i is not known for any of the patients. In order to detect GR, PRIAS

uses a fixed schedule of biopsies wherein biopsies are conducted at year one, year four, year

seven and year ten of follow-up, and every five years thereafter. However, PRIAS switches

to a more frequent annual biopsy schedule for faster-progressing patients. These are patients

with PSA doubling time (PSA-DT) between 0 and 10 years, which is measured as the inverse

of the slope of the regression line through the base two logarithm of PSA values. Thus, the

interval li < T ∗i 6 ri in which GR is detected depends on the observed PSA values.

It is natural to question in this scenario if the parameters of the joint model are affected by

PSA-DT dependent interval censoring. However, because the parameters of the joint model

are estimated using a full likelihood approach (Tsiatis and Davidian, 2004), the joint model

allows the schedule of biopsies to depend upon the observed PSA values (e.g., via PSA-

DT), under the condition that the model is correctly specified (we discuss this aspect in

Web Appendix C). To show this, consider the following full general specification of the joint

model that we use. Let yi denote the observed PSA measurements for the i-th patient, and

li, ri denote the two time points of the interval in which GR occurs for the i-th patient. In

addition let T S
i and Vi denote the schedule of biopsies and schedule of PSA measurements,

respectively. Under the assumption that both of these schedules may depend upon only the

observed yi, the joint likelihood of all four processes is given by:

p(yi, li, ri, T
S
i ,Vi | θ,ψ) = p(yi, li, ri | θ)× p(T S

i ,Vi | yi,ψ). (2)

From this decomposition we can see that even if the processes T S
i and Vi may be determined

from yi, if we are interested in the parameters θ of the joint distribution of longitudinal and

event outcome, we can maximize the likelihood based on the first term and ignore the second

term. In other words, the second term will not carry information for θ.

It is important to note that, since we use a full likelihood approach with an interval
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censoring specification, the estimates that we obtain are consistent and asymptotically

unbiased (Gentleman and Geyer, 1994), despite the interval censoring observed.
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Web Appendix B. Derivations and Computations for Eg(T
∗
j ) and varg(T

∗
j )

In this section we present the derivations for Eg(T
∗
j ) and varg(T

∗
j ), corresponding to Equa-

tions 3 and 4 of the main manuscript, respectively. To this end, we first expand the formula

for dynamic survival probability presented in Section 3.2 of the main manuscript.

πj(u | t, s) = Pr
{
T ∗j > u | T ∗j > t,Yj(s

)
, Dn)

=

∫ ∫
Pr
(
T ∗j > u | T ∗j > t, bj,θ

)
p
{
bj | T ∗j > t,Yj(s),θ

}
p(θ | Dn)dbjdθ

=

∫ ∫
exp

{
−Hj(u|bj,θ)

}
exp

{
−Hj(t|bj,θ)

} p{bj | T ∗j > t,Yj(s),θ
}
p(θ | Dn)dbjdθ,

(3)

where Hj(u|bj,θ) =
∫ u

0
hi(s | bj,θ

)
ds is the cumulative hazard up to time point u.

Web Appendix B.1 Derivation of Eg(T
∗
j ), Shown in Equation 3 of the Main Manuscript

Eg(T
∗
j ) =

∫ ∞
t

T ∗j g(T ∗j )dT ∗j .

Using integration by parts, wherein d
{
− πj(T ∗j | t, s)

}
/dT ∗j = g(T ∗j ),

Eg(T
∗
j ) =

[
− T ∗j πj(T ∗j | t, s)

]∞
t

+

∫ ∞
t

πj(T
∗
j | t, s)

d(T ∗j )

dT ∗j
dT ∗j

= tπj(t | t, s)− lim
T ∗
j→∞

T ∗j πj(T
∗
j | t, s)

+

∫ ∞
t

πj(T
∗
j | t, s)dT ∗j ,

where πj(t | t, s) = Pr
{
T ∗j > t | T ∗j > t,Yj(s), Dn

}
= 1. As for limT ∗

j→∞ T
∗
j πj(T

∗
j | t, s), the

limit can be interchanged with the integral in Equation 3, because as T ∗j →∞ the integrand

in the equation converges uniformly on the domain of (bj,θ
)
. Thus,

lim
T ∗
j→∞

T ∗j πj(T
∗
j | t, s) =

∫ ∫
lim

T ∗
j→∞

T ∗j

exp
{
Hj(T ∗j |bj,θ)

