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eMethods 1. Magnetic resonance image acquisition parameters used in the present study. 

Yunnan Cancer Hospital: All the patients from the Yunnan Cancer Hospital were examined using the 

SIEMENS 1.5T Avanto MRI with the following scanning parameters: axial T2-weighted spin-echo images 

(repetition time [TR]/ echo time [TE]: 4000/100 ms, field of view [FOV] = 20 × 18 cm, number of excitation 

[NEX] = 4, slice thickness = 3 mm, spacing between slices = 0.3 mm) and sagittal contrast-enhanced T1-weighted 

spin-echo images (TR/TE: 4.65/1.55 ms, FOV = 26 × 22 cm, NEX = 8, slice thickness = 3.6 mm, spacing between 

slices = 0.7 mm). Axial DWI (TR/TE: 6000/55 ms; FOV: 200 × 180 mm2; matrix: 256 × 256; slice thickness/gap: 

3/0.4 mm; b values of 0 and 800 s/mm2) were obtained by using single-shot spin-echo echo-planar imaging (EPI). 

Sun Yat-sen University Cancer Center: The patients from Sun Yat-sen University Cancer Center were 

examined using the 3.0T GE Discovery750 MRI and the 1.5T GE Signa MRI. 

The 3.0T GE Discovery750 MRI acquisition parameters were as follows: axial T2-weighted spin-echo 

images (TR/TE: 3966/86 ms, FOV = 36 × 36 cm, NEX = 2, slice thickness = 5 mm, spacing between slices = 

1mm) and sagittal contrast-enhanced T1-weighted spin-echo images (TR/TE: 5.25/1.82 ms, FOV = 28× 28 cm, 

NEX = 1, slice thickness = 3 mm, spacing between slices = 0 mm). Axial DWI (TR/TE: 4800/75 ms; FOV: 240 

× 200 mm2; matrix: 160 × 112; slice thickness/gap: 3/0.3 mm; b values of 0 and 800 s/mm2) were obtained by 

using single-shot spin-echo EPI. 

The 1.5T GE Signa MRI acquisition parameters were as follows: axial T2-weighted spin-echo images 

(TR/TE: 3283/87 ms, FOV = 36 × 36 cm, NEX = 2, slice thickness =5 mm, spacing between slices = 1 mm) and 

sagittal contrast-enhanced T1-weighted spin-echo images (TR/TE: 4.1/1.96 ms, FOV = 28× 26 cm, NEX = 1, 

slice thickness = 3 mm, spacing between slices = 0 mm). Axial DWI (TR/TE: 4721/87 ms; FOV: 260 × 220 mm2; 

matrix: 160 × 112; slice thickness/ gap: 3/0.3 mm; b values of 0 and 800 s/mm2) were obtained by using single-

shot spin-echo EPI. 

Henan Provincial People's Hospital: The patients from Henan Provincial People’s Hospital underwent 

pelvic MRI using one of the two 3.0-T MR image systems, either with (Discovery MR 750; GE Medical Systems, 

Milwaukee, Wis) or (Magnetom TrioTim; Siemens Healthineers) equipped with an 8-channel phased-array coil 

in supine position. Axial T2-weighted spin-echo images (TR/TE: 4000/85 ms, FOV = 34 × 34 cm, NEX = 3, slice 

thickness = 6 mm, spacing between slices = 1 mm) and sagittal contrast-enhanced T1-weighted spin-echo images 

(TR/TE: 3022/85 ms, FOV = 36 × 36 cm, NEX = 2 , slice thickness = 4 mm, spacing between slices = 1 mm), 

and Axial DWI (TR/TE: 4616/76 ms; FOV: 300 × 300 mm2; matrix: 200 × 196; slice thickness/gap: 6/1 mm; b 

values of 0 and 800 s/mm2) were obtained by using single-shot spin-echo EPI. 
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eMethods 2. Mathematical description of the deep learning network. 

The computational units in the deep learning network are defined as layers, which include convolution, 

activation, pooling and batch normalization. The details are explained as follows. 

