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S1. Modeling background
gjamTime is built from the data model of Generalized Joint
Attribute Modeling (GJAM) (1), embedding it within a dy-
namic framework that includes environment-species interac-
tions (ESI) and resolves several issues posed by multivariate,
time-series, species-abundance data. The challenges of fitting
Lotka-Volterra (LV) models to data have limited direct tests
of theory and their application (2, 3). Fitting static versions
of LV to data omits the serial dependence in observations
and the errors in process and observations (4, 5). This depen-
dence between observations is needed to estimate uncertainty,
which is especially important where data are noisy. Process
error allows for model miss-specification, the fact that LV is a
crude approximation at best. Due to the time-series nature
of dynamics, process error accumulates over time. Observa-
tion error allows for the difference between what is observed
and the ’true’ population size. Populations in Figure 2 of

the main text number in the millions of individuals, but may
be represented in data by counts in single digits. Due to
combined errors, the fraction of total variance explained by a
model like LV could be small. [The LV model is summarized
in section S2.] If a model explains, say, 10% of the variance
in dynamic data, the signal may be too weak to estimate
parameters, make useful predictions, or test hypotheses. The
stochastic treatment of the underlying process that is possible
in models that include both process and observation error
allows for the conditional-independence assumption of serial
data. The conditionally independent data become marginally
dependent when considered jointly with the latent states. This
hierarchical treatment allows for valid credible intervals on
parameters and valid predictive intervals on unobserved states
(4, 6).

There are many curve-fitting algorithms applied to time-
series data that we do not attempt to review here. The
observation-process error combination that is missing from
many of the more algorithmic approaches (7–9) is needed
to allow for serial dependence in observations. Algorithmic
approaches often predict point values as well as full probability
models, but lack a probability basis for credible and predictive
intervals. In addition, the process model used here is motivated
by the need for a bio-physical interpretation of parameter
estimates.

Especially relevant are the recent advances in the AR(1)
models introduced by (2, 10, 11). A growth-rate parameter
ρ in a population model that links population size ws,t of
species s at time t to ws,t+1 is an AR(1) coefficient. Recent
AR(1) models applied to community data further allow that
the growth rate of species s depends on the abundance of other
species in the vector wt. For a stationary process, the AR(1)
model can be viewed as an approximation to the non-linear,
generalized LV model in the neighborhood of an equilibrium
w∗ (2). For communities that exhibit non-stationary dynam-
ics, and abundances commonly move far from equilibrium
values, the linear AR(1) and the non-linear LV models are
expected to diverge. The feedback of population abundance
w(t) on population growth rate dw/dt, through a quadratic
term containing w2 is omitted from AR models and poses
computational challenges.

The challenge of many zeros in species abundance data
that motivated GJAM is important for time-series data. A
preponderance of zeros can restrict analysis to data where
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zeros do not occur. It can motivate a non-linear link function
that complicates interpretation. For example, where data are
modeled on a log scale, it is not possible to state the effect of a
treatment, a covariate, or other species s′ on the growth rate of
s without qualifying it by saying how abundant the species are.
There is no interpretation of ’main effects’; on the log scale,
all effects are multiplicative (they are interactions). Where
scale differences are side-stepped by treating abundances as
presence/absence, most of the information in data is lost,
without addressing the fact that the zeros and ones still depend
on the differing (and usually non-comparable) effort applied
to species observed in different ways.

gjamTime moves from the LV model of eqn 1 to a form that
is suited to model fitting in eq. (S2.5). It contains elements of
several models in the literature. Using the first term of eqn
1 alone, it is (static) GJAM (1). Omitting the first term in
eqn 1 follows the basic LV assumptions. Examples of dynamic
models for inference on individual species include (5, 6, 12). In
the absence of the GJAM data model (section A), the first two
terms are a joint autoregressive AR(1) model, but differing
from (2) and (11) in that gjamTime models dynamics on the
observation scale. The ordinal model of (10) can be close to
the observation scale, depending in part on the ordinal scale
that is used. The (static) GJAM model adopts elements of
censoring in (13, 14), as discussed in (1).

Allowing for observation error in gjamTime introduces a la-
tent process that absorbs serial dependence that is not limited
to AR(1). As mentioned above, this latent process permits the
assumption of conditional independence in observations (4, 15);
there will be posterior covariance in latent states that could
include a rich lag-covariance structure, as would be expected
from populations having age or size structure and interacting
with unobserved species and environmental variables. This
covariance is available from the posterior distribution.

gjamTime additionally includes density-dependence, i.e.,
the effect of species on one another that depends on their
combined abundances (the third term of eqn 1). Even with
hierarchical Bayesian analysis this term comes with computa-
tional difficulties that are addressed in section S2.

