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Supplementary Information Text 
 
SUPPLEMENTAL METHODS 
 
MRI image acquisition 

Imaging for each subject was performed on a Siemens TRIO 3T MRI scanner over the 
course of 12 sessions conducted on separate days, each beginning at midnight. Structural MRI 
was conducted across two separate days. In total, four T1-weighted images (sagittal, 224 slices, 
0.8 mm isotropic resolution, TE=3.74 ms, TR=2400 ms, TI=1000 ms, flip angle = 8 degrees), 
four T2-weighted images (sagittal, 224 slices, 0.8 mm isotropic resolution, TE=479 ms, 
TR=3200 ms), four MRA (transverse, 0.6 x 0.6, x 1.0mm, 44 slices, TR=25ms, TE=3.34ms) and 
eight MRVs, including four in coronal and four in sagittal orientations (sagittal: 0.8 x 0.8 x 2.0mm 
thickness, 120 slices, TR=27ms, TE=7.05ms; coronal: 0.7 x 0.7 x 2.5mm thickness, 128 slices, 
TR=28ms TE= 7.18ms), were obtained for each subject. Analyses of the MRA and MRV scans 
are not reported here. 

On ten subsequent days, each subject underwent 1.5 hour functional MRI scanning 
beginning at midnight. In each session, we first collected thirty contiguous minutes of resting 
state fMRI data, in which subjects visually fixated on a white crosshair presented against a black 
background. Each subject was then scanned during performance of three separate tasks: motor 
(2 runs per session, 7.8 minutes combined), incidental memory (3 runs per session, 13.1 
minutes combined), mixed design (2 runs per session, 14.2 minutes combined). Across all 
sessions, each subject was scanned for 300 total minutes during the resting state and 
approximately 350 total minutes during task performance. All functional imaging was performed 
using a gradient-echo EPI sequence (TR = 2.2 s, TE = 27 ms, flip angle = 90°, voxel size = 4 
mm x 4 mm x 4 mm, 36 slices). In each session, one gradient echo field map sequence was 
acquired with the same prescription as the functional images. An EyeLink 1000 eye-tracking 
system (http://www.sr-research.com) allowed continuous monitoring of subjects’ eyes in order to 
check for periods of prolonged eye closure, potentially indicating sleep. Only one subject 
(MSC08) demonstrated prolonged eye closures. 
 
Task design  

Motor task design: The motor task was adapted from that used in the Human Connectome 
Project (1). Subjects were presented with visual cues that directed them to close and relax their 
hands, flex and relax their toes, or wiggle their tongue. Each block started with a 2.2 s cue 
indicating which movement was to be made. After this cue, a centrally-presented caret replaced 
the instruction and flickered once every 1.1 s (without temporal jittering). Each time the caret 
flickered, subjects executed the proper movement. 12 movements were made per block. Each 
task run consisted of 2 blocks of each type of movement as well as 3 blocks of resting fixation, 
which lasted 15.4 s.  

Incidental memory task: In this task, subjects made discrimination decisions about scenes, 
faces, and words, each of which was presented multiple times. Within each session, a single 
scan run was collected of each type of stimulus. In each task run, subjects viewed 24 stimuli, 3 
times each. Stimuli were presented for 1.7 s with a jittered inter-stimulus interval ranging from 
500-4900 ms. For scenes, subjects indicated whether an indoor or outdoor picture was 
presented. For faces, male/female judgments were made. For words, subjects made 
abstract/concrete judgments. Subjects were instructed to make their decisions as quickly as 
possible irrespective of the number of times a given stimulus had been presented. Subjects 
made their responses using a fiber-optic response box, and the finger used for each response 
type was counterbalanced within participants across sessions.  



 
 

3 
 

Mixed block/event-related design task: This task was adapted from experimental conditions 
reported by (2). One task was a spatial coherence discrimination task, which used concentric 
dot patterns (3) that were either 0% or 50% coherent. During this task, subjects had to identify 
each pattern as concentric or random. The other task was a verbal discrimination task. Subjects 
were presented with nouns and verbs, and had to identify which type of word was being 
presented on the screen. Task blocks began with a 2.2 s cue screen indicating which task was 
to be conducted in the following block. Blocks consisted of 30 trials (half concentric/half non-
concentric for coherence, half noun/half verb for verbal). Stimuli were presented for 0.5 s with a 
variable 1.7-8.3 s ISI. A stop cue displayed for 2.2 s signaled the end of each task block. Each 
scan run consisted of two blocks of each task. Task blocks were separated by 44 s periods of 
rest. For each task, the finger used for each response was counterbalanced within participants 
across sessions. No words overlapped between this task and the implicit memory task.  
 
