
Supplementary Materials and Methods 
 
 
1. CLiNC algorithm 

 
1.1 Calculating normalized covariances 

 
Sample means and covariances are calculated from the table of counts indicating the number of 
cells with each barcode in each cell type. Let !"# denote the number of cells with barcode $ in cell 
type %. For each pair of cell types % and &, the normalized covariance can be calculated as 
 

Normalized	covariance(%, &) =
1

:":;
<(!"# − :")(>;# − :?)

@

#AB

		where		:" =
1

E
<!"#	

@

#AB

 

 
1.2 Neighbor joining 

 
Neighbor joining is performed iteratively. Each iteration begins with a matrix of barcode counts !"#. 
Normalized covariance is calculated for all %, & pairs and the pair with the highest value is merged. 
During the merger, a new barcode counts matrix !′ is constructed, in which the columns !"∗ and !;∗ 
are removed and a new column !?∗H  representing the merger of % and & is created via !?#H = !"# + !;# 

 
1.3 Detecting symmetry violations 

 
Let JK;? denote the normalized covariance between nodes & and L. Symmetry violations are detected 
by bootstrapping over clones to resample the matrix of normalized covariances and then recording 
all the %, &, L triples that topologically satisfy conformal symmetry, yet 
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where the threshold W represents the maximum allowed deviation from perfect symmetry, and can in 
practice be set as W = median(JK;? − JK"?	|	for	all	putatively	symmetric	triples	%, &, L). 
 

1.4 Inferring cross-tree transitions 
 

Let c be the set of symmetry violations obtained in the previous step. For each potential cross tree 
transition &H → %′ let e(&H, %H) be the set of violations that would be expected to occur if the transition 
existed (see Figure 3 and Appendix Theorem 6). Our goal is to parsimoniously explain the observed 
violations c as a union of predicted violations e(&H, %H). In doing so, we wish to cover as much of c as 
possible, while avoiding the inclusion of transitions for which only a minority of predicted violations 
belong to c. This can be formalized as follows: Define a cost function  
 

f(&H, %H) = 1 + g1 −
|e(&H, %H) ∩ c|

|e(&H, %H)|
i	

 
and then find the set of transitions &H → %′ that collectively cover c while minimizing the total cost 
∑f(&H, %H), and removing at the end any transitions with only a minority of violations in c (i.e. 
f(&H, %H) < 1.5). This optimization is equivalent to the well-known “set-cover problem”, which is NP-
complete but can be solved approximately. We use SetCoverPy 
(https://github.com/guangtunbenzhu/SetCoverPy) for approximate optimization. 

 
1.5 Post-hoc correction of tree errors caused by cross-tree transitions 
 

A post-hoc correction strategy is included based on simulation data (see section 7 of the 
Supplementary Methods). Distortions of the normalized covariance by cross-tree transitions tend to 
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result in a characteristic pattern of transitions (identified in step 1.4 above) in which the transitions 
are chained (% → & and & → L)  and the parent of L is the sister of &. In such cases the inferred tree is 
usually incorrect and can be corrected by swapping the positions of & and the node that was 
assigned as a sister of k. The cross-tree transition (% → &) is likely correct in these cases and should 
is retained. This situation is detected and corrected as a final step in the CLiNC pipeline.  
 

 
2 Simulations for success and failure cases (Figure 2) 
 
For the successful case (Figure 2A-C), a tree model was constructed as in Figure 2A (top). 200 single 
cells were initialized at the root node “0”. Following the distributions in Figure 2A (bottom), each cell 
generated cells at child nodes “1'' and “4”, and cells at “1” in turn generated cells at nodes “2” and “3”. 
Normalized covariance was calculated for the resulting matrix of cell counts at leaf nodes, and neighbor 
joining was carried out as described in Results (“Recipe for data analysis”). For the failure case (Figure 
2D-F), the same procedure was followed as above, but cell growth and partitioning were carried out 
according to the distributions in Figure 2D (bottom).  
 
 
3 Calculating the number of symmetry violations caused by random cross-tree transitions 
 
Random trees with 10 leaves were constructed as described below (Methods section “Robustness tests: 
Generating random trees and barcode distributions”). For each tree, the set of all symmetries was found, 
and then predicted symmetry violations were calculated for random cross-tree transitions, as specified by 
Theorem 6 and Figure 3. The proportion of violations (out of the total set of symmetries) was recorded. 
This procedure was performed for 2000 random trees and 10 cross-tree transitions per tree.  
 