}
×
p
{
bj | T ∗j > t,Yj(s),θ

}
p(θ | Dn)

exp
{
−Hj(t|bj,θ)

} dbjdθ.
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Using L’Hospital’s rule,

lim
T ∗
j→∞

T ∗j πj(T
∗
j | t, s) =

∫ ∫
1

limT ∗
j→∞ exp

{
Hj(T ∗j |bj,θ)

}
H ′j(T

∗
j |bj,θ)

×
p
{
bj | T ∗j > t,Yj(s),θ

}
p(θ | Dn)

exp
{
−Hj(t|bj,θ)

} dbjdθ

=

∫ ∫
0×

p
{
bj | T ∗j > t,Yj(s),θ

}
p(θ | Dn)

exp
{
−Hj(t|bj,θ)

} dbjdθ

= 0.

In light of these results, we obtain:

Eg(T
∗
j ) = t+

∫ ∞
t

πj(T
∗
j | t, s)dT ∗j .

Web Appendix B.2 Derivation of varg(T
∗
j ), Shown in Equation 4 of the Main Manuscript

Since varg(T
∗
j ) = Eg{(T ∗j )2} − Eg(T

∗
j )2, we first show the derivation for Eg{(T ∗j )2}.

Eg{(T ∗j )2} =

∫ ∞
t

(T ∗j )2g(T ∗j )dT ∗j .

Using integration by parts, wherein d
{
− πj(T ∗j | t, s)

}
/dT ∗j = g(T ∗j ),

Eg

{
(T ∗j )2

}
=
[
− (T ∗j )2πj(T

∗
j | t, s)

]∞
t

+

∫ ∞
t

πj(T
∗
j | t, s)

d(T ∗j )2

dT ∗j
dT ∗j

= t2πj(t | t, s)− lim
T ∗
j→∞

(T ∗j )2πj(T
∗
j | t, s)

+ 2

∫ ∞
t

T ∗j πj(T
∗
j | t, s)dT ∗j

= t2 + 2

∫ ∞
t

T ∗j πj(T
∗
j | t, s)dT ∗j .

Therefore,

varg(T
∗
j ) = t2 + 2

∫ ∞
t

T ∗j πj(T
∗
j | t, s)dT ∗j

−
[
t2 +

{∫ ∞
t

πj(T
∗
j | t, s)dT ∗j

}2

+ 2t

∫ ∞
t

πj(T
∗
j | t, s)dT ∗j

]
= 2

∫ ∞
t

(T ∗j − t)πj(T ∗j | t, s)dT ∗j −
{∫ ∞

t

πj(T
∗
j | t, s)dT ∗j

}2

.

Web Appendix B.3 Computations for Eg(T
∗
j ) and varg(T

∗
j )

As we have shown above, we compute Eg(T
∗
j ) and varg(T

∗
j ) by first expressing them in terms

of the dynamic survival probability in (3) and then calculating the survival probability



8 Biometrics, December 0000

values. We preferred this approach over Monte Carlo methods to estimate Eg(T
∗
j ) from

g(T ∗j ), because sampling directly from g(T ∗j ) involved an additional step of sampling from the

distribution p(T ∗j | T ∗j > t, bj,θ), as compared to the estimation of πj(u | t, s) (Rizopoulos,

2011). The former approach was thus computationally faster.
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Web Appendix C. Fitting the Joint Model to the PRIAS Dataset

For each of the PRIAS patients, we know their age at the time of inclusion in AS, PSA

history and the time interval in which GR is detected. PSA was measured at every three

months for the first two years and every six months thereafter. For the longitudinal analysis

of PSA we use log2(PSA+1) measurements instead of the raw data (Lin et al., 2000; Pearson

et al., 1994). The longitudinal sub-model of the joint model we fit is given by:

log2(PSAi + 1)(t) = β0 + β1(Agei − 70) + β2(Agei − 70)2 +
4∑

k=1

βk+2Bk(t,K)