Cortical surface generation 

Generation of cortical surfaces from the MRI data followed a procedure similar to that 
previously described in (4). First, anatomical surfaces were generated from the subject’s 
average T1-weighted image in native volumetric space using FreeSurfer’s default recon-all 
processing pipeline (version 5.3). This pipeline first conducted brain extraction and 
segmentation. After this step, segmentations were hand-edited to maximize accuracy. 
Subsequently, the remainder of the recon-all pipeline was conducted on the hand-edited 
segmentations, including generation of white matter and pial surfaces, inflation of the surfaces 
to a sphere, and surface shape-based spherical registration of the subject’s original surface to 
the fsaverage surface (5, 6). The fsaverage-registered left and right hemisphere surfaces were 
brought into register with each other using deformation maps from a landmark-based 
registration of left and right fsaverage surfaces to a hybrid left-right fsaverage surface 
(‘fs_LR’; Van Essen et al., 2012). These fs_LR spherical template meshes were input to a 
flexible Multi-modal surface Matching (MSM) algorithm using sulc features to register templates 
to the atlas mesh (8). These newly registered surfaces were then down-sampled to a 32,492 
vertex surface (fs_LR 32k) for each hemisphere. The various structural metric data (thickness, 
curvature, etc.) from the original surfaces to the fs_LR 32k surface were composed into a single 
deformation map allowing for one step resampling. MSM registration provided a more optimal fit 
of pial and white surfaces and reduced areal distortion (9). These various surfaces in native 
stereotaxic space were then transformed into atlas space (711-2B) by applying the previously 
calculated T1-to-atlas transformation. 
 
fMRI Preprocessing 

Functional data were preprocessed to reduce artifacts and to maximize cross-session 
registration. All sessions underwent correction of odd vs. even slice intensity differences 
attributable to interleaved acquisition, intensity normalization to a whole brain mode value of 
1000, and within run correction for head movement. Atlas transformation was computed by 
registering the mean intensity image from a single BOLD session to Talairach atlas space (10) 
via the average high-resolution T2-weighted image and average high-resolution T1-weighted 
image. All subsequent BOLD sessions were linearly registered to this first session. This atlas 
transformation, mean field distortion correction (see below), and resampling to 3-mm isotropic 
atlas space were combined into a single interpolation using FSL’s applywarp tool (11). All 
subsequent operations were performed on the atlas-transformed volumetric time series.  

 
Distortion correction 

A mean field map was generated based on the field maps collected in each subject (12). 
This mean field map was then linearly registered to each session and applied to that session for 
distortion correction. To generate the mean field map the following procedure was used: (1) 
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Field map magnitude images were mutually co-registered. (2) Transforms between all sessions 
were resolved. Transform resolution reconstructs the n-1 transforms between all images using 
the n(n-1)/2 computed transform pairs. (3) The resolved transforms were applied to generate a 
mean magnitude image. (4) The mean magnitude image was registered to an atlas 
representative template. (5) Individual session magnitude image to atlas space transforms were 
computed by composing the session-to-mean and mean-to-atlas transforms. (6) Phase images 
were then transformed to atlas space using the composed transforms, and a mean phase image 
in atlas space was computed. 

Application of mean field map to individual fMRI sessions: (1) For each session, field map 
uncorrected data were registered to atlas space, as above. (2) The generated transformation 
matrix was then inverted and applied to the mean field map to bring the mean field map into the 
session space. (3) The mean field map was used to correct distortion in each native-space run 
of resting state and task data in the session. (4) The undistorted data were then re-registered to 
atlas space. (5) This new transformation matrix and the mean field map then were applied 
together to resample each run of resting state and task data in the session to undistorted atlas 
space in a single step. 

 
RSFC Preprocessing 

Additional preprocessing steps to reduce spurious variance unlikely to reflect neuronal 
activity were executed as recommended in (13, 14). First, temporal masks were created to flag 
motion-contaminated frames. We observed that two subjects (MSC 03 and MSC 10) had a high-
frequency artifact in the motion estimates calculated in the phase encode (anterior-posterior) 
direction that did not appear to reflect biological movement. We thus filtered the motion estimate 
time courses in this direction only to retain effects occurring below 0.1 Hz in all subjects for 
consistency (15). Motion contaminated volumes were then identified by frame-by-frame 
displacement (FD). Frames with FD > 0.2mm were flagged as motion-contaminated. Across all 
subjects, these masks censored 28% ± 18% (range: 6% – 67%) of the data; on average, 
subjects retained 5929 ± 1508 volumes (range: 2733 – 7667), corresponding to 217 ± 55 
minutes (range: 100 – 281).  