S2. Theoretical background
The generalized LV model describes how the abundances of
species affect growth rates of one another. The dynamics
of a species s are described by two terms, i) an autoregres-
sive density-independent growth rate and ii) feedback from S

other species w1, . . . , wS . The strength of these interactions
is determined by coefficients in a Jacobian matrix α,

dws(t)
dt

= ws(t)

(
ρs +

S∑
s′=1

αss′ws′(t)

)
or, written as a system of S equations,

dw(t)
dt

= diag(w(t)) [ρ + αw(t)] [S2.1]

where w(t) is a length-S vector of species abundances, and
diag(w(t)) is a S × S matrix of zeros with elements of w(t)

arranged along the diagonal. The density-independent (DI)
growth coefficients in the first term are held in a vector ρ =
(ρ1, . . . , ρS). DI growth is positive if ρs > 0. The species
interaction coefficients αss′ in the S × S matrix α describe
the effect of the abundance of species s′ on the growth rate
of species s (16–19). For competition, αss′ is negative. For
predator s and prey s′, αss′ > 0 (a resource that stimulates
growth), and αs′s < 0 (predation loss). We expect asymmetry,
αss′ 6= αs′s, because two species cannot have precisely the
same effects on one another. The carrying capacity for the
species in the absence of other species depends only on its own
parameter values

wc
s = − ρs

αss
[S2.2]

The equilibrium community has abundances that each depend
on one another through the species interaction matrix α,

w∗ = −(αα′)−1α′ρ [S2.3]

A necessary (but not sufficient) condition for coexistence of
competing species (i.e., all w∗s > 0) is an interaction matrix
α that has diagonal dominance, i.e., there is a tendency for
species to disproportionately limit their own growth rates
(αss << 0). More generally, there is local stability if all
eigenvalues of the Jacobian matrix α have negative real parts
(16, 20). Dynamics can be unpredictable, because the rela-
tionship between two species s and s′ at time t affects the
growth rate of every other species in the future, through all
coefficients in α. We refer to these effects as the conditional
(or ’direct’) effects in α and marginal (or ’direct plus indirect’)
effects, respectively.

The interaction coefficients of eq. (S2.1) are held in a S×S
matrix α,

α =


α11 α12 . . . α1S

α21 α22 . . . α2S

...
...

. . .
...

αS1 αS2 . . . αSS


The structure of α is the subject of an extensive literature
on trophic interactions, food webs, and species coexistence.
Trophic (food-web) theory is often organized around this com-
munity matrix of interactions, which summarizes the effects of
each species on growth rates of others (21). For two species,
the community matrix is

α=

(
α11 α12

α21 α22

)
In food web models, interactions are often summarized by the
signs of interactions. Inter- and intraspecific competition can
be represented as

α± =
(
- -
- -

)
and predation as
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α± =
(
- +
- -

)
Amensalism (one-way) competition is

α± =
(
- 0
- -

)
Mutualism is

α± =
(

- +
+ -

)
Beyond the signs of the coefficients there is substantial

literature on their relative magnitudes, sometimes termed
interaction strength. For competitors (αss′ ≤ 0) the question
may focus on whether or not diagonal elements are sufficiently
negative to insure coexistence. Do competing sessile organisms
recognize the identities of their neighbors (all αss′ unique),
only some, or none (all αss′ equivalent)? Do competitors affect
one another directly (αss′ 6= 0) or by way of other species
with which they interact? These questions, and many related
ones, depend on a way to estimate their magnitudes, with full
uncertainty.

Table S2.1. Variables and parameters in gjamTime.

Namea Dimensionsb Definitionc

Variables
ut U × 1 w̃t−1 ⊗ w̃t with all combinations w̃s,t · w̃s′,t

vt V × 1 w̃t−1 ⊗ xt with all combinations w̃s,t · xq,t

wt S × 1 (latent) species abundance per effort for
w1,t, . . . , wS,t

w̃t S × 1 censored abundance per effort with elements
max(0, ws,t)

xt Q× 1 design vector for x1,t, . . . , xQ,t

yt S × 1 observed abundance y1,t, . . . , yS,t

εt S × 1 error vector
Lotka Volterra parameters

α S × S spp interactions αs,s′ for effects of s′ on growth
of s

ρ Q× S DI growth with elements ρq,s

β Q× S movement coefficients βq,s, multiplies xt

Fitted model
P V × S ρ reorganized as in eq. (S2.9) multiplies vt

A U × S α reorganized as in eq. (S2.10) multiplies ut

Σ S × S residual covariance

a The latent variable ws,t can be negative when ys,t is zero,
but its effect on population growth is non-negative, w̃s,t =
max(0, ws,t); it is a censored version of ws,t

b S - number of species; Q - number of predictors; U - less
than the number of species combinations S2; V - less than
the number of species-predictor combinations SQ

c The symbol ⊗ is the Kronecker product.

A. Technical background. The discrete-time, stochastic
version of the continuous LV model (eqn 1) describes change
over an interval of duration dt,

wt+dt −wt = dt ·
(
dwt + Σ1/2εt

)
dwt = β′xt + P′vt + A′ut [S2.4]

where dwt is a discrete-time version of the differential equation
in eqn 1, εt is a random vector, and Σ1/2 is the square-root
matrix for the S × S process error covariance. In addition
to time t there will usually be a location i subscript that
is omitted here to reduce clutter. The first term includes
S×Q matrix β, as defined previously. The length-Q vector of
predictors xt = (1, x2,t, . . . xQ,t)′ includes an intercept. The
second term includes environment-species interactions ws,t·xq,t

in length-V vector vt, where V is a subset of all possible
combinations of species abundances in wt and environmental
variables in xt. P is a sparse matrix that reorganizes ρ to
optimize posterior simulation (see below). The third term
holds species interactions ws,t · ws′,t in length-U vector ut,
where U is less than the number of species combinations. A
holds the interaction coefficients from α in a matrix that is also
sparse and reorganized to optimize model fitting (section A).
Coefficients and variables are defined in table S2.1. For dt = 1,
eq. (S2.4) becomes

∆wt = β′xt + P′vt + A′ut + Σ1/2εt [S2.5]

where ∆wt = wt+1−wt is a growth increment for population
abundances of S species.