+ bi0 + bi1B7(t, 0.1) + bi2B8(t, 0.1) + εi(t),

(4)

where Bk(t,K) denotes the k-th basis function of a B-spline with three internal knots at

K = {0.1, 0.5, 4} years, and boundary knots at zero and seven (0.99 quantile of the observed

follow-up times) years. The spline for the random effects consists of one internal knot at 0.1

years and boundary knots at zero and seven years. Age of patients was median centered to

avoid numerical instabilities during parameter estimation. The error εi(t) is assumed to be

t-distributed with three degrees of freedom and scale σ, and is independent of the random

effects bi. For the relative risk sub-model the hazard function we fit is given by:

hi(t) = h0(t) exp
{
γ1(Agei − 70) + γ2(Agei − 70)2 + α1mi(t) + α2m

′
i(t)
}
, (5)

where α1 and α2 are measures of strength of the association between hazard of GR and

log2(PSAi + 1) value mi(t) and log2(PSAi + 1) velocity m′i(t), respectively.
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Web Appendix C.1 Parameter Estimates

The posterior parameter estimates for the joint model we fitted to the PRIAS dataset are

shown in Web Table 1 (longitudinal sub-model) and Web Table 2 (relative risk sub-model),

and parameter estimates for the variance-covariance matrix from the longitudinal sub-model

are the following:

D =


0.268 0.055 −0.043

0.055 0.712 0.257

−0.043 0.257 0.591


For longitudinal sub-model parameter estimates, in Web Table 1 we can see that the age of

the patient trivially affects the baseline log2(PSA+1) values. Since the longitudinal evolution

of log2(PSA + 1) is modeled with non-linear terms, the interpretation of the coefficients

corresponding to time is not straightforward. In lieu of the interpretation, in Web Figure 1

we present the fitted marginal evolution of log2(PSA + 1) over a period of 10 years for a

hypothetical patient who is included in AS at the age of 70 years. In addition we present

plots of observed versus fitted profiles for nine randomly selected patients in Web Figure

3. Lastly, the quantile-quantile plot of subject-specific residuals in Figure 2 shows that the

assumption of t-distributed (df=3) errors is reasonably met by the fitted model.

Web Table 1

Estimated mean and 95% credible interval for the parameters from the longitudinal sub-model of the joint model 

fitted to the PRIAS dataset.

Variable Mean Std. Dev 2.5% 97.5% P

Intercept 2.686 0.009 2.668 2.704 <0.000
(Age− 70) 0.003 0.001 0.001 0.005 0.002
(Age− 70)2 -0.001 1.073 ×10−4 -0.001 -2.963 ×10−4 <0.000
Spline: visit time [0.0, 0.1] years 0.049 0.008 0.035 0.065 <0.000
Spline: visit time [0.1, 0.5] years 0.258 0.012 0.235 0.281 <0.000
Spline: visit time [0.5, 4.0] years 0.282 0.018 0.244 0.320 <0.000
Spline: visit time [4.0, 7.0] years 0.412 0.023 0.367 0.460 <0.000
σ 0.147 0.001 0.146 0.149
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Web Figure 1. Fitted marginal evolution of log2(PSA+1) levels over a period of 10 years

with 95% credible interval, for a hypothetical patient who is included in AS at the age of 70

years.
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Web Figure 2. Quantile-quantile plot of subject-specific residuals from the joint model

fitted to the PRIAS dataset.
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Web Figure 3. Fitted versus observed log2(PSA + 1) profiles for nine randomly selected

PRIAS patients. The fitted profiles utilize information from both the observed PSA levels

and time of latest biopsy.
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For the relative risk sub-model, the parameter estimates in Web Table 2 show that log2(PSA + 1)

velocity and the age at the time of inclusion in AS are strongly associated with the hazard

of GR. For any patient, an increase in log2(PSA + 1) velocity from -0.061 to 0.136 (first and

third quartiles of the fitted velocities, respectively) corresponds to a 2.046 fold increase in

the hazard of GR. An increase in age at the time of inclusion in AS from 65 years to 75 years

(first and third quartiles of age in PRIAS dataset) corresponds to a 1.428 fold increase in

the hazard of GR.