 
4 Robustness tests: Generating random trees and barcode distributions 
 
Trees were generated using an inhomogeneous branching process. Beginning with a single root node, 
each node was either assigned to be a leaf (termination of branching) or an internal node with two 
children (continuation of branching). The probability of termination rose with increasing distance from the 
root node: M(termination) = 1 − 0.7pqB where r is distance to the root. Differentiation was simulated 
independently for each ‘barcode’ by initializing a single cell at the root node, and then at each stage 
assigning to each cell a number of children sampled from a Poisson distribution with mean 3, and 
partitioning the cells binomially to daughters in equal proportions.  
 
 
5 Robustness tests: Simulation of self-renewal 
 
Self-renewal simulations were carried out on trees with 10 leaves, generated as described above using 
5000 barcode clones. Differentiation was again simulated independently for each ‘barcode’, initializing a 
single cell at the root node. At each time step each cell was assigned a number of children sampled from 
a Poisson distribution with mean 3 and these cells were partitioned between the two daughter nodes and 
the parent. Partitioning was performed with equal proportions at the root node (1/3, 1/3, 1/3) and in 
proportions that were biased toward the daughter cells for non-root nodes (2/5, 2/5, 1/5). At leaf nodes 
cells were either entirely replaced by incoming cells from the parent (“turnover model”), retained without 
further expansion (“accumulation model”) or allowed to remain and continue expanding (“expansion 
model”; burst size ~ Poisson(3)).  
 
 
6 Robustness tests: Cross-tree transitions 
 
Cross-tree transitions were simulated on trees with 10 leaves and 5000 barcodes. Transitions (&H → %′) 
were randomly generated according to the following criteria: (1) &’	is one step above %’ in the tree, i.e. one 
step closer to the root; (2) &’ is not the parent of %’; (3) No node can participate in more than one transition. 



For a given tree and set of transitions, differentiation was carried out as described above (see 
“Robustness tests: Generating random trees and barcode distributions”) with the following change: at the 
source nodes of transitions, cells were partitioned among the two canonical daughters and the transition 
target in proportions ((1 − M/3) 2⁄ , (1 − M 3)/2⁄ , M 3⁄ ) where M	denotes the “cross-tree transition 
probability”. Symmetry violations were detected using a false-discovery rate of 1% and cross-tree 
transitions were detected using the CLiNC pipeline.  
 
 
7 Robustness tests: Cross-tree transition tree correction 
 
Cross-tree transitions frequently caused incorrect tree inference (Supp Figure 1H-I). We identified a 
characteristic pattern in these errors and a standard edit that could be used to recover the correct tree. 
The characteristic pattern is a pair of chained transitions (% → & and & → L) where the parent of L is the 
sister of &. In such cases the inferred tree is usually incorrect and should be edited by swapping the 
positions of & and the node that was assigned as a sister of k. The cross-tree transition (% → &) is likely 
correct and should be retained. This post-hoc correction is included in the CLiNC pipeline (see section 1.5 
of the Supplementary Methods). 
 
 
8 Robustness tests: Evaluation of accuracy 
 
Accuracy of tree inference across all simulation is measured in two ways: “proportion correct” and “tree 
distance”. Proportion correct refers to the fraction of cases where the inferred tree is identical the ground-
truth tree. Since internal (non-leaf) nodes do not have intrinsic labels, two trees are considered identical 
of one obtains the same collection of leaf-sets when enumerating all subtrees. Tree-distance was 
measured using the Robinson-Foulds metric. We note that a Robinson-Foulds tree distance of zero does 
not imply that two trees are identical since they can still differ in the position of the root node.  
 
 
9  Analysis of barcoding data in hematopoiesis 
 
Barcoding data from a recent paper (1) were used (data available at GEO accession GSE140802). The 
paper includes data from a pilot transplantation study using a more mature starting population, and then a 
larger transplant study using an immature starting population. We restricted analysis to the latter dataset 
to better respect the modeling assumption of a uniform starting population. Cells were classified into cell 
types according to the clustering presented in the previous paper. Clusters from the same lineage at 
different stages of maturity were combined. Following the recommendations in Supplementary Figure 3A, 
we first removed cell types that are uncommitted progenitors of other cell types also measured in the 
experiment, including multipotent progenitors and granulocyte-monocyte progenitors. We then excluded 
rare cell types, defined as those with fewer than 200 shared barcodes (i.e. barcodes appearing in more 
than one cell type), including T cells, non-classical monocytes, megakaryocytes, eosinophils, 
macrophages and Ccr7+ dendritic cells. Cells from one-week post-transplant and two-weeks post-
transplant were combined for analysis, under the rationale that different cell types have different time 
scales of maturation after commitment. For example, B cells were abundant at two-weeks post-transplant 
but almost absent one-week post-transplant. Tree construction and detection of symmetry violations were 
carried out as described in the Results. For bootstrap estimates of normalized covariance, we resampled 
clones with replacement 5000 times. Our analysis is fully reproducible with code available online 
(https://github.com/AllonKleinLab/CLiNC/blob/master/clinc_python/example/clinc_pipeline.ipynb). 
 