The model eq. (S2.5) is combined with data as in GJAM,
with the important distinction that the model now operates
not on wi, but rather on its change with time. An observation
consists of vectors {xi,t,yi,t} at location (’site’) i = 1, . . . , n,
on sample occasion t = 1, . . . , Ti. The length-S response
vector yi,t = (yi,t,1 . . . yi,t,S)′ can include species observed
as discrete counts or continuous abundances. In the current
version of gjamTime they are discretized to allow for errors
in observation, which are determined by the width of discrete
bins and sampling effort. Count yi,t is a discrete version of a
latent (continuous) variable wi,t.

∆wi,t|xi,t,wi,t,yi,t+1 ∼ MVN(dwi,t,Σ)×
S∏

s=1

Is,i,t [S2.6]

Is,i,t =
∏
k∈C

I
1(ys,i,t+1=k)
s,i,t,k (1− Is,i,t,k)1(ys,i,t+1 6=k)

where the indicator function 1(·) is equal to 1 when its argu-
ment is true and zero otherwise (1, 22). The indicator

Is,i,t,k = 1(ps,i,t+1,k < ws,i,t+1 < ps,i,t+1,k+1)

means that the abundance changes over the interval (t, t+ 1)
to a value ws,i,t+1 that lies within the interval of the partition
that is assigned to the observed value ys,i,t+1. The partition
depends on effort,

ps,i,t,k =
(
k − 1/2
Es,i,t

,
k + 1/2
Es,i,t

]
[S2.7]
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where Es,i,t is the effort applied to observe species s at i, t.
For plants, effort can be plot area. For point counts, it can be
distance traveled, observation time, or their product. Large
effort makes intervals narrow, which, in turn, reduce observa-
tion variance, thereby increasing the weight of the observation
in the model fit. To reduce clutter, we hereafter omit the
location i subscript. The model graph is shown in fig. S2.1.

w0 w1 wT…

x1
v1

u1

y0 y1 yT

E0 E1 ET

xT
vT

uT

Fig. S2.1. Model graph with subscripts for time (location is omitted). Observed
responses are y1, . . . , yT . Observation effort is given by Et,s. The first vector y0
and missing values are assigned prior values, the weight of which is determine by the
effort that is assigned to them, through Es,t.

B. A two-species example. For simplicity we use a two-
species example to discuss elements of the model, where abun-
dances occupy the vector wt = (w1,t, w2,t). Corresponding to
the length-Q vector of environmental variables (’predictors’)
for movement xt, there is a Q× S coefficient matrix

β =

β11 β12
...

...
βQ1 βQ2


Again, the term β′xt in eq. (S2.5) is independent of population
densities.

To optimize posterior simulation we reorganize DI matrix
ρ and DD matrix α. Environment is expected to enter not
only through its effects on movement, but also on population
growth rate. For DI effects, there is a matrix of coefficients for
environment-species interactions (ESI) that need not include
the same predictors in x (see section S8). To avoid introducing
more variables we use x to represent environmental variables
in both of the first two terms of eq. (S2.5). The two-species
version of the matrix for effects on DI growth has the Q× 2
matrix ρ

ρ =

ρ11 ρ12
...

...
ρQ1 ρQ2

 [S2.8]

For each species s there are parameters ρ1,s . . . , ρQs for the
interactions between abundance and environmental variables
ws,t · xq,t. There are QS possible interactions between S

species and Q predictors in ρ. However, not all Q variables
in xt may influence population growth of all species S, so

V ≤ QS. Potential elements are drawn from the vector of all
possible interactions,

vt = wt−1 ⊗ xt = (w̃1,t−1, w̃1,t−1x2,t, . . . , w̃1,t−1xQ,t, w̃2,t−1,

w̃2,t−1x2,t, . . . , w̃2,t−1xQ,t)′

(again, recall x1,t = 1), where w̃t,s = max(0, wt,s). We cannot
use eq. (S2.8) directly, because it is not V × S. To maintain
the linear relationship with parameters in ρ (and, thus, direct
sampling), we introduce a sparse matrix. For the S = 2 case
this sparse coefficient matrix for eq. (S2.8) is

P =



ρ11 0
...

...
ρQ1 0
0 ρ12
...

...
0 ρQ2


[S2.9]

P is a V × S matrix, but it holds at most only QS non-
zero elements. For reference purposes the subscripts for ρ in
eq. (S2.9) are indicated not by the location in P, but rather
by the species-environment combination each represents, the
index (q, s). The traditional DI growth rate growth rates are
given by the elements ρ11, ρ12, . . . , ρ1S . This is the first row
of matrix ρ, which is multiplied by the intercept in x, i.e.,
1. This is the DI growth rate that is realized in the absence
of covariates (or covariates equal to zero). The structure of
eq. (S2.9) is imposed to allow for direct (Gibbs) sampling of
the coefficients and covariance matrix (section S7).