Web Table 2

Estimated mean and 95% credible interval for the parameters of the relative risk sub-model of the joint model fitted 

to the PRIAS dataset.

Variable Mean Std. Dev 2.5% 97.5% P

(Age− 70) 0.036 0.006 0.024 0.047 <0.000
(Age− 70)2 -0.001 0.001 -0.003 7.861 ×10−5 0.084
log2(PSA + 1) -0.084 0.080 -0.241 0.072 0.296
Slope(log2(PSA + 1)) 3.580 0.403 2.815 4.373 <0.000
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To compare the predictive performance of a models having association between hazard of

GR and value of longitudinal outcome values, versus a model having the association with

both value and velocity, we calculate the area under the receiver operating characteristic

curves, also called AUC (Rizopoulos, Molenberghs, and Lesaffre, 2017), for these models

(with the only change that log2 PSA levels are used as the outcome). Since in a joint model

time dependent AUC is more relevant, we calculate the AUC at year one, year two and year

three of follow-up in AS. The time window for which the AUC is calculated is one year. The

resulting AUC are presented in Web Table 3.

Web Table 3

Area under the receiver operating characteristic curves (AUC), and 95% confidence interval in brackets. AUC’s are 

calculated for two joint models: first one having association between hazard of GR and longitudinal outcome’s value 

as well as velocity, and second one having association with only longitudinal outcome’s value (with the only change 

that log2 PSA levels are used as the outcome).

Year value and velocity association value association

1 0.613 [0.582, 0.632] 0.595 [0.565, 0.618]
2 0.648 [0.608, 0.685] 0.609 [0.568, 0.654]
3 0.593 [0.560, 0.638] 0.590 [0.536, 0.628]
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Web Appendix C.2 PSA-DT Dependent Interval Censoring in Time of Gleason

Reclassification

In PRIAS, the interval li < T ∗i 6 ri in which GR is detected depends on the observed

PSA values (via PSA-DT). It is natural to question in this scenario if the parameters of the

joint model are affected by PSA-DT dependent interval censoring. To this end, we discussed

via the formulation of the likelihood function in Web Appendix A.2, that the joint model

gives consistent and asymptotically unbiased estimates of the parameters even if the interval

censoring depends on PSA-DT, under the condition that the model is correctly specified.

However, in this section we also demonstrate this via a simulated dataset of 750 patients.

The true event times T ∗i for these patients were generated using parameters from a joint

model fitted to the PRIAS dataset (with the only change that log2 PSA levels are used as

the outcome). However this joint model did not include association between velocity of log

PSA values and hazard of GR. That is, the hazard of GR hi(t) at any time t depends only

on the underlying log2 PSA value mi(t) at that time. Furthermore, for these patients we

used the schedule of PRIAS to generate the interval li 6 T ∗i 6 ri in which GR is detected.

Thus the observed data for i-th patient is {yi, li, ri}. Our aim is to show that if there is no

association between hi(t) and velocity of log PSA value m′i(t), then even though the biopsy

schedule depends on PSA-DT (which is a crude measure of PSA velocity), a joint model fitted

with both value and velocity associations will have an insignificant velocity association. In

the fitted joint model we found the value association (95% credible interval in brackets)

to be 0.182 [0.090, 0.274], and the velocity association to be -0.001 [-0.295, 0.254]. That is

even though the schedule of biopsies depended upon observed PSA values it did not lead to a

spurious velocity association. To check if we correctly specified the joint model, we performed

several sensitivity analysis in our model (e.g., changing the position of the knots, etc.) to

investigate the fit of the model and also the robustness of the results. In all of our attempts,
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the same conclusions were reached, namely that the velocity of longitudinal outcome is more

strongly associated with the hazard of GR compared to the value of longitudinal outcome.



Supplementary Materials for “Personalized Schedules” 17

Web Appendix D. Personalized Schedules for the Demonstration Patients from

PRIAS.