 
10  Analysis of cell cycle status in hematopoiesis 
 
An aggregate cell cycle score was computed for each cell by Z-scoring and averaging expression of cell-
cycle associated genes. The set of genes (N=85) was obtained from (2) and represents the top 20 
Cyclebase (3) genes for each stage of the cell cycle. Only cell cycle scores for barcoded cells where used 
for Supp Figure 2D-E. 
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Supplementary Figures 
 

 
 
Supplementary Figure 1. Robustness tests on simulated data (continued). (A) Examples of trees 
with varying numbers of leaves. (B) Same as Figure 4A, but showing average tree distance instead of 
proportion correct. (C-D) Same as Figure 4A and panel B, but the x-axis represents the minimum number 
of shared barcodes in any lineage, as opposed to the total number of barcodes in the simulation, where 
shared barcodes are defined as barcodes appearing in more than one lineage. (E) Same as Figure 4B, 
but showing average tree distance instead of proportion correct. (F-G) Same as Figure 4B and panel E, 
but with 500 barcodes used in the simulation rather than 5000. (H-J) Proportion of correctly inferred trees 
(H) or average tree distance (I) as a function of off-tree transition probability, in simulated trees with 0, 1, 
2 or 3 cross-tree transitions, without any post-hoc correction. (J-L) Example showing the characteristic 
tree inference error caused by cross-tree transitions. (J) Differentiation is simulated in a tree with a 



transition from the parent of nodes "6” and “7” to node “8”. (K) Comparison of normalized covariance 
between a simulation without the transition (left) and with the transition (right; cross-tree transition 
probability = 0.5) shows an increased covariance between “8” and “5”,”6” and “7”, and a decreased 
covariance between “8” and all the members of its clade, especially “9” and “4”. (L) The tree inferred from 
normalized covariance erroneously places “8” in a separate branch upstream of “9” and “4”. CLiNC 
detects two cross-tree transitions, one from parent of “6” and “7” to “8” – reflecting the simulated cross-
tree transition – and a second transition from “8” to “9”, reflecting the fact that they are sisters in the 
ground-truth tree and hence break symmetry with node “4”. Swapping nodes “8” and “4” in the inferred 
tree corrects the error and makes it identical to the ground truth tree. The pattern in this example general 
and can be used to systematically correct errors. (M-N), same as H-I, but with the corrections applied as 
described in L. (O) Average correlation between [difference in ground-truth distance to the root] and 
[distance to each other in inferred tree], for all pairs of leaf nodes, with separate averages taken for each 
timepoint and model of behavior at leaf nodes (see Figure 4E-F) for definition of models. Rising 
correlation in the turnover and accumulation models indicates that cell types are increasingly grouped 
together by timing of differentiation (distance from root) rather than shared lineage history. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
Supplementary Figure 2. Analysis of cell cycle status in hematopoietic data. (A) SPRING plot 
reproduced from (14) showing cells from the hematopoietic barcoding dataset arranged using a force-
directed graph layout. (B) Expression of cell cycle marker genes on the SPRING plot. (C-D) A cell cycle 
score was computed by averaging the Z-scored expression of 85 cell cycle-associated genes. (C) Plot of 
cell cycle score on the SPRING layout. (D) Histogram of cell cycle scores with threshold marking the 
score above which cell are considered to be cycling. (E) Proportion of cycling cells in each lineage.  
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Supplementary Figure 3. Guidance data preprocessing decisions and tree interpretation. (A) Flow 
chart for deciding whether to include a cell type in the analysis. The criteria consider whether the 
differentiation kinetics, if they include self-renewal, are similar to the “Expansion model” (Figure 4) and 
whether the cell type was sampled densely enough for accurate inference. (B) Flow chart for 
interpretation of CLiNC output. If there is self-renewal, the criteria again assess similarity to the 
“Expansion model” – this time on a global basis. If symmetry violations are detected, the criteria assess 
whether they are consistent with the existence of cross-tree transitions and whether the structure of those 
transitions implies a possible error in reconstruction of the tree. All criteria across both A and B are 
derived from the simulations shown in Figure 4 and Supplementary Figure 1.  
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Theory Appendix