The density-dependent (DD) term contains the interactions,
i.e., the unique elements of the S × S matrix α that operates
on species pairs, w̃t−1w̃′t−1. These products are held in a
length-U vector, where U ≤ S2. This vector is limited to
interactions that can actually occur. If all species interact
with all others, the vector for two species is

ut = (w̃1,t−1w̃1,t−1, w̃1,t−1w̃2,t−1, w̃2,t−1w̃2,t−1)′

As for ρ, we need a reorganized version of α that permits
direct sampling. Assuming these two species interact, the
U × S matrix of species interaction coefficients is

A =

α11 0
α12 α21

0 α22

 [S2.10]

Again, subscripts indicate not the location in A, but rather
the species combination represented in αs,s′ . The second row
includes both interspecific interactions, because both multiply
the product wsws′ in vector ut.

In addition to the equilibrium abundances solved from
eq. (S2.5), there is a carrying capacity for the species that
is predicted in the absence of movement and regulation by
other species. The carrying capacity that applies to the mean
environment includes environmental effects is
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wc
s|x̄ = − 1

αss
P′sx̄ [S2.11]

where Ps = [ρ1,s . . . , ρQs]′ is the non-zero rows of column s
in the matrix P, i.e., only the rows corresponding to species
s in eq. (S2.9). Note that this solution for a species in the
absence of others can never be non-linear with respect to
an environment gradient in x unless, of course, x includes
quadratic terms. In fact, if predictors in x are centered and
standardized, then all terms in x̄ are zero except the intercept,
and eq. (S2.11) collapses to eq. (S2.2).

0 20 40 60 80 100 120

0
10

00
0

20
00

0

Time t

C
ou

nt
y s

t

Fig. S2.2. A simulated community of S = 6 species on ten sites with Q = 3
environmental predictors, started from random initial values, with a mean
sampling duration of 100 iterations. Species s1 and s2 are predators on s3
and s4 (red negative and blue positive arrows). Interspecific competition
(brown arrows) occurs between s3, s4, s5, and s6. All species experience
intraspecific competition. Dashed lines at right show w∗ from eq. (S2.3).
The ws,t are latent versions of observed ys,t. Colors at right correspond
to box outlines at left.

S3. Data simulation
The simulator makes three important contributions to this
analysis. First, it demonstrates that the model can predict
the data used to fit the model. This would not be the case if
there are errors in the model or in the code that affect either

model fitting or data generation; the model is generative, and
the simulator confirms it. Second, it demonstrates that, when
data are adequate, we can recover parameters used to simulate
the data. We would not have this outcome if the model were
overfitted∗. Finally, it allows us to determine the contributions
of food web topology and environment to parameter estimates
and data prediction.

The simulator takes as inputs the numbers of species, sites,
predictors, and time increments. Each of the three terms
in gjamTime (movement, DI growth, and DD growth) can
be included in a simulation, or not. The topology of the
food web is specified in terms of competition and predation,
through the signs in the interaction matrix. Observation effort
determines how much of each population will be observed. The
simulator selects at random parameter values from a range
that can produce realistic dynamics. Forward simulation then
generates latent ws,t from eq. (S2.5). Based on the specified
effort, observed ys,t are generated from eq. (S2.7).
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Fig. S3.3. Data prediction for species abundances in the simulated example
from fig. 3 of the main text. Colors match time series in fig. S2.2.

The simulator is available at gjamTimePNASVignette,
where we use it to show how knowledge of species and en-
vironment affect model fitting and prediction. The examples
included there step through some simple food webs to empha-
size how each of the effects might be examined.

S4. Contributions to dynamics
The relative contributions of species-environment interactions
through movement, DI growth, and DD are available through
the three terms in eq. (S2.5). One way to understand these

∗Checks for overfitting with actual data are highly indirect through out-of-sample prediction; this is
a desperate measure used because ’true’ parameters are unknown. Simulation allows for direct
evaluation of overfitting through parameter recovery.

PNAS | June 22, 2020 | 5

https://rpubs.com/jimclark/631209


effects is through the increase in residual variance that occurs
when a term is left out of the model. For each term in eq. (S2.5)
there is a corresponding contribution to overall variance. For
environmental effects on movement it is

cE = diag(CE)
CE = trace(CE) [S4.12]

where CE = β′Cov(X)β, and X is the n×Q design matrix
having rows x′t. The first term in eq. (S2.5) makes a big contri-
bution to dynamics if values in β are large and environmental
variation in X is large. The length-S vector cE holds the
variance by species, and CE is the variance across all species.

Species-environmental effects on DI growth contribute

cEW = diag(CEW )
CEW = trace(CEW ) [S4.13]

where CEW = P′Cov(V)P, and V is the n×V design matrix
having rows v′t. Recall, vt holds all combinations of ws,txq,t.
Cov(V) is the covariance for interactions between species
abundances and environmental variables. The second term in
eq. (S2.5) makes a big contribution if values in P are large
and variation in V is large.