Convolution. Convolution is used to extract features from tumour images. Different convolutional filters can 

extract different features to characterize the tumor. Assuming matrix 𝐼𝐼 = �
𝐼𝐼11 𝐼𝐼12 𝐼𝐼13
𝐼𝐼21 𝐼𝐼22 𝐼𝐼23
𝐼𝐼31 𝐼𝐼32 𝐼𝐼33

� is the mathematical 

representation of the tumor image, and matrix 𝐾𝐾 = �𝑘𝑘11 𝑘𝑘12
𝑘𝑘21 𝑘𝑘22

� is the convolutional filter. Then, the output of 

the convolution layer is F = conv(I, K), where conv represents convolutional operation. This can be further 

understood as the following formula. 

𝐹𝐹 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝐼𝐼,𝐾𝐾) = �𝐼𝐼11 ∗ 𝑘𝑘11 + 𝐼𝐼12 ∗ 𝑘𝑘12+𝐼𝐼21 ∗ 𝑘𝑘21 + 𝐼𝐼22 ∗ 𝑘𝑘22 𝐼𝐼12 ∗ 𝑘𝑘11 + 𝐼𝐼13 ∗ 𝑘𝑘12+𝐼𝐼22 ∗ 𝑘𝑘21 + 𝐼𝐼23 ∗ 𝑘𝑘22
𝐼𝐼21 ∗ 𝑘𝑘11 + 𝐼𝐼22 ∗ 𝑘𝑘12+𝐼𝐼31 ∗ 𝑘𝑘21 + 𝐼𝐼32 ∗ 𝑘𝑘22 𝐼𝐼22 ∗ 𝑘𝑘11 + 𝐼𝐼23 ∗ 𝑘𝑘12+𝐼𝐼32 ∗ 𝑘𝑘21 + 𝐼𝐼33 ∗ 𝑘𝑘22

� 

The output F is called feature map. In this study, we used zero padding and convolutional stride of 1×1 to 

keep the image size after convolution. 

Activation. After the operation of convolution, the result (feature map) will be activated by an activation 

function to obtain non-linear features; here we adopt the "ReLU" function1 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑥𝑥) = 𝑚𝑚𝑚𝑚𝑚𝑚(0, 𝑥𝑥). When the 

input x is negative, the output of the activation function will be zero, and when the input is positive, the result will 

be equal to the input.  

Pooling. To select representative features that are strongly associated with LNM status, non-relevant and 

redundant features need to be eliminated. This is achieved by pooling operation. Assuming the feature map is 

𝐹𝐹 = �

1 5 2 8
3 9 7 8
1 0 2 6
8 5 3 2

�, whose size is 4×4, and pooling window is 2×2 with stride 2. The pooling operation will 

divide the matrix F into four disjoint small matrixes of size 2×2, and the maximum value of each small matrix 

will be extracted to form the result matrix 𝑃𝑃 = �9 8
8 6�. 

Batch normalization. To accelerate the training process of the DL model, we use batch normalization2 

operation to normalize the feature maps from each convolutional layer. This strategy avoids gradient vanishing 

during training and therefore accelerates the learning process of the DL model. 

Zero padding. Zero padding can add rows and columns of zeros at the top, bottom, left and right side of an 

image to feed into the DL model. 
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eMethods 3. Development of the DL model and the hybrid model. 

We developed an end-to-end DL model for LNM status prediction using MR images. Specifically, we 

designed a convolutional neural network as shown in Supplementary Figure S2. This DL model consisted of 

three parts (sub-network 1, 2, and 3 in Supplementary Figure S2). Sub-network 1 shared the same architecture 

with the first three building blocks in ResNet18.3 The special structure (residual building block) in this network 

contributed to better performance than other plain deeper networks without increasing computational complexity.4 

Each residual block was the stack of multiple convolution layers, zero padding layers, and batch normalization 

layers with rectified linear activation function. In each residual block, a shortcut connection was used to combine 

the information between two distant convolution layers, which can optimize the learning process of the DL model 

by enhancing gradient flow in the network. Sub-network 2 was composed of six freshly added layers. Sub-network 

3 was a fully connected output layer following the global average pooling layer in sub-network 2. When an MR 

image of the tumor was fed into the DL model, sub-network 3 can predict the LNM probability for the tumor. 