1 Branching process model

To model the propagation of barcoded cells during di↵erentiation, we will use a multi-type branching
process. Let T = {0, 1, ...,m} be a rooted tree with integer-labeled nodes. Assume the root node
is always called 0. The nodes of T represent cell types at various stages in development (assume
N stages). Define a parent function p : T ! T that maps each node to its parent. We will use pn

to denote the n-wise composition of p, so that for example p2(i) = p(p(i)) and also for notational
convenience, p0(i) = i. As a barcoded clone divides and di↵erentiates, it propagates down T , with
di↵erent numbers of cells being deposited into each node i 2 T . Let the random variable Xi represent
the number of cells from a barcoded clone that enter node i 2 T .

At each internal node of T , cells divide and di↵erentiate. We will assume that the process of division
and di↵erentiation is independent and identical for each cell at a given node, though the process
may di↵er between di↵erent nodes. Thus, for each single cell at an internal node i 2 T , there is a
distribution Di = P ({Xj}p(j)=i | Xi = 1) over the number of new cells that will be passed to the
child nodes of i. For a single cell beginning at the root of T , repeated action of the Di distributions
sends a cascade of daughter cells down the layers of T , producing at the end a collection of counts
{Xi1 , Xi2 , ...} at the leaf nodes. Here, we investigate whether the moments of these counts can be
used to reconstruct T .

2 Probability generating functions

Probability generating functions will be our main tool for calculating the moments of the {Xi}. We
review their definition and some key properties below.

Definition 1. Let X = (X1, ..., Xm) be a multivariate random variable. The probability generating

function (p.g.f.) of X is defined by

 X(z1, ..., zm) = E(zX1
1 zX2

2 . . . zXm
m ) (1)

Property 1. Let X = (X1, ..., Xm) be a multivariate random variable. The first and second moments

of X can be calculated from  X using the facts below, where 1 denotes the tuple (1..., 1).
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@ 2

X
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1

E(XiXj) =
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@zi@zj

����
1
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Property 2. Let X = (X1, ..., Xm) be a multivariate random variable, and let Y = {Y1, ..., Ym} be

a collection of independent random variables. Define a new multivariate random variable Z

Z =

✓ X1X

i=1

(Y1)i,
X2X

i=1

(Y2)i, ...,
XmX

i=1

(Ym)i

◆
(3)

Where (Y1)i is a sample from the variable Y1. The probability generating function of Z is

 Z(z1, ..., zm) =  X( Y1(z1), ..., Ym(zm)) (4)

1



Using Property 2, we can construct the p.g.f. of the branching process from Section 1 by chaining
together the p.g.f.’s of each division and di↵erentiation step. For each i 2 T , let  i denote the p.g.f.
of the local division and di↵erentiation distribution Di. Note that the stochastic process defined in
Section 1, where a single cell beginning at the root of T divides and di↵erentiates down the tree,
can be restricted to any subtree of T . Let  i be the p.g.f. of the process restricted to the subtree
Ti rooted at i. Recalling our convention to name the root of T as 0, it follows that  0 is the p.g.f of
the full process from Section 1.  0 can be calculated from the following recursion

 i =  i( j1 ..., jk) where j1..., jk are the child nodes of i. (5)

Note, we will generally use z to refer to the arguments of a p.g.f. When a p.g.f. describes a
distribution of random variables Xi1 , ..., Xik , then each of its arguments corresponds to one of these
random variables. Throughout the following text, the z arguments will be identified with their
corresponding random variable by subscript, so that for example, zi corresponds to Xi - which (as
noted previously) denotes the number of cells at tree node i.

3 Calculation of moments

To reconstruct the topology of T , we will use the normalized covariances Cov(Xi,Xj)
E(Xi)E(Xj)

for each pair of

leaf nodes i, j 2 T . These moments depend on the division and di↵erentiation processes Di at each
internal node. To describe this relationship, it is useful to introduce the notation:

Ei := E(Xi | Xp(i) = 1) and Ci,j := Cov(Xi, Xj | Xp(i) = 1) where p(i) = p(j) (6)

Theorem 1. Let i be a leaf-node of T . Then

E(Xi) =
N�1Y

k=0

Epk(i) which follows from
@ 0

@zi
=

N�1Y

k=0

@ pk+1(i)

@zpk(i)
(7)

Proof. Apply the chain rule to the recursion in line (4).