Species interactions contribute through DD growth,

cW W = diag(CW W )
CW W = trace(CW W ) [S4.14]

where CW W = A′Cov(U)A, and U is the n × U design
matrix having rows u′t. The n × U matrix U has rows that
hold all combinations of ws,tws′,t. Cov(U) is the covariance
for interactions between species abundances, which depend
on all forces affecting the community. This term makes a big
contribution if values in A are large and the variance in species
interactions is large.

Omitting these terms from the model inflates the noise in
the data from Σ to

Σ + CE + CEW + CW W [S4.15]

Thus, each of the ways in which species and environment in-
teract contributes to the fitted model. Leaving them out of
the model affects the interpretation depending on each oper-
ates through movement, population growth, and/or species
interactions.

S5. Interactions and indirect effects
In this section we show that the model captures both non-linear
and interaction responses to environmental gradients that are
induced through interactions with other species. First we note
that, in the absence of species interactions, the carrying capac-
ities for individual species can have non-linear and interaction
responses to the environment only if they are specified as direct
effects (e.g., as quadratic terms in matrix P in eq. (S2.11)).

Second, we recognize that any non-linearities or interactions
in environment response must engage terms in the model
that involve products of predictors, xq,t · xq′,t or the species
abundances that depend on them, ws,t(xq,t) · ws′,t(xq′,t). An
induced non-linearity requires one or more of these productions
where q′ = q. An induced interaction requires one or more
products where q′ 6= q. The analysis that follows extracts
these effects.

The ways in which a predictor q affects the abundance
of a species s includes direct and indirect effects. Consider
s = 1, . . . , S species and q = 1, . . . , Q environmental variables.
The abundance of species s changes by increment ∆ws,t as
ws,t+1 = ws,t + ∆ws,t. The effect of a variable q on growth of
species s can depend on other species s′,

d∆ws,t

dxq,t
= ∂∆ws,t

∂xq,t
+
∑
s′ 6=s

∂∆ws,t

∂ws′,t

∂ws′,t

∂xq,t

= direct effect + indirect/interactions [S5.16]

The first term is direct, coming through the movement and
DI growth terms of eq. (S2.5). If there are interactions in the
model specified as direct effects, then the first term is

∂∆ws,t

∂xq,t
= βq,s +

∑
{q′}

βqq′,sx′q′,t + ws,t

ρq,s +
∑
{q′′}

ρqq′′,sx′q′′,t


= βq,s + β{q′}s′x

′
{q′},t + ws,t

[
ρq,s + ρ{q′′}s′x

′
{q′′},t

]
where {q′} is the set of movement predictors that interact
with q, βs,qq′ is the interaction effect of q and q′ on movement,
{q′′} is set of DI growth predictors that interact with q, and
ρqq′′,s is the interaction effect of q and q′′ on DI growth. If
the model does not specify interactions, then this reduces to

∂∆ws,t

∂xq,t
= βq,s + ws,tρq,s [S5.17]

Because we are concerned with interactions that are induced
through other species, we refer to this simplified expression
for the remainder of the analysis.

The second term of eq. (S5.16) is indirect, coming through
environment effects on the other species. The first factor in
the summation contributes a length-(S − 1) vector

c−s,t = w′−s,tα
′
−s + Σs,s′Σ−1

s′,s′

= species interactions + indirect effect [S5.18]

where α−s omits column s of matrix α (it holds the effects of
all other species on s), and w−s,t is the vector of other species
abundances. Indirect effects also come conditionally through
the ways in which species covary that are not accounted for in
the mean structure of the model, held in the residual covariance
matrix Σ. This second term cannot depend on xq so it cannot
contribute to non-linear responses; we hereafter omit it.

With these results we can identify the sources of non-
linearities and interactions. Because these can only come
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through products involving xq,t, we focus on the vector
ws,t, which depends on xq,t through crossproduct terms
ws,t(xq,t) ·ws′,t(xq′,t). The terms that remain from eq. (S5.16)
after excluding those that cannot account for non-linearities:

∑
s′ 6=s

∂∆ws,t

∂ws′,t

∂ws′,t

∂xq,t
∝ ws,tαs,−s

(
ρq,−s ◦w−s,t

)
[S5.19]

where αs,−s is row s of α−s, ρq,−s is a length-(S − 1) vector
of elements {ρq,s′}s′ 6=s, and ◦ is the Hadamard product. The
form of this expression makes it clear that products of predic-
tors xq,txq′,t can only come through their effects on products
of species abundances ws,tws′,t. The magnitudes of these indi-
rect effects depend on coefficients in α and ρ. These effects are
quadratic (non-linear) when two species depend on the same
predictor, ws,t(xq,t) · ws′,t(xq,t). They are interactive when
species that interact, through αs,s′ 6= 0, depend on different
predictors ws,t(xq,t) · ws′,t(xq′,t).

Taken together, the terms in the model have no way of
generating non-linear effects, but through the densities of
others. If all other species are absent, then eq. (S5.19) is equal
to zero. Even where all terms in the model are linear for all
predictors, non-linear gradient responses are ’induced’ by the
responses of other species with which a species interacts.