Since each tumor included multiple two-dimensional slices in MRI, we averaged the LNM probability of all image 

slices of the tumor to acquire the LNM probability for the patient. We defined the LNM-predicted probability 

from the DL model as the DL-score. 

To enhance model training and improve the generalization ability of the DL model, we used transfer learning5 

to pretrain sub-network 1 by 14 million natural images from ImageNet dataset.6 Afterward, we used image 

augmentation techniques, including random width and height shift, zooming, rotation, deformation, and flipping 

to enlarge our training dataset and to avoid overfitting. In previous reports, different MRI sequences showed 

different diagnostic performance in predicting LNM status.7–10 Thereby, we compared the predictive performance 

of three MRI sequences to find the optimal sequence for LNM status prediction in CC. As a result, 5280 CET1WI, 

1633 T2WI, and 1474 ADC map slices in the primary cohort were generated to fine-tune the DL model, 

respectively. Sub-network 2 and 3 were freshly trained using images from the primary cohort. All images (ROItumor 

and ROItumor+peri) were scaled to 64×64 voxel size and standardized by z-score normalization. To consider three-

dimensional tumor information, we combined every three adjacent slices of MR images as input.  

Since the DL model can mine high-dimensional information from MR images and the clinical model can 

reflect tumor information from clinicopathological aspects, we further developed a hybrid model to combine both 

two information to explore whether they can be complementary (sub-network 1, 2, and 4 in eFigure 2). This 

hybrid model concatenated the global average pooling layer of the previous DL model (sub-network 1 and 2) with 

the clinical variable (MR-LN status). Then multilayer perceptron with three hidden layers was added (size 6, 4 

and 2) (sub-network 4). We defined the LNM-predicted probability from the hybrid model as the H-score.  
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eMethods 4. Training process of the DL model and the hybrid model. 

Model training aims at optimizing the parameters of the DL model and building the relationship between 

MR image and LNM status. The model training is an iterative process, which optimizes the model at each iteration 

until the model achieves the best predictive performance. At each iteration, we used cross-entropy as the cost 

function to measure the predictive performance of the DL model.  

For the DL model, we froze the sub-network 1 first and trained the sub-network 2 by stochastic gradient 

descent (SGD) (learning rate = 0.00001). This is necessary because the sub-network 2 was initialized randomly 

and therefore generated large gradients, which may disturb the transferred layers in sub-network 1. After training 

the model on 20 epochs, we trained the full network in the DL model by root mean square propagation (learning 

rate = 0.00005) and the model converged after 30 epochs of training. 

For the hybrid model, L2 regularisation was used to avoid overfitting during the training process. The 

weights of added layers in sub-network 4 were trained using resilient backpropagation with weight backtracking. 

All layers of the hybrid model were fine-tuned by SGD (learning rate = 0.001, decay = 0.9, and momentum = 

0.9). 

Our method was implemented in Python 3.6 and performed on a machine with an Intel Core i7-7700 CPU 

and 32 GB memory. The network training was implemented using Keras 2.2 with Tensorflow 1.7 backend and 

was accelerated on an NVIDIA TITAN XP GPU (12GB on-board memory). We used a batch size of 128 for 

model training, which meant 128 training samples were fed into the network at each iteration.  
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eMethods 5. Details of the DL model visualization. 

When the DL model is well trained, the network established thousands of inference paths that work together 

for the LNM status prediction. Given a tumor, we calculated the gradient of the predicted value with respect to 

the input image. This gradient told us how the predicted value changes with respect to a small change in tumor 

image voxels. Hence, visualizing these gradients helped us to find the attention of the DL model (defined as 

attention map in eFigure 4). 

We used convolutional feature visualization technique11 to acquire the feature patterns extracted by 

convolution layers. We defined these convolution features as DL-feature in eFigure 5. For each convolutional 

feature in the DL model, we input an image initialized with random white noise to observe the feature response. 

If the feature response reaches a maximum, the input image reveals the feature pattern extracted by the 

convolutional feature; otherwise, a back-propagation algorithm was involved to change the input image until the 

feature response reaches a maximum. Through this convolutional feature visualization method, we can understand 

the feature patterns extracted by each convolutional feature in the DL model. 

