S-1

Supporting Information

Bacterial lyso-form lipoproteins are synthesized via an *intra*-molecular acyl chain migration

Krista M. Armbruster, Gloria Komazin, Timothy C. Meredith

Contents

- Table S1.Primers used in this study.
- Table S2.Topology predictions for *E. faecalis* Lit.
- Figure S1. LPL-treatment of [d5]-DA-LppK58A strep removes the *sn*-1 acyl chain.
- Figure S2. MALDI-TOF MS of lyso-LppK58A strep recovered from *in vitro* reaction with *E. faecalis* Lit.
- Figure S3. Mut-seq analysis of *E. faecalis* Lit by Ala scanning.
- Figure S4. Randomization of His89 and His157 codon.

TABLE S1. Primers used in this study.

Primer Name	Description	Primer Sequence
TM692	5'- <i>Int</i> ::Spt ^r	GCCTCATTAATTGAACGCCAGCGCATTCGCCTGCTGGCGATTCCC CTGCTCGCGCAG
TM693	Int::Spt ^r -3'	CACAGCAGCAAAACCAAACAATGCCGTCAGCACCCACAGCGGGCTTG AACGAATTGTTAG
KA1053	5'-pET22b(+) <i>Eflit</i>	CTTTAAGAAGGAGATATACATATGATGAGGTCGAAATTGCG
KA1054	pET22b(+) <i>Eflit</i> -3'	GTGGTGGTGGTGGTGGCGCCGCCTTTTTTTAAAGAACGTTTTCCG
TM1121	5'- <i>fadE</i> ::Tet ^r	GATTTTGAGTATTCTCGCTACGGTTGTCCTGCTCGGCGCGTTCAAATGT AGCACCTGAAG
TM1122	fadE::Tet ^r -3'	GTCGCCAGCTCTTCCGGATCAAAGTCATCAACGTTAATACTGGAATCCG TTAGCGAGGTG
TM1123	5'- <i>fadE</i> upcheck	CCATATCATCACAAGTGGTCAGACC
TM1124	fadE downcheck-3'	CAACTTTCCGCACTTTCTCCGGCAAC
TM1130	5'-pKA522 PA3286	CTGTGAAGTGAAGCTGAGAGAAGAGGAACAACTATGCATAAAGCC
TM1131	pKA522 PA3286-3'	GGACTCTGGGGTTCGGCCACGATCAGTGTTTAC
KA1245	5'- <i>fadR::</i> Tmp ^r	GTCATTAAGGCGCAAAGCCCGGCGGGTTTCGCGGAAGAGTACGGATA GACGGCATGCACG
KA1246	fadR::Tmp ^r -3'	CCAAATCTCGCCACTCTCATGCCCATAGCGACGCACTGTGAATCCGTTG CTGCCAC
KA1247	5'-fadR upcheck	GGTATGATGAGTCCAAC
KA1248	fadR downcheck-3'	CATCGAGTTGCTGGAACG
TM1476	5'-lolCDE	GACCGACCAAAAGCTACAGCAACCAGACGG
TM1477	loICDE-3'	TTACTGTCGGGAATTCTTGTTTTAATGTACTGCC
TM1614	5'- <i>fabH</i> upcheck	GGACACCTCTGACGAGTGGATTG
TM1615	fabH downcheck-3'	CACGATCGGTTGGATCGCAGGTG
TM1689	5'- <i>fabH::</i> Cm ^r FRT	CGCCACATTGCCGCGCCAAACGAAACCGTTTCAACCATGGGCTATGA ATATCCTCCTTAG
TM1690	fabH::Cm ^r FRT-3'	CCGCCCCAGATTTCACGTATTGATCGGCTACGCTTAATGCATGTAGG CTGGAGCTGCTTC
TM1722	5'- <i>fadD(</i> V451A)	GCTAATGCGCAGGAATCCTTCTTCATCC
TM1723	fadD(V451A)-3'	TTCCTGCGCATTAGCGATCGTAAAAAAGAC
TM1990	5'-pET22b(+) <i>Eflit</i>	AGAAGGAGATATACATATGATGAGGTCG
SS1314	pET22b(+) <i>Eflit</i> -3'	GGTGGTGGTGCTCGAGTTCACTTTTCTCTC
SS1562	5'-pET22b(+) phoA	GAAGGAGATATACATATGAAACAAAGCACTATTGC
SS1316	pET22b(+)	GGTGGTGGTGCTCGACGCGGTTTTATTTCA
SS1317	5'-pET22b(+) <i>lacZ</i>	CTTTAAGAAGGAGATATACAAACAGCTATGACCATG
SS1318	pET22b(+) <i>lacZ</i> -3'	GGTGGTGGTGCTCGAGTTCAAGCAAGCTTTT
SS1502	5'-(+9) <i>lacZ</i>	GCCGTCGTTTTACAACG
SS1503	5'-(+13) phoA	TTACTGTTTACCCCTGTG
SS1275	EflitK212 fusion-3'	TTTTTTTAAAGAACGTTTTCCG
SS1276	5'-EflitK212 lacZ fusion	CGTTCTTTAAAAAAAGCCGTCGTTTTACAAC
SS1504	5'-EflitK212 phoA	CACAGGGGTAAACAGTAATTTTTTTAAAGAACG