S6. Prior knowledge
Food web theory is used a priori to reduce dimensionality.
For transparency, prior distributions are uniform and bounded
over intervals based on ecological understanding. Where no
information exists, a non-informative prior can be uniform over
the real line, (−∞,∞). Informative priors can be truncated at
zero, to reflect knowledge of the signs of effects and interactions
(section S6). To set the scale for coefficients, an approximate
range of growth rates starts with abundance per effort, ws,t ≈
ys,t

Es,t
. Realistic bounds of possible rates of change can be

combined with liberal estimates of how movement, DI growth,
and DD group could contribute to this change. Insight comes
from basic demographic rates, which can involve knowledge of
dispersal potential, numbers of litters per year, clutch sizes,
survival rates, and so on. This information is used only to set
liberal bounds on possible rates. For DI growth in P, there
are ESI that contribute to the growth rate as products of
w̃s,t · xq,t,

P′svt = ρ1sw̃s,t +
Q∑

q=2

ρqsw̃s,txq,t [S6.20]

where Ps is a column s of V × S matrix P. If predictors in
xt are centered, the parameters ρ1s are the DI growth rate
for each species at mean covariate values in eq. (S2.9). They
must be greater than 0 for net growth to occur, and vice versa.
A deviation from ±0.1 would contribute to a 10% decline
or increase per time increment. For a population capable
of DI growth of 1% per year, we expect values in the range
of 0.01 yr−1. For a population capable of doubling in 10

hr, we expect values in the range of 0.07 hr−1. Populations
are also capable of decline, values of ρ1s < 0. However, a
population that experiences competition that is not reliant on
immigration (it is not a ’sink population’) can be expected to
have a positive growth rate (ρ1s > 0 or, equivalently, P0s > 0).
This knowledge is the basis for a prior interval on the ρ1s

coefficients, which are the intercept terms in eq. (S2.9). For
the BBS example, our prior interval for ρ1s considered the
range of clutch sizes expected for species in this example and
combined it with juvenile survival to define a broad prior
interval (−0.05, 0.1), which ranges from 50% decline in 13
years to population doubling in 7 years, i.e., much wider than
would be expected from simple DI growth at mean covariate
values. Non-intercept coefficients in P apply to standardized
covariates in x, which have mean zero, multiplied by ws,t. The
non-intercept coefficients ρ2s, . . . ρQs are also liberally bounded
based on possible ranges for DI growth under the unit-variance
range of x.

The movement coefficient matrix holds effects that depends
on the growth rate and the variation in a predictor q,

βqs = ∂

∂xq

(
dws

dt

)
[S6.21]

Possible values for this coefficient consider the range of growth
rates and the range of xq. The range of variation in dws/dt

that could occur due to movement can, in many cases, come
from existing knowledge. The intercepts in β1s, s = 1, . . . S
describe movement that is not linked to predictors in x. For
the WEL example, we assumed no movement at all, so the
first term of eq. (S2.5) is omitted. This assumption does not
exclude the possibility that a small amount of movement might
occur, only that it would be too small to estimate from the
data. For the coefficients that are not intercepts we consider
variation in predictors. We standardize predictors in x, so we
can think about effects having fluctuations over this range of
variation (e.g., several standard deviations for xq).

Flat prior intervals for DD growth in A might be assessed
in several ways. We know that many species do not directly
interact. These species pairs are zero in α and in the cor-
responding elements in A. This does not mean that there
are no indirect interactions between these species pairs, only
that those indirect effects must enter through Σ or through
lagged effects αs′s′′ws′′,t−1 → αss′ws′,t → ∆ws,t. The effects
in matrix α are non-lagged and direct. Where we have less
information, the signs of elements αs,s′ may be known from
trophic relationships. Liberal bounds on αss′ are based on a
S × S matrix of rates and crossproducts, dws

wsw′s
, i.e., the range

of population growth rates and the magnitudes of the products
that determine their contributions to growth.

S7. Posterior simulation

A. Sampling sparse coefficient matrices. The multivariate
variable selection literature focuses primarily on selecting entire
rows in coefficient matrices like β, corresponding to columns
in the design matrix (Brown et al. 1998, Liquet et al. 2016).
Here we are not attempting to eliminate whole rows of β,
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P, and A, but rather we sample conditional on zeros that
can be specified anywhere in these matrices. Again, we are
not selecting variables as part of model fitting, but rather
specifying the combinations that can be non-zero a priori.
This is equivalent to identifying the species that should not
be linked in figure 2 of the main text. The strategy that
follows recognizes that coefficient matrices can be large, but
also sparse. Recall that much of the sparcity comes from the
need to sample coefficients directly, which is demonstrated in
this section.

We begin by stacking the row vectors ∆w′i,t, x′i,t, v′i,t, and
u′i,t to generate m × S matrix W, m ×Q matrix X, m × V
matrix V, and m×U matrix U, where m =

∑n

i
Ti. The joint

distribution is now matrix-normal

MNm,S(W|Xβ + VP + UA, Im,Σ)

where Im is the identity matrix.
Sampling the three coefficient matrices can be done in

the same way. Using the example of matrix A, we have the
conditional posterior distribution

[A|β,P,Σ] = MVNSU (vec(A)|m,M)

where vec(A) stacks the columns of A into a single vector.
Sampling the full matrix starts from the usual conditional
mean and covariance matrices,

m = vec
((

U′U
)−1 U (W−Xβ −VP)′

)
M =

(
U′U

)−1 ⊗Σ [S7.22]

The matrix A includes elements that must be sampled, desig-
nated Ac, and others fixed at zero, designated Ac′ , where c
holds locations of non-zero elements in vec(A), and c′ holds
the locations of zero elements in vec(A).

