

Supporting Information

Phenotyping Reveals Targets of a Pseudo-Natural-Product Autophagy Inhibitor

Daniel J. Foley, Sarah Zinken, Dale Corkery, Luca Laraia, Axel Pahl, Yao-Wen Wu, and Herbert Waldmann*

anie_202000364_sm_miscellaneous_information.pdf anie_202000364_sm_movie_10w-j.avi anie_202000364_sm_movie_VEH.avi

Supporting Information

Contents:

1.0	Supporting Figures	3						
1.1	Substructure search in the Dictionary of Natural Products	3						
1.2	Molecular properties of the indocinchona alkaloids	3						
1.3	SAR analysis and determination of the minimum required pharmacophore for azaquin activity	dole 4						
1.4	Additional compounds tested for activity in the autophagy assay	5						
1.5	LC3 lipidation in starved cells treated with azaquindole-1	6						
1.6	_K1 phosphorylation in starved cells treated with azaquindole-1							
2.0	Supporting Tables	7						
2.1	Synthetic yields and autophagy inhibition IC50 values for Cinchona alkaloid-derived azaindoles	d 7- 7						
2.2	Activity data for indole-containing natural products screened in the autophagy assay	9						
2.3	Kinases showing <i>in vitro</i> inhibition below 10 μ M by azaquindole-1	14						
2.4	Investigation of selective kinase inhibitors in the autophagy assay	15						
2.5	In vitro IC ₅₀ measurements for azaquindoles and related structures against VPS34	16						
3.0	Pd-catalysed indole formations: substrate scope summary	17						
3.1	Substrate scope experiments: successful reactions	17						
3.2	Substrate scope experiments: failed reactions	19						
3.3	SAR investigations: successful reactions	21						
3.4	SAR investigations: failed reactions	23						
4.0	Computational analysis	25						
4.1	Compounds in the analysis	25						
4.2	NP-likeness scoring	28						
4.3	Molecular properties analysis	28						
4.4	Novelty assessment	29						
5.0	Biological experimental	32						
5.1	Cell culture for the autophagy assay	32						
5.2	High-content screening for autophagy inhibitors	32						
5.3	Cell painting assay	33						
5.	3.1 Discussion of the Induction Parameter	36						
5.	3.2 Availability of the cell painting assay code	37						
5.	3.3 Further discussion and interpretation of the cell painting data	37						
5.	3.4 Comparison of azaquindole-1 with other recently identified autophagy inhibitors	38						
5.4	β -Adrenergic receptor screening	40						

5.5	Kinase panel data 41					
5.6	Immunc	blottir		51		
5.7	l ive-cel		sconv	51		
5.8	Cellular	therm	al shift assay (CETSA) in cell lysate	52		
5.0		kinetic				
5.5 5	0 1 Ev	norim				
5	0.2 Mi	chaoli	s Monton Saturation Curves	55 54		
5	.9.2 IVII 0.3 %i	inhihiti				
5	.9.3 /01 0.4 Lin		vor Burk Diet			
ن. د م		tio ovi				
0.0	Conorol					
0.1	General	i expe				
6.Z	General procedures					
6.3	Compound data					
6.	6.3.1Preparation of the Cinchona alkaloid derived ketones59					
6.	.3.2 Pr	epara	tion of the Cinchona alkaloid derived indoles	64		
	6.3.2.1	Prep	paration of the quinidine-derived indoles	65		
	6.3.2.2	Prep	paration of the quinidine-derived azaindoles	85		
	6.3.2.3	Prep	paration of the quinine-derived indoles	90		
	6.3.2.4	Prep	paration of the quinine-derived azaindoles	112		
	6.3.2.5	Prep	paration of compounds to investigate the minimum necessary ph	armacophore		
	6.3.2	2.5.1	Preparation of compound S-1			
	6.3.2	2.5.2	Preparation of compound S-2			
	6.3.2	2.5.3	Preparation of compounds S-3 and S-4	132		
	6.3.2	2.5.4	Preparation of compound S-5	139		
	6.3.2	2.5.5	Preparation of compound S-6	146		
7.0	Proces	sed N	MR Spectra	147		
8.0	Referer	nces				

1.0 Supporting Figures

1.1 Substructure search in the Dictionary of Natural Products

The following substructures were investigated in the Dictionary of Natural Products (http://dnp.chemnetbase.com, accessed 28/05/2018, Figure S1):

Figure S1 Substructure searches within the Dictionary of Natural Products. A = any atom.

1.2 Molecular properties of the indocinchona alkaloids

The indocinchona alkaloids have the following AlogP vs MW distribution (Figure S2).

See Section 4.3 for further molecular property analyses.

1.3