We defined the maximum/minimum response convolutional feature of the last convolution layer as the 

positive/negative DL-feature in eFigure 6. In general, if a convolutional feature had different responses between 

node-negative and node-positive patients, it had the ability to discriminate the metastatic LN from non-metastatic 

LN. 
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eFigure 1. Patient flowchart. 
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eFigure 2. Architecture of the DL and hybrid model. 

 

The two models share the same structure in the sub-network 1 and 2. The DL model consists of three parts (sub-

network 1, 2, and 3). The principal architecture of the DL model is composed of convolution layers with kernel 

size 7×7 and 1×1, batch normalization, zero padding, and pooling layers. The output size after convolution layer 

is denoted as width × height @ filter (i.e., 32 × 32 @ 64 represents the output of the convolution layer is 32 × 32 

× 4). 
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eFigure 3. Performance of the DL score.  

 

a) The DL-score from CET1WItumor+peri between node-positive and node-negative patients in the primary and 

validation cohorts. DL-score in the primary cohort: 0.58 (IQR, 0.46-0.67) vs 0.34 (IQR, 0.27-0.43), P < .001; DL-

score in the validation cohort: 0.47 (IQR, 0.43-0.56) vs 0.35 (0.27-0.43), P < .001. 

b) The DL-score from CET1WItumor+peri between node-positive and node-negative patients within the negative 

MR-LN and positive MR-LN subgroups in the primary and validation cohorts. DL-score among MR-LN-positive 

patients in the primary cohort: node-positive vs node-negative 0.60 (IQR, 0.52-0.67) vs 0.29 (IQR, 0.26-0.36), P 

< .001; DL-score among MR-LN-negative patients in the primary cohort: node-positive vs node-negative 0.56 

(0.45-0.67) vs 0.35 (IQR,0.27-0.43), P < .001; DL-score among MR-LN-positive patients in the validation cohort: 

node-positive vs node-negative 0.45 (IQR, 0.43-0.56) vs 0.35 (0.29-0.38), P < .001; DL-score among MR-LN-

negative patients in the validation cohort: node-positive vs node-negative 0.47 (IQR, 0.44-0.56) vs 0.35 (IQR, 

0.27-0.43), P <.001.  
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eFigure 4. Response area of representative patients.  

 

The first row shows sagittal CET1WI from two node-positive patients and two node-negative patients. The green 

box is ROItumor+peri. The second row shows the attention maps of the input tumor images. The high-response area 

in the third row is acquired by using 0.6 as the cut-off value. 
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eFigure 5. The DL-feature visualization.  

 

a) The DL-feature from the 2nd, 6th, 10th, and 14th (Conv_) layers of the DL model. Each convolutional layer has 

a different number of DL-feature, and we randomly select three DL-feature for visualization. b) The DL-feature 

responses on two representative patients from the validation cohort. The blue box in the first column is ROItumor 

and the green box is ROItumor+peri. Red and blue colors represent strong and weak responses, respectively. The 

number on the bottom right corner is the average value of the DL-feature response. When feeding two tumor 

images from two patients with/without LNM into the DL model, we can get different DL-feature responses.  
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eFigure 6. The DL-feature analysis. 

 
a) Response heat map of the negative DL-feature and the positive DL-feature in the four representative tumor 

images from sagittal CET1WI. All the images are from the validation cohort. 

b) Response value of the positive DL-feature and the negative DL-feature in the primary and validation cohorts. 

DL-feature response among positive-DL-feature in the primary cohort: node-positive vs node-negative -0.014 

(IQR, -0.104 to 0.077) vs -0.037 (IQR, -0.126 to 0.048), P < .001; DL-feature response among negative-DL-

feature in the primary cohort: node-positive vs node-negative -0.195 (IQR, -0.291 to -0.114) vs -0.176 (IQR, -

0.259 to -0.095), P < .001; DL-feature response among positive-DL-feature in the validation cohort: node-positive 

vs node-negative 0.030 (IQR, -0.059 to 0.111) vs -0.118 (IQR, -0.096 to 0.076), P < .001; DL-feature response 

among negative-DL-feature in the validation cohort: node-positive vs node-negative -0.182 (IQR, -0.257 to -0.103) 

vs -0.146 (IQR, -0.216 to -0.078), P < .001.  
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