We need to condition on zeros, which can be done in a
way that reduces dimensionality. Matrix A is vectorized and
ordered with elements c followed by c′, such that

m =
(

mc

mc′

)
,M =

(
Mcc Mcc′

Mc′c Mc′c′

)
We want to sample non-zero elements having conditional mean
and covariance

mc|c′ = mc −Mcc′M−1
c′c′mc′

Mc|c′ = Mcc −Mcc′M−1
c′c′Mc′c [S7.23]

The problem here is that the inverse M−1
c′c′ on the right side

of eq. (S7.23) is too large, because there can be many species,
and most elements in A could be zero (c′ >> c).

Exploiting properties of the Kronecker product, the condi-
tional covariance matrix is available from

Mc|c′ = C−1
cc

where Ccc is a matrix having elements Ccc[ij] =[
Σ−1 ⊗U′U

]
ij

for rows i and columns j (note reverse or-
der for Kronecker from eq. (S7.22)). This avoids inverting the
matrix Mc′c′ in the second line of eq. (S7.23). However, this
inverse is still needed for the conditional mean in the first line
of eq. (S7.23). In contrast to Mc′c′ the matrix Ccc will be
small and provides access to the inverse through

M−1
c′c′ = Cc′c′ −Cc′cC−1

cc Ccc′

In other words, we invert the small matrix Ccc to obtain the in-
verse of the big, sparse matrix Mc′c′ . Note that for dimension
reduction described in (22) we also need a conditional covari-
ance, which in that case simplifies to Mc|c′ = σ2 [(U′U)cc]−1.
Albeit circuitous, this method is fast and accommodates large
numbers of species.
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Fig. S7.4. The ranges of observed values for four species groups and across three
lakes and six years by week of the year with temperature (below). Shading bounds
68% and 95% of observations, respectively.

B. Sampling latent states. This non-linear model does not
admit direct sampling of states ws,t. These are sampled with
a Metropolis step. We propose from

w∗s,t ∼ N(ws,t, vs,t)× 1(ps,k < w∗s,t ≤ ps,k+1)

where vs,t is a proposal variance that will adapt based on
acceptance rates and posterior variance, and (ps,k, ps,k+1] is
the partition. Acceptance is based on

[w∗t |wt−1,wt+1] ∝MVN(∆w∗t |β′xt + P′vt + A′ut,Σ)
×MVN(∆wt+1|βxt+1 + Pv∗t+1 + Au∗t+1,Σ)

For time zero, only the second factor is used.
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Table S7.2. Summary of lakes used in the Wisconsin Experimental
Lakes example.

Lakea Treatmentb Effects

Paul Lake (bass-
dominated)

reference –

Peter Lake (high
planktivory)

nutrients, bass re-
moved

increased planktivory, de-
creased D. pulex, increased
phytoplankton

West Long Lake
(bass-dominated,
low planktivory)

nutrients reduced planktivory, in-
creased D. pulex, sup-
pressed phytoplankton
response

a Lake characteristics summarized in parentheses.
b Summary of manipulation

S8. Applications to food web data

A. Wisconsin Experimental Lakes. Experimental manipula-
tion of nutrients and largemouth bass in three lakes was im-
plemented to determine how top-down controls by piscivores
could mediate the effects of nutrient loading (table S7.2). Re-
moval of piscivorous bass from Peter Lake in 1991 was expected
to increase population growth rates of phytoplankton. This
would occur through reduced largemouth bass predation on the
smaller fish (i.e., piscivory) that consume the dominant grazer
D. pulex; these smaller fish are planktivorous. Under decreased
piscivory, planktivorous fish increase, thereby reducing grazing
pressure by D. pulex. This reduction in grazing pressure allows
phytoplankton blooms under high nutrient loading (23). Lakes
were monitored for two pre-treatment years (1991, 1992) and
four subsequent years of nutrient addition (table S7.2). Mean
observed values over years are in fig. S7.4. Data collection
and trends for each of three lakes are detailed in the original
publications.

Data for this example come from (2) for four species groups
and the two additional variables (bass) and nutrient addition
(Pvol). As in previous analyses (2, 24) we treat nutrient addi-
tion (pVol) and planktivory (bass: interpolated planktivore
abundances from observations at the beginning and end of
each year) as external controls on the community defined by
the aggregate four species groups. Our fitted model included
terms for DI and DD growth (ρ, α), but not movement. It
includes an interaction between bass and temperature (temp).

The sample contains n = 291 observations on S = 4 re-
sponse variables (species groups). To allow for observation
error, continuous variables were discretized to integer values; if
this example were not for demonstration only, this discretiza-
tion would benefit from prior understanding of variability in
observations. Each lake-year is treated as a separate time
series (2). The time step is 2 weeks. Each lake-year has a
prior value for yi0 that is based on subsequent values. This
value is not fixed–it has a corresponding posterior distribution.
Computation involved 80,000 Gibbs steps, with a burnin of
40,000.
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Fig. S8.5. Predicted and observed observations from the fitted model by species
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basal histogram shows the distribution of data.
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Fig. S8.6. Posterior parameter estimates for DI growth responses to environmental
variables in matrix ρ for the WEL example. Boxes and whiskers bound 68% and 95%
of the posterior distribution, respectively.

