

Supplemental Figure 1. CK2 α Expression is not Required for CD4⁺ T-cell Survival *In Vitro and In Vivo*. (A) Naïve CD4⁺ T-cells were activated with the indicated concentrations of anti-CD3 (0.2 µg/ml, 0.5 µg/ml, 1.0 µg/ml) and 1.0 µg/ml of anti-CD28 Abs for 72 h, and dead and apoptotic cells were assessed by Annexin V staining. Representative line graphs are shown. (B) Percentage of Annexin V⁺ CD4⁺ T-cells is shown (n = 3). (C) Naïve CD4⁺ T-cells from CK2 $\alpha^{fl/fl}$ or CK2 $\alpha^{fl/fl}$ dLck-Cre mice were transferred into Rag1^{-/-} mice by i.v. injection. Mice were sacrificed 5 days later, and dead and apoptotic CD4⁺ T-cells from the spleen were assessed by Annexin V staining. Representative line graphs are shown. (D) Percentage of Annexin V⁺ CD4⁺ T-cells is shown. CK2 $\alpha^{fl/fl}$, n=5; CK2 $\alpha^{fl/fl}$ dLck-Cre, n=4.

Supplemental Figure 2. CK2 α Controls T-cell Accumulation in the Spleen and Colon though a Cell-intrinsic Mechanism. Naïve CD4⁺ T-cells from CK2 $\alpha^{fl/fl}$ mice (CD45.2⁺) or CK2 $\alpha^{fl/fl}$ dLck-Cre mice (CD45.2⁺) were co-transferred with naïve CD4⁺ T-cells from C57BL/6 mice (CD45.1⁺) at a ratio of 1:1 (5 x 10⁵: 5 x 10⁵) into Rag1^{-/-} mice by i.v. injection. Recipients were sacrificed at 4 weeks after transfer, and the percentage of C57BL/6 CD4⁺ T-cells (CD45.1⁺) and CK2 α intact or deficient CD4⁺ T-cells (CD45.2⁺) in the spleen, mesenteric lymph node (MLN) and colon were detected by flow cytometry. (A) Representative flow cytometry profile of CD4⁺ T-cells recovered from the indicated sites. (B) Ratio of CD45.2/CD45.1 CD4⁺ T-cells in spleen, MLN and colon. Data represent pooled results from three independent experiments. CK2 $\alpha^{fl/fl}$ n=8; CK2 $\alpha^{fl/fl}$ dLck-Cre, n=8. Bars represent the mean ± SD. *** p<0.001.

Supplemental Figure 3. CD4⁺ T-cells from CK2 $\alpha^{n/n}$ and C57BL/6 Mice Have Similar Cytokine Profiles. Naïve CD4⁺ T-cells from CK2 $\alpha^{n/n}$ mice (CD45.2⁺) were co-transferred with naïve CD4⁺ T-cells from C57BL/6 mice (CD45.1⁺) at a ratio of 1:1 (5 x 10⁵: 5 x 10⁵) into Rag1^{-/-} mice by i.v. injections. Recipients were sacrificed 2 weeks after transfer, and cytokine production by C57BL/6 CD4⁺ T-cells (CD45.1⁺) or CK2 α intact CD4⁺ T-cells (CD45.2⁺) in the spleen or colon was detected by flow cytometry. (A) Representative flow cytometry profiles of IFN- γ and IL-17A production by CD4⁺ T-cells derived from C57BL/6 or CK2 $\alpha^{n/n}$ mice in the spleen or colon. (B) Frequencies of IFN- γ^+ , IL-17A⁺ and IL-17A⁺ IFN- γ^+ CD4⁺ T-cells derived from C57BL/6 or CK2 $\alpha^{n/n}$ mice in the spleen or colon are shown.