After computing the temporal masks for high motion frame censoring, the data were 
processed with the following steps: (i) demeaning and detrending, (ii) linear interpolation across 
censored frames using so that continuous data can be passed through (iii) a band-pass filter 
(0.005 Hz < f < 0.01 Hz) without re-introducing nuisance signals (16) or contaminating frames 
near high motion frames (17).  

Next, the filtered BOLD time series underwent a component-based nuisance regression 
approach (4). Nuisance regression using time series extracted from white matter and 
cerebrospinal fluid (CSF) assumes that variance in such regions is unlikely to reflect neural 
activity. Variance in these regions is known to correspond largely to physiological noise (e.g., 
CSF pulsations), arterial pCO2-dependent changes in T2*-weighted intensity and motion 
artifact; this spurious variance is widely shared with regions of interest in gray matter. We also 
included the mean signal averaged over the whole brain as a nuisance regressor. Global signal 
regression (GSR) has been controversial. However, the available evidence indicates that GSR 
is a highly effective de-noising strategy (13, 18). 

Nuisance regressors were extracted from white matter and ventricle masks, first segmented 
by FreeSurfer (19), then spatially resampled in register with the fMRI data. Voxels surrounding 
the edge of the brain are particularly susceptible to motion artifacts and CSF pulsations (20, 21); 
hence, a third nuisance mask was created for the extra-axial compartment by thresholding the 
temporal standard deviation image (SDt > 2.5%), excluding a dilated whole brain mask. Voxel-
wise nuisance time series were dimensionality reduced as in CompCor (22), except that the 
number of retained regressors, rather than being a fixed quantity, was determined, for each 
noise compartment, by orthogonalization of the covariance matrix and retaining components 
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ordered by decreasing eigenvalue up to a condition number of 30 (max eigenvalue / min 
eigenvalue > 30). The retained components across all compartments formed the columns of a 
design matrix, X, along with the global signal, its first derivative, and the six time series derived 
by retrospective motion correction. The columns of X are likely to exhibit substantial co-linearity. 
Therefore, to prevent numerical instability owing to rank-deficiency during nuisance regression, 
a second-level SVD was applied to XXT to impose an upper limit of 250 on the condition 
number. This final set of regressors was applied in a single step to the filtered, interpolated 
BOLD time series, with censored data ignored during beta estimation. Finally, the data were 
upsampled to 2mm isotropic voxels. Censored frames were then excised from the data for all 
subsequent analyses. 

 
Surface processing and CIFTI generation of BOLD data 

Surface processing of BOLD data proceeded through the following steps. First, the BOLD 
fMRI volumetric timeseries (both resting-state and task) were sampled to each subject’s original 
mid-thickness left and right-hemisphere surfaces (generated as the average of the white and 
pial surfaces) using the ribbon-constrained sampling procedure available in Connectome 
Workbench 1.0. This procedure samples data from voxels within the gray matter ribbon (i.e., 
between the white and pial surfaces) that lie in a cylinder orthogonal to the local mid-thickness 
surface weighted by the extent to which the voxel falls within the ribbon. Voxels with a 
timeseries coefficient of variation 0.5 standard deviations higher than the mean coefficient of 
variation of nearby voxels (within a 5 mm sigma Gaussian neighborhood) were excluded from 
the volume to surface sampling, as described in (23). Once sampled to the surface, timecourses 
were deformed and resampled from the individual’s original surface to the 32k fs_LR surface in 
a single step using the deformation map generated above (in “Cortical surface generation”). 
This resampling allows point-to-point comparison between each individual registered to this 
surface space.  

These surfaces were then combined with volumetric subcortical and cerebellar data into the 
CIFTI format using Connectome Workbench (24), creating full brain timecourses excluding non-
gray matter tissue. Subcortical (including accumbens, amygdala, caudate, hippocampus, 
pallidum, putamen, and thalamus) and cerebellar voxels were selected based on the FreeSurfer 
segmentation of the individual subject’s native-space average T1, transformed into atlas space, 
and manually inspected. Finally, the BOLD timecourses were smoothed with a geodesic 2D (for 
surface data) or Euclidean 3D (for volumetric data) Gaussian kernel of σ = 2.55 mm. 