The model predicts the data (fig. S8.5) and it resolves
the posterior. The RMSPE is 92.8, and the DIC is 39,574.
Coefficients in DI growth matrix ρ are shown as boxplots in
fig. S8.6. Parameter estimates quantify main effects and an
interaction between bass and temp. Comparisons of prior and
posterior for ρ and interaction matrix α show that data have
updated the prior distribution (fig. S8.7). DI growth rates at
mean covariate levels (’intercept’ in fig. S8.6) range from near
zero to 0.5 wk−1, the latter corresponding to a doubling time
of < 2 wk. Judging from prior-posterior comparisons, these
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Fig. S8.7. Bayesian learning in the WEL application is evident from a comparison
of prior (brown rectangles) and posterior (grey densities). The prior is not visible for
parameters where data dominate. Missing combinations (white spaces) are zero a
priori. Only intercepts in ρ (the DI growth rate at mean values for covariates, shown
at left) are weakly identified.

are the hardest parameters to identify (fig. S8.7). Nutrient
addition (Pvol) has a stronger direct effect on large than
small phytoplankton (fig. S8.6). By depressing planktivory,
piscivorous bass had a strong positive effect on zooplankton,
especially D. pulex (lZoo).
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Fig. S8.8. Predicted and observed observations from the fitted model for the first
16 species in BBS. Boxes and whiskers bound 68% and 95% of observations,
respectively. The basal histogram shows the distribution of data.

Eigenvalues of α̂ indicate damped oscillations, having all
negative real parts (locally stable) and non-zero imaginary
parts (the expected oscillations for this food web that includes
predation), (−0.0386,−0.00136 ± 0.00350i,−0.00103). The
analysis is reproduced at gjamTimePNASVignette.

B. Breeding bird survey. For this example, we limited BBS
data to a region centered on mid-Atlantic states of eastern
USA between longitude (−86◦,−77◦ W) and latitude (34◦, 46◦

N) and spans a range of climate and land cover types (fig. 5).
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Fig. S8.9. Many eigenvalues for α in the BBS example are positive. None have
imaginary parts.

Because survey coverage remained unstable in early years, we
limited analysis to post-1996 observations. To simplify output
we further limited the analysis to species present in at least
6000 route-years. This reduced data set with few predictors
was used for purposes of transparency; the approach will ac-
commodate many more species and observations. The matrix
β was limited to wind conditions at the time of observation,
which can affect activity and, thus, movement. Wind is a four-
level factor. The matrix ρ was limited to land cover type from
the National Land Cover Database taken at the location of
the starting point for each BBS transect. This index is crude,
because transects span 25 km and, thus, multiple land cover
types, which are not located in the BBS data. NLCD types
were aggregated into a six-level factor as shown in figure 5.
Additional predictors in ρ are June temperature and summer
moisture deficit (P - PET). The α matrix was sparsified based
on liberally defined guilds of potential competitors that were
defined by diet, foraging habits, and body size (fig. 2B).
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Fig. S8.10. Bayesian learning in the BBS application is evident from a comparison of
prior (brown rectangles) and posterior (grey densities) for movement matrix β and
DI growth matrix ρ. The prior is not visible for panels where data dominate. Only
intercepts in ρ (the DI growth rate at mean values for covariates) are weakly identified.

The sample contains n = 7924 observations on S = 26
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species for 206,024 observed counts. Counts per effort range
from 0 to 20.2. Missing values come from the imputed initial
abundance for each BBS route and additional route-years in
which counts were not available. There are 6060 missing values
in X and 35,906 missing values in Y. Imputation of missing
values is based on a prior mean of adjacent values in the time
series and a weak prior weight (one tenth of the effort for
non-missing values). The RMSPE for the fitted model is 50.4,
and the DIC is 1,214,349. Computation involved 50,000 Gibbs
steps, with a burnin of 20,000.
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Fig. S8.11. Bayesian learning in the BBS application is evident from a comparison
of prior (brown rectangles) and posterior (shaded densities) interaction matrix α.
Columns are ordered the same as rows. Intraspecific competition is represented by
the diagonal, from upper left to lower right. Prior and posterior are essentially identical
where data do not update the prior. Missing combinations (white spaces) are zero a
priori.

Included in gjamTimePNASVignette are posterior esti-
mates of variables affecting DI and DD growth rates that
contribute to the estimates and predictions in figures 4 and
5. Eigenvalues of α include positive values and no imaginary
parts (fig. S8.9), indicating that equilibrium estimates are
unstable and thus expected to include zero abundances for
some species in some locations as is evident from gradients
shown in figure 5.

There are two covariates in ρ, June temperature (juneTemp)
and moisture deficit. Land-cover types include crop, which is
absorbed into the intercept (it is the reference factor level),
developed (dev), forest, grassland, shrub, and wetland (fig. 5).
The large numbers of coefficients in these tables are given a
visual context in fig. S8.10.
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