Theorem 2. Let i, j be leaf-nodes of T and M the smallest integer with pM (i) = pM (j). Such an

M exists because T is rooted and there are always N steps from root to leaf. Our key result is

Cov(Xi, Xj)

E(Xi)E(Xj)
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N�1X

m=M�1

1

E(Xpm+1(i))

✓
Cpm(i),pm(j)
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(8)

Proof. Note that Cov(Xi, Xj) = E(XiXj)� E(Xi)E(Xj), which implies

Cov(Xi, Xj)

E(Xi)E(Xj)
=

1

E(Xi)E(Xj)

✓
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◆����
1

� 1 (9)
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To compute @2 0/(@zi@zj), note that

@2 0

@zi@zj
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where line (10) follows from the product rule and line (11) follows from the chain rule. The empty

products
QN�1

k=N and
Q�1

k=0 are always equal to 1 and appear in in line (10) above out of notational
convenience. Together lines (10) and (11) imply (12) below, where terms in the sum with m < M�1
are ommitted due to vanishing of the second di↵erential.
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Applying Theorem 1 now gives
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Using line (2), we obtain
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= E(Xpm(i)Xpm(j)|Xpm+1(i) = 1)� �pm(i),pm(j)Epm(i) (14)

= Cpm(i),pm(j) + Epm(i)Epm(j) � �pm(i),pm(j)Epm(i) (15)

where � refers to the Kronecker delta. It follows that
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We may now cancel some terms. Observe that
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We may now simplify line (16) to show that
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The main result can now be seen from

1

E(Xpm+1(i))
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1
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Cov(Xi, Xj)
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4 Tree reconstruction

The normalized covariances calculated in Section 3 measure the extent to which barcodes jointly
appear in any pair of cell types. It is appealing to reconstruct the topology T using a greedy approach
where pairs of nodes having the highest normalized covariance are iteratively joined together (similar
to Neighbor Joining approached in phylogenetic inference). The following theorem shows when this
approach will work.

Theorem 3. Let Ei and Ci,j be the moments of the di↵erentiation and division processes Di, as

defined in line (6). Suppose that for all pairs of sister nodes a, b 2 T ,

Ca,a

E2
a

�
Ca,b

EaEb
+

1

Ea
, and

Ca,b

EaEb
> �1 (21)

And for all triplets of sister nodes a, b, c 2 T ,

Ca,b

EaEb
=

Ca,c

EaEc
(22)

Then for any leaves i, j, k 2 T , i and j are more closely related than i and k if an only if

Cov(Xi, Xj)

E(Xi)E(Xj)
>

Cov(Xi, Xk)

E(Xi)E(Xk)
(23)

where “more closely related” means that there exists an integer M with pM (i) = pM (j) 6= pM (k).

Proof. Suppose that i and j and more closely related than i and k. There exist minimal M1 and M2

with pM1(i) = pM1(j) and pM2(i) = pM2(k) and they satisfy M1 < M2. From Theorem 2, we know

Cov(Xi, Xj)

E(Xi)E(Xj)
�

Cov(Xi, Xk)

E(Xi)E(Xk)
=

1

E(XpM2 (i))

✓
CpM2�1(i),pM2�1(j)

EpM2�1(i)EpM2�1(j)
�

CpM2�1(i),pM2�1(k)

EpM2�1(i)EpM2�1(k)

◆
(24)

+
M2�2X

m=M1�1

1

E(Xpm+1(i))

✓
Cpm(i),pm(j)

Epm(i)Epm(j)

◆
(25)

Since pM2�1(i) = pM2�1(j), the first assumption from line (21) applied to line (24) gives

1

E(XpM2 (i))

✓
CpM2�1(i),pM2�1(j)

EpM2�1(i)EpM2�1(j)
�

CpM2�1(i),pM2�1(k)

EpM2�1(i)EpM2�1(k)

◆
�

1

E(XpM2�1(i))
(26)
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In line (25), note that all summands are non-negative except possibly when m = M1 � 1, therefore

M2�2X

m=M1�1

1

E(Xpm+1(i))

✓
Cpm(i),pm(j)

Epm(i)Epm(j)

◆
�

1

E(XpM1 (i))

✓
CpM1�1(i),pM1�1(j)