		fusion						
	SS1505	EflitD52 lacZ fusion-3'	CGTTGTAAAACGACGGCATCAACCTCTACGTC					
	SS1506	EflitD52 phoA fusion-3'	CACAGGGGTAAACAGTAAATCAACCTCTACGTC					
	SS1507	EflitR129 lacZ fusion-3'	CGTTGTAAAACGACGGCCCGTATCAATGTCCA					
	SS1508	<i>Eflit</i> R129 <i>phoA</i> fusion-3'	CACAGGGGTAAACAGTAACCGTATCAATGTCCA					
	SS1509	EflitD173 lacZ fusion-3'	CGTTGTAAAACGACGGCATCAGTCAGCGGATT					
	SS1510	<i>Eflit</i> D173 <i>phoA</i> fusion-3'	CACAGGGGTAAACAGTAAATCAGTCAGCGGATT					
	TM1987	5'-pET <i>Eflit</i> streptag	TGGAGTCATCCTCAATTTGAAAAATAATGAAGAGAGAAAAGTGAAC					
	TM1988	pET <i>Eflit</i> streptag-3'	TTGAGGATGACTCCACGCTGAACCGGATCCTTTTTTAAAGAACG					
	TM1924	5'- <i>Eflit</i> Mutseq	CCGTGACCAACTTTAAGAAGGAGATATAC					
	TM1925	Eflit Mutseq-3'	CCAGTGCTCGAGTTCACTTTTCTCTC					
	TM2182	5'- <i>Eflit</i> H89	TTTTATGAAGTGAAAAAATTGTTTTTATTGTGCTATG					
	TM2183	Eflit H89-3'	TTTCACTTCATAAAAMNNAAAAGCCGCGCTATCAGAC					
	TM2184	5'- <i>Eflit</i> H157	GGATTATTTTTAACAACGATGCTTGGTTATTTAATCC					
	TM2185	<i>Eflit</i> H157-3'	GTTAAAAAATAATCCMNNAAACGCAATAAAAAATTGATCAAAGCC					
	TM2149	5'-pET22 to PLI50 Ppen <i>Xba</i> I	TATTGTCGACTCTAGACTCTAGAAATAATTTTGTTTAAC					
	TM2150	pET22 to PLI50 Ppen Ascl-3'	TTTAGAATAGGCGCGCCCTCGAGTTCACTTTTCTCTC					
	TM1939	5'-Eflit L6C	TCGAAATGTCGTTTAAGGGAAACAC					
	TM1940	Eflit L6C-3'	TAAACGACATTTCGACCTCATCATA					
	TM1941	5'-Eflit V54C	GATCGTTGTACCTTGATTAAAAATT					
	TM1942	Eflit V54C-3'	CAAGGTACAACGATCAACCTCTACG					
	TM1958	5'-Eflit A165C	AACGATTGTTGGTTATTTAATCCGC					
	TM1959	Eflit A165C-3'	TAACCAACAATCGTTGTTAAAAAATAATCC					
1	TM1945	5'-Eflit L171C	AATCCGTGTACTGATCCGATTATCA					
	TM1946	Eflit L171C-3'	ATCAGTACACGGATTAAATAACCAA					
	TM1947	5'-Eflit S209C	AAACGTTGTTTAAAAAAAGGCGGCG					
	TM1948	Eflit S209C-3'	ТТТТАААСААСGTTTTCCGATTAAA					

The set of											
	ССТОР (74)	DAS (75)	OCTOPUS (76)	Phobius (77)	Predict Protein (78)	SPLIT (79)	ТМНММ (80)	TMpred (81)	TOP CONS (82)		
Cytoplasmic	1-11	1-11	1-13	1-11	1-10	1-9	1-11	1-10	1-12		
TM1	12-31	12-30	14-34	12-32	11-32	10-33	12-34	11-32	13-33		
Periplasmic	32-95	31-95	35-96	33-95	33-95	34-94	35-95	33-95	34-94		
TM2	96-115	96-112	97-117	96-115	96-117	95-116	96-118	96-113	95-115		
Cytoplasmic	116-136	113-134	118-129	116-135	118-126	117-132	119-138	114-132	116-129		
TM3	137-156	135-155	130-150	136-162	127-149	133-160	139-161	133-156	130-150		
Periplasmic	157-186	156-183	151-182	163-181	150-182	161-179	162-182	157-183	151-181		
TM4	187-206	184-205	183-203	182-206	183-206	180-204	183-205	185-206	182-202		

TABLE S2. Topology predictions for *E. faecalis* Lit.

206-212

204-212

Cytoplasmic

207-212

Output from several protein topology predictor programs reveals uncertainty in the boundaries of the periplasmic region between transmembrane (TM) regions 3 and 4.