In this section we demonstrate the application of personalized schedules on patients from

PRIAS study. In Section 5.2 of the main manuscript we demonstrated personalized schedules

for the first demonstration patient. Here we demonstrate them for the remaining two patients.

The evolution of PSA, repeat biopsy history and proposed times of biopsies for the second

demonstration patient are shown in the top right and top left panels of Web Figure 4. It

can be seen that the schedule of biopsy based on expected time of GR adjusts the times of

biopsy according to the rise in hazard, which increases due to steep rise in log2 PSA velocity.

More specifically, at year two the proposed biopsy time is 12.36 years whereas at year four it

decreases to 3.94 years. On average, a biopsy scheduled using expected time of GR at year

two should have a larger offset OS
j compared to the same at year four. This is because the

standard deviation of g(T ∗j ), given by SDg(T
∗
j ) =

√
varg(T ∗j ), is slightly lower at year four

as shown in the bottom left panel of Web Figure 4. As for the schedules based on dynamic

risk of GR, the threshold κ was automatically chosen using F1 score, and was estimated to

be between 1 and 0.9 at all time points. This value of κ corresponds to a time very close to

the time of latest biopsy (t = 0). Hence the biopsies are scheduled much earlier than those

based on expected time of GR.
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Web Figure 4. Top panel: Fitted versus observed log2(PSA + 1) profile, history of repeat

biopsies and corresponding personalized schedules for the second demonstration patient.

Bottom Panel: History of repeat biopsies and standard deviation SDg(T
∗
j ) =

√
varg(T ∗j ) of

the posterior predictive distribution of time of GR over time for the second demonstration

patient.
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The third demonstration patient presents a case where information from PSA levels and

repeat biopsies is not in concordance with each other. In Web Figure 5 we can see that the

PSA for this patient increased by 100% between year two and year 3.2. If only information

from PSA is considered, then we can see that proposed time of biopsy based on expected

time of GR is preponed from 14.26 to 13.56 years during this period. However, if we also

take into account the negative result from the repeat biopsy at year 2.5, then the proposed

time of biopsy is postponed from 14.26 years to 15.15 years. Thus more weight is given to

a recent negative biopsy result than PSA, which is in accordance with the clinical practice.

The proposed time of biopsy based on dynamic risk of GR is also postponed from 2.27 to

3.55 years in light of the negative biopsy result.
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Web Figure 5. Fitted versus observed log2(PSA + 1) profile, history of repeat biopsies

and corresponding personalized schedules for the third demonstration patient.
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Web Appendix E. Simulation Study

Web Appendix E.1 Simulation Results for Dynamic Risk of GR Based Approach With a

Fixed κ = 0.95

In the main manuscript, for the personalized schedules based on dynamic risk of GR we

chose κ on the basis of F1 score. However while conducting the simulation study, we also

tried a fixed κ of 0.95, which means that the next biopsy is scheduled at a time point where

the dynamic risk of GR is 5%. The results for this approach are presented in Web Table 4.

In the table, the abbreviation Dyn. risk GR (F1 score) corresponds to personalized schedules

based on dynamic risk of GR based approach, with κ chosen on the basis of F1 score. The

abbreviation Hybrid (F1 score) corresponds to the hybrid approach between median time of

GR and dynamic risk of GR (κ chosen on the basis of F1 score).
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Web Table 4

Estimated mean and standard deviation (SD), of the number of biopsies Nj
S conducted until Gleason reclassification 

(GR) is detected, and of the offset Oj
S (difference in time at which GR is detected and the true time of GR, in 

months), for the simulated (500 datasets) test patients, across different schedules and subgroups. Patients in 

subgroup G1 have the fastest prostate cancer progression rate, whereas patients in subgroup G3 have the slowest 

progression rate. Types of personalized schedules (full names in brackets): Exp. GR Time (expected time of GR), 

Med. GR Time (median time of GR), Dyn. risk GR (schedules based on dynamic risk of GR), Hybrid (a hybrid 

approach between median time of GR and dynamic risk of GR). Annual corresponds to a schedule of yearly biopsies 

and PRIAS corresponds to biopsies as per PRIAS protocol.

a) All hypothetical subgroups

Schedule E(NS
j ) E(OS

j ) SD(NS
j ) SD(OS

j )