EpM1�1(i)EpM1�1(j)

◆
(27)

Combining (26) and (27) with (24) and (25), we obtain

Cov(Xi, Xj)

E(Xi)E(Xj)
�

Cov(Xi, Xk)

E(Xi)E(Xk)
�

1

E(XpM2�1(i))
+

1

E(XpM1 (i))

✓
CpM1�1(i),pM1�1(j)

EpM1�1(i)EpM1�1(j)

◆
(28)

>
1

E(XpM2�1(i))
�

1

E(XpM1 (i))
� 0 (29)

where to get line (29) we have applied the second assumption in line (21). This proves “only if”
direction. To prove the “if” direction, we must now invoke the assumption from line (22). Suppose
that the triplet of leaves i, j, k 2 T are all equally related, (meaning M1 = M2). Then

CpM2�1(i),pM2�1(j)

EpM2�1(i)EpM2�1(j)
=

CpM2�1(i),pM2�1(k)

EpM2�1(i)EpM2�1(k)
=)

Cov(Xi, Xj)

E(Xi)E(Xj)
=

Cov(Xi, Xk)

E(Xi)E(Xk)
(30)

Theorem 3 shows that tree reconstruction by neighbor joining is valid when the division and di↵er-
entiation processes Di at each node of T follow a set of moment conditions. The next theorem shows
that these moment conditions are satisfied for a broad but simple class of division and di↵erentiation
processes.

Theorem 4. Suppose that at each internal node of i 2 T , cells divide and di↵erentiate by first

expanding, and then choosing multinomially between the available daughter cell types. Let ↵i be

a random variable representing the burst-size distribution for the expansion occurring at node i.
Let us assume further that there is at least the possibility for cell division at every node, meaning

P (↵i > 1) > 0 for all i. Then each resulting Di distribution satisfies the conditions of Theorem 3

(lines 21 and 22).

Proof. Let i, j, k 2 T be sister nodes, meaning they share a single parent p(i). Let qi, qj and qk
denote probability of multinomially choosing each daughter. It follows that

 p(i)(zi, zj , zk, ...) =  ↵(pizi + pjzj + pkzk + ....) where  ↵ is the p.g.f. of ↵ (31)

It is now possible to calculate the moments Ei, Ci,j

Ei =
@ p(i)

@zi

����
1

=  0
↵(1)pi = E(↵)pi (32)

Ci,j =

✓
@2 p(i)

@zi@zj
�
@ p(i)

@zi

@ p(i)

@zj
+ �i,j

@ p(i)

@zi

◆����
1

(33)

=  00
↵(1)pipj � ( 0

↵(1))
2pipj + �i,j 

0
↵(1)pi (34)

=
�
 00
↵(1)pipj +  0

↵(1)pipj � ( 0
↵(1))

2pipj
�
�  0

↵(1)pipj + �i,j 
0
↵(1)pi (35)

= Var(↵)pipj � E(↵)pipj + �i,jE(↵)pi (36)
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We can now prove the three statements on line (21) and (22). First, it is now trivial that

Ci,j

EiEj
=

Ci,k

EiEk
when j 6= i 6= k (37)

For the second statement, observe

Ci,i

E2
i

�
Ci,j

EiEj
=

�i,i
E(↵)pi

�
�i,j

E(↵)pi
=

1

Ei
=)

Ci,i

E2
i

�
Ci,j

EiEj
+

1

Ei
(38)

For the third statement, note that

Ci,j

EiEj
�

Var(↵)

E(↵)2 �
1

E(↵) =
E(↵2)� E(↵)

E(↵)2 � 1 > �1 (39)

Here we have used the fact that E(↵2) > E(↵), which follows from the assumption that ↵ > 1 with
nonzero probability, as well as ↵ being integer valued.

5 Detection of tree violations

A simple consequence of Theorem 2 is that the normalized covariances between leaf nodes should be
conformally symmetric, in a manner made precise below:

Theorem 5. Let i, j, k 2 T be leaf nodes and suppose that i and j are closer to each other than they

are to k, in the sense that there exists M such that pM (i) = pM (j) 6= pM (k). Then

Cov(Xi, Xk)

E(Xi)E(Xk)
=

Cov(Xj , Xk)

E(Xj)E(Xk)
(40)

Proof. Let M 0 be the minimal integer such as pM
0
(i) = pM

0
(k) and M the minimal integer such that

pM (i) = pM (j). The premise is that M 0
� 1 � M . The result follows from theorem 2.