207-212

207-212

205-212

206-212

207-212

- 74. Dobson, L., Remenyi, I., and Tusnady, G. E. (2015) CCTOP: a Consensus Constrained TOPology prediction web server. *Nucleic Acids Res.* **43**, W408-412
- 75. Cserzo, M., Wallin, E., Simon, I., von Heijne, G., and Elofsson, A. (1997) Prediction of transmembrane alpha-helices in prokaryotic membrane proteins: the dense alignment surface method. *Protein Eng.* **10**, 673-676
- 76. Viklund, H., and Elofsson, A. (2008) OCTOPUS: improving topology prediction by two-track ANN-based preference scores and an extended topological grammar. *Bioinformatics* **24**, 1662-1668
- 77. Kall, L., Krogh, A., and Sonnhammer, E. L. (2004) A combined transmembrane topology and signal peptide prediction method. *J. Mol. Biol.* **338**, 1027-1036
- 78. Yachdav, G., Kloppmann, E., Kajan, L., Hecht, M., Goldberg, T., Hamp, T., Honigschmid, P., Schafferhans, A., Roos, M., Bernhofer, M., Richter, L., Ashkenazy, H., Punta, M., Schlessinger, A., Bromberg, Y., Schneider, R., Vriend, G., Sander, C., Ben-Tal, N., and Rost, B. (2014) PredictProtein--an open resource for online prediction of protein structural and functional features. *Nucleic Acids Res.* 42, W337-343
- 79. Juretic, D., Zoranic, L., and Zucic, D. (2002) Basic charge clusters and predictions of membrane protein topology. *J. Chem. Inf. Comput. Sci.* **42**, 620-632
- 80. Krogh, A., Larsson, B., von Heijne, G., and Sonnhammer, E. L. (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. *J. Mol. Biol.* **305**, 567-580
- 81. Hofmann, K., and Stoffel, W. (1993) TMbase-a database of membrane spanning proteins segments. *Biol. Chem. Hoppe-Seyler* **374**
- 82. Tsirigos, K. D., Peters, C., Shu, N., Kall, L., and Elofsson, A. (2015) The TOPCONS web server for consensus prediction of membrane protein topology and signal peptides. *Nucleic Acids Res.* **43**, W401-407

203-212

FIGURE S1. LPL-treatment of [d5]-DA-LppK58A strep removes the *sn***-1 acyl chain.** *A*. [d5]-DA-LppK58A strep was treated with *Pseudomonas* spp. lipoprotein lipase (LPL) and analyzed by MALDI-TOF MS. The prominent peak at 924.6 u indicates a loss of the *sn*-1 linked saturated acyl chain ($C_{16:0}$). *B.* Regiospecific assignment of the *sn*-2 linked monounsaturated $C_{16:1}$ acyl chain.

5

FIGURE S2. MALDI-TOF MS of lyso-LppK58A strep recovered from *in vitro* reaction with *E. faecalis* Lit. Parent spectra of the *N*-terminal lipopeptide of trypsinized LppK58A strep ($C_{32:1}$ total acyl chain length, 1157.7 u, protonated and 1179.7 u, sodiated) isolated from the *in vitro* reconstitution reactions with membranes expressing only *E. faecalis* Lit. The Δ 28 u ions correspond to acyl chain length heterogeneity ($C_{34:1}$ total acyl chain length, 1185.7 u, protonated and 1207.7 u, sodiated).

FIGURE S3. Mut-seq analysis of *E. faecalis* **Lit by Ala scanning.** *A.* The enrichment of each Ala encoding GCG triplet was calculated from the next generation read counts and plotted against the corresponding position in the *lit* gene. In-frame triplets upstream (10 amino acids) and downstream (8 amino acids) of the coding region which were not targeted for mutagenesis are shown for comparison. Residues I21 and K211 were not sufficiently represented in the input library to be considered in the analysis of important residues, while A86 and A155 are encoded by native GCG alanine triplets and mutagenesis results in synonymous codon replacement (*black* shaded). *B.* The enrichment of the GCG triplets from the same input library passaged in the absence of arabinose inducer. The respective plasmid encoded Lit allele is the sole means for lipoprotein *N*-acylation and growth rescue under these culture conditions. Residues for which importance could not be determined are *gray* shaded (listed in panel *A* above), while residues further evaluated for function are indicated (important for growth rescue are *black* shaded while negative controls are *red* shaded and correspond to Fig. 6 from text).

S-8

FIGURE S4. Randomization of His89 and His157 codon. A library of *E. faecalis lit* alleles was generated by introducing the NNK triplet into the His89 (*A*) or His 157 (*B*) position and transformed into *E. coli* $\Delta lpp P_{BAD}$ -lnt to evaluate rescue after three successive passages in the absence of arabinose inducer. Plasmid pools were isolated and sequenced to calculate read count percentages for each possible NNK triplet variant within the total population of the input (Pass=0) and ensuing sequential passages (Pass=1, 2, or 3).

8