Annual 5.24 6.01 2.53 3.46
PRIAS 4.90 7.71 2.36 6.31
Dyn. risk GR (F1 score) 4.69 6.66 2.19 4.38
Hybrid (F1 score) 3.75 9.70 1.71 7.25
Dyn. risk GR (κ = 0.95) 5.15 6.02 2.51 3.47
Med. GR time 2.06 13.88 1.41 11.80
Exp. GR time 1.92 15.08 1.19 12.11

b) Hypothetical subgroup G1

Schedule E(NS
j ) E(OS

j ) SD(NS
j ) SD(OS

j )

Annual 4.32 6.02 3.13 3.44
PRIAS 4.07 7.44 2.88 6.11
Dyn. risk GR (F1 score) 3.85 6.75 2.69 4.44
Hybrid (F1 score) 3.25 10.25 2.16 8.07
Dyn. risk GR (κ = 0.95) 4.23 6.05 3.10 3.46
Med. GR time 1.84 20.66 1.76 14.62
Exp. GR time 1.72 21.65 1.47 14.75

c) Hypothetical subgroup G2

Schedule E(NS
j ) E(OS

j ) SD(NS
j ) SD(OS

j )

Annual 5.18 5.98 2.13 3.47
PRIAS 4.85 7.70 2.00 6.29
Dyn. risk GR (F1 score) 4.63 6.66 1.82 4.37
Hybrid (F1 score) 3.68 10.32 1.37 7.45
Dyn. risk GR (κ = 0.95) 5.09 5.99 2.11 3.47
Med. GR time 1.89 12.33 1.16 9.44
Exp. GR time 1.77 13.54 0.98 9.83

d) Hypothetical subgroup G3

Schedule E(NS
j ) E(OS

j ) SD(NS
j ) SD(OS

j )

Annual 6.20 6.02 1.76 3.46
PRIAS 5.76 7.98 1.71 6.51
Dyn. risk GR (F1 score) 5.58 6.58 1.56 4.33
Hybrid (F1 score) 4.32 8.55 1.26 5.91
Dyn. risk GR (κ = 0.95) 6.11 6.01 1.76 3.46
Med. GR time 2.45 8.70 1.15 6.32
Exp. GR time 2.27 10.09 0.99 7.47
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Web Appendix E.2 Variation in Estimated Mean and Standard Deviation, of Number of

Biopsies and Offset Across the 500 Simulations

In this section we present figures related to the simulation study results discussed in Section

6 of main manuscript. The figures we present next are population specific, i.e. subgroup level

differentiation is not done.

• Variation in estimated mean across the 500 simulations, for number of biopsies and offset

(difference in time at which Gleason reclassification or GR is detected and the true time

of GR, in months) for different methods is shown in Web Figure 6 and Web Figure 7.

• Variation in estimated standard deviation across the 500 simulations, for number of biopsies

and offset (difference in time at which Gleason reclassification or GR is detected and the

true time of GR, in months) for different methods is shown in Web Figure 8 and Web

Figure 9.
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Web Figure 6. Boxplot showing variation in estimated mean number of biopsies con-

ducted by various schedules until Gleason reclassification is detected, obtained from the

simulation study with 500 simulated datasets.
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Web Figure 7. Boxplot showing variation in estimated mean of biopsy offset (difference in

time at which Gleason reclassification or GR is detected and the true time of GR, in months)

for various schedules, obtained from the simulation study with 500 simulated datasets.
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Web Figure 8. Boxplot showing variation in estimated standard deviation of number of

biopsies conducted by various schedules until Gleason reclassification is detected, obtained

from the simulation study with 500 simulated datasets.
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Web Figure 9. Boxplot showing variation in estimated standard deviation of biopsy offset

(difference in time at which Gleason reclassification or GR is detected and the true time of

GR, in months) for various schedules, obtained from the simulation study with 500 simulated

datasets.
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Web Appendix F. Source Code

The R code for fitting the joint model to the PRIAS dataset, and for the simulation study,

along with sample dataset are available with this paper at the Biometrics website on Wiley

Online Library.
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