The property of conformal symmetry can be used as a consistency check for the model. When
it is violated, then at least one of the model assumptions must be incorrect. One obvious scenario
that would cause a violation of symmetry is if the underlying process cannot be presented as a tree,
in the sense that there are multiple paths to same end state. A full accounting of the statistics
of multi-type branching on arbitrary directed graphs is outside the scope of this paper. We might
reasonably ask, however, how a single tree violation superimposed on an otherwise valid tree would
disturb the conformal equalities imposed by Theorem 5. The following theorem specifies which
conformal equalities will be violated when a di↵erentiation hierarchy is augmented with a single
non-tree transition. To categorize the di↵erent types of violations, it will be useful to define distance
measure for nodes in the tree. Let the “height” H(j) refer to the minimum h such that ph(i) = j,
where i is a leaf node. And let S(j) denote the subtree rooted at node j. Then the distance for a
pair of nodes i, j is defined

d(i, j) = min{H(l) | S(l) \ S(i) 6= ; and S(l) \ S(j) 6= ;}

Thus, two nodes i and j have distance d(i, j) = 0 when one is descended from the other, otherwise
their distance is the height of their most recent common ancestor. We can now state how a non-tree
transition would a↵ect conformal symmetry.
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Theorem 6. Let T be a tree with parent map p that satisfies the premises of Theorem 4, i.e. in which

division and di↵erentiation are independent. Suppose that there exists a single pair of nodes i0, j0 2 T
(not necessarily leaf nodes), where j0 is not the ancestor of i0, yet cells are allowed to pass directly

from j0 to i0, meaning that Xi0 is the sum of cells received both from j0 and from p(i0). Suppose that

i, j, k are leaf nodes where conformal symmetry would normally apply (i.e. d(i, k) = d(j, k) > d(i, j)).
Then a symmetry violation of the form

Cov(Xj , Xk)

E(Xj)E(Xk)
>

Cov(Xi, Xk)

E(Xi)E(Xk)
(41)

will be induced under the following conditions

8
>>><

>>>:

[Case 1; 0 < d(k, i0) < d(k, j0)] violation occurs if and only if d(i, i0) = 0 and d(j, i0) > 0

[Case 2; d(k, i0) > d(k, j0)] violation occurs if and only if d(i, i0) > 0 and d(j, i0) = 0

[Case 3; d(k, i0) = 0] violation occurs if and only if d(i, i0) > d(i, j0) > d(j, j0)

[Case 4; d(k, i0) = d(k, j0)] violation never occurs

Proof. Noting that cases (1-4) are exhaustive, we will consider each in turn. First, let’s define new
notation. Let Xn

i denote the count of cells in node i that originated from the non-tree transition to
i0, and let Xt

i = Xi �Xn
i represent the count of cells that arrived by the normal route. When i is

not descended from i0, Xn
i = 0 automatically. It will also be useful to have the following simple facts

on hand, which can b easily verified:

Proposition 1:

For all (a, b, c, d, a0, b0, c0, d0) 2 R, if
a

b
=

a0

b0
and

c

d
=

c0

d0
then

a+ c

b+ d
=

a0 + c0

b0 + d0
(42)

Proposition 2:

For all (a, b, c, d) 2 R, if
a

b
<

c

d
then

a

b
<

a+ c

b+ d
<

c

d
(43)

[Case 1] Since the non-tree transition only a↵ects leaf nodes descended from i0, violations can only
occur when at least one of i, j or k is among the descendants. The premise of case 1 stipulates
d(k, i0) > 0 , so k is not. It follows that d(i, i0) = 0 or d(j, i0) = 0. Let us assume (without loss of
generality) that d(i, i0) = 0. Since conformal symmetry would normally apply for i, j, k, we have

Cov(Xt
j , Xk)

E(Xt
j)E(Xk)

=
Cov(Xt

i , Xk)

E(Xt
i )E(Xk)

(44)

If d(j, i0) = 0, then
Cov(Xn

j , Xk)

E(Xn
j )E(Xk)

=
Cov(Xn

i , Xk)

E(Xn
i )E(Xk)

(45)

So by proposition 1

Cov(Xi, Xk)

E(Xi)E(Xk)
=

Cov(Xt
i , Xk) + Cov(Xn

i , Xk)

E(Xt
i )E(Xk) + E(Xn

i )E(Xk)
=

Cov(Xt
j , Xk) + Cov(Xn

j , Xk)