 
Task Analysis 

Task evoked activations were modeled individually for each vertex and voxel with a general 
linear model (GLM) (25), using in-house image analysis software written in IDL (Research 
Systems, Inc.). First level GLM analyses were conducted separately for each session in a given 
subject, and second level within-subject analyses were run on the session-wise beta values of a 
single subject. Planned second-level contrasts were evaluated as paired voxel/vertex-wise t-
tests comparing these beta values, and the resulting t-values in each voxel/vertex were then Z-
transformed for further analysis. 

The tasks had three different types of designs (motor = block design, coherence/semantic = 
mixed block/event-related design, incidental memory = event-related design). In the block 
design motor task, a block regressor was convolved with a canonical hemodynamic response to 
model the five experimental conditions: tongue, left hand, right hand, left foot, right foot. The 
contrast of interest in this work was (left hand + right hand) > tongue. 

In the event-related incidental memory design, a finite impulse response (FIR) approach 
was used to model the timecourse of activations for each event, with a single delta function 
used to model each of 8 timepoints after a response; this approach has the advantage of 
making no assumptions regarding the shape of the hemodynamic response function (26). 
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Separate regressors were included for each stimulus type (male face, female face, indoor 
scene, outdoor scene, abstract word, concrete word) as well as the number of presentations of 
a given item (first, second, or third presentation). The contrast of interest in this work was (all 
scenes) > (all faces). 

The coherence and semantic judgment tasks were jointly modeled in a mixed block-event-
related design. Events were modeled with an FIR model (as above, with 8 timepoints for each 
event); separate event regressors were included for the start and end cues in each task, and for 
the different trial types (noun, verb, 50% coherence, 0% coherence). The block (sustained 
activity) was modeled with a square block regressor, with separate regressors for sustained 
activity in the semantic and coherence task. Given the low number of error trials, errors were not 
modeled in any task. In addition to these terms, constant and linear effects were modeled for 
each run. The contrast of interest in this work was the block effect of (semantic judgment) > 
(fixation). 

 
Regression of adjacent cortical tissue from RSFC BOLD 
Many subcortical areas, such as dorsal cerebellum and lateral putamen, are in close anatomical 
proximity to cortex, resulting in spurious functional coupling between the cortical vertices and 
adjacent subcortical voxels. To reduce this artifact, RSFC BOLD time series from all vertices 
falling within 20mm Euclidean distance of a source voxel were averaged and then regressed 
from the voxel time series (4, 27, 28). The resulting residual timeseries were used for all 
subsequent analyses. 
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SUPPLEMENTAL FIGURES 
 

 

 
Figure S1: Brain networks at different density levels in example subject MSC01.
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Fig S2: Internal and external validity of subnetworks across densities in all subjects. RSFC homogeneity (top row, red dots) and task R2 (rows 2-4, blue dots) was higher than equivalent values for other subjects’ networks (green 
dots) or rotated null networks (black dots), particularly at sparser thresholds (right side of each plot). Row 2: Words > Fixation contrast; row 3: Scene > Face contrast; Row 4: Hand > Tongue contrast.
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Figure S3: DMN subnetworks in subjects MSC02-10. For each subject, different colors 
represent different subnetworks in cortex (top left), ventral caudate and medial temporal lobe 
(bottom left), and cerebellum (right). 
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Figure S4: Reproducibility and individual identifiability of DMN networks and 
subnetworks. A,B) DMN networks (A) and subnetworks (B) identified in split halves of an 
example subject’s data. C) Across subjects, both DMN networks (left) and subnetworks (right) 
delineated from split halves pf each subject’s data were more similar within subjects (solid bars) 
than between subjects (striped bars). However, the within-between difference was larger for 
subnetworks than for whole large-scale networks in every subject (paired t(9)=8.19; p<10-4). 
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Figure S5: Large-scale networks in all subjects. Four relevant large-scale brain networks 
defined at high density in each subject. While most networks were identified at the 5% density 
level, in some subjects the Language network only separated from DMN at the 2% density level. 
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Figure S6: Subnetworks represent differentially task-activated divisions within the large-scale 
Somatomotor and Fronto-parietal networks. A,C) Task heterogeneity within the large-scale 
Somatomotor (A) and Fronto-parietal (C) networks in example subject MSC01. Subnetwork divisions (top) 
correspond very well with patterns of task activation (bottom) driven by Tongue > Hands (A) and Words > 
Baseline (C) contrasts. B,D) Variance in the pattern of Tongue > Hands (B) and Words > Baseline (D) task 
activation (y-axis) explained by Somatomotor (B) and Fronto-parietal (D) subnetwork divisions (red) and by 
rotated subnetworks (black), for each subject (x-axis).  
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Figure S7: Spring-embedding plots illustrating relationships among DMN subnetworks and 
other networks in subjects MSC02-MSC10. Language and Fronto-parietal networks tend to be 
linked to specific DMN subnetworks. 
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Figure S8: Functional connectivity strength to classic large-scale networks and network 
role across all DMN subnetworks. A) The Parietal subnetwork exhibited stronger functional 
connectivity to the rest of the DMN than any other subnetwork. B) The Anterior Lateral 
subnetworks both exhibited stronger connectivity to the Language network than any other 
subnetwork. C) The Dorsal Lateral subnetworks both exhibited stronger connectivity to the 
Fronto-parietal network than any other subnetwork. D) The Parietal subnetwork exhibited larger 
within-module degree Z-scores than any other subnetwork. E) The Lateral subnetworks 
exhibited numerically larger participation coefficients than any other subnetwork, though 
statistical comparisons between anterior Lateral and Ventromedial / Retrosplenial subnetworks 
were not significant. 
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Figure S9: Mean functional connectivity between Default subnetworks and each large-
scale network, identified at the 5% density level.   

M
ea

n 
fu

nc
tio

na
l c

on
ne

ct
ivi

ty
 Z

(r)

M
ea

n 
fu

nc
tio

na
l c

on
ne

ct
ivi

ty
 Z

(r)
Parietal

subnetwork
Left ant. Lateral

subnetwork
Right ant. Lateral

subnetwork

Left dors. Lateral
subnetwork

Right dors. Lateral
subnetwork

DMN
Fronto-parietal
Language
Cingulo-opercular
Motor
Visual



 
 

16 
 

 
Figure S10: A,B): Three Lateral subnetworks lag the Parietal subnetwork within cortex and 
cerebellum. A) For cortical elements of subnetworks only, average lag of each Lateral 
subnetwork relative to the Parietal subnetwork. B) For cerebellar elements of subnetworks only, 
average lag of each Lateral subnetwork relative to the Parietal subnetwork. Positive values 
indicate Lateral signals are later than Parietal signals. C,D): Temporal relationships across all 
DMN subnetworks. C) Average temporal ordering of signals in each subnetwork relative to other 
subnetworks. D) Time-delay matrix indicating relative lead/lag of each network pairing. Dark 
cells indicate the “column” subnetwork is earlier; bright cells indicate the “row” subnetwork is 
earlier. ** p<.05 corrected ; * p<.05 uncorrected. Error bars show standard errors across 
subjects. 
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Figure S11: Subnetworks sparser than .1% may explain some additional variance in task 
activation. A) The Words > baseline contrast in subject MSC01, masked within the large-scale 
Fronto-parietal network (as defined at 5% density). Extensive activation heterogeneity is evident 
within this network. B) The same activation map, with subnetwork borders delineated at 1% 
density superimposed on top. These subnetworks explain much of the spatial variance within 
the Fronto-parietal network (as in Figure 2D). However, some subnetwork regions still exhibit 
heterogeneous activation (green arrows). C) The same activation map, with subnetwork borders 
delineated at .05% density superimposed on top. Much of the observed within-subnetwork 
heterogeneity in task activation in B) is now explained by the finer subnetwork divisions 
delineated at this density threshold.
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Figure S12: Illustration of connectivity matrix transformations. The first column shows the original connectivity matrix. The 
second column shows the graph that results from thresholding the connectivity matrix at a specific graph-wide density. The third 
column shows how this graph is altered by the removal of subcortical-to-subcortical connections. The last column shows how the 
graph is altered by applying node-specific thresholding, rather than graph-wide thresholding. The top row represents the whole-brain 
matrices thresholded at 5% (for display purposes, 10% of all vertices/voxels, randomly sampled, are shown here). The bottom row 
represents the matrices only within the Default network, thresholded at .1% (with no subsampling). Rows and columns are sorted by 
identified large-scale networks (top row) and Default subnetworks (bottom row). Green markings adjacent to the row and column 
axes indicate vertices/voxels that have no connections to any other vertex/voxel after thresholding. Note that the node-wise 
thresholding preserves and, in many cases, strengthens the block-wise structure, but also allows the matrix to be fully connected.
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Figure S13: Independent group-level networks used for identification of individual-
specific large-scale networks. 
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