E(Xt
j)E(Xk) + E(Xn

j )E(Xk)
=

Cov(Xj , Xk)

E(Xj)E(Xk)
(46)
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If, on the other hand, d(j, i0) > 0, then the premise that d(k, i0) < d(k, j0) and Theorem 4 imply

Cov(Xj , Xk)

E(Xj)E(Xk)
=

Cov(Xt
j , Xk)

E(Xt
j)E(Xk)

>
Cov(Xn

i , Xk)

E(Xn
i )E(Xk)

(47)

So by proposition 2

Cov(Xj , Xk)

E(Xj)E(Xk)
=

Cov(Xt
i , Xk) + Cov(Xn

i , Xk)

E(Xt
i )E(Xk) + E(Xn

i )E(Xk)
>

Cov(Xi, Xk)

E(Xi)E(Xk)
(48)

This proves Case 1.

[Case 2] Again, at least one of i, j or k must be equal to or descended from i0, and the premise
excludes k, so either d(i, i0) = 0 or d(j, i0) = 0. Let us assume (again without loss of generality) that
d(j, i0) = 0. Since conformal symmetry would normally apply for i, j, k, we have

Cov(Xt
i , Xk)

E(Xt
i )E(Xk)

=
Cov(Xt

j , Xk)

E(Xt
j)E(Xk)

(49)

And by Theorem 4, the additional premise that d(k, i0) > d(k, j0) implies

Cov(Xn
j , Xk)

E(Xn
j )E(Xk)

�
Cov(Xn

i , Xk)

E(Xn
i )E(Xk)

with equality if and only if d(i, i0) = 0 (50)

Hence

Cov(Xj , Xk)

E(Xj)E(Xk)
=

Cov(Xt
j , Xk) + Cov(Xn

j , Xk)

E(Xt
j)E(Xk) + E(Xn

j )E(Xk)
�

Cov(Xt
i , Xk) + Cov(Xn

i , Xk)

E(Xt
i )E(Xk) + E(Xn

i )E(Xk)
=

Cov(Xi, Xk)

E(Xi)E(Xk)
(51)

again with equality if and only if d(i, i0) = 0. This proves Case 2.

[Case 3] If d(i, i0) = d(j, i0) = 0, then Theorem 5 can be applied to the subtree rooted at i0, and
conformal symmetry is maintained. Therefore we may assume d(i, i0) > 0, which automatically
implies d(j, i0) > 0 by the assumption that conformal symmetry would normally apply to i, j, k.
There are now two scenarios to consider, either d(i, i0) < d(i, j0) (in which case d(j, i0) < d(j, j0)
automatically), or d(i, i0) > d(i, j0) (which again would automatically imply d(j, i0) > d(j, j0)). In
the first scenario, Theorem 5 implies

Cov(Xi, Xn
k )

E(Xi)E(Xn
k )

=
Cov(Xj , Xn

k )

E(Xj)E(Xn
k )

(52)

Hence

Cov(Xi, Xk)

E(Xi)E(Xk)
=

Cov(Xi, Xn
k ) + Cov(Xi, Xt

k)

E(Xi)E(Xk)
=

Cov(Xj , Xn
k ) + Cov(Xj , Xt

k)

E(Xj)E(Xk)
=

Cov(Xj , Xk)

E(Xj)E(Xk)
(53)

In the second scenario, application of Theorem 4 and Proposition 2 imply that when d(j, j0) < d(i, j0)

Cov(Xj , Xk)

E(Xj)E(Xk)
=

Cov(Xt
j , Xk) + Cov(Xn

j , Xk)

E(Xt
j)E(Xk) + E(Xn

j )E(Xk)
>

Cov(Xt
i , Xk) + Cov(Xn

i , Xk)

E(Xt
i )E(Xk) + E(Xn

i )E(Xk)
=

Cov(Xi, Xk)

E(Xi)E(Xk)
(54)

8



where the inequality is reversed if d(j, j0) > d(i, j0), and there is equality if d(j, j0) = d(i, j0). This
proves Case 3.

[Case 4] If d(i, k) < d(i, i0), then the assumption that conformal would normally apply to i, j, k means
that all three belong to a subtree that excluded i0, j0 and conformal symmetry is maintained. On
the other hand, if d(i, k) > d(i, i0) then automatically d(j, k) > d(j, i0) which implies that conformal
symmetry holds for Xt

i , X
t
j as well as Xn

i , X
n
j , and thus for their sum by Proposition 1. This proves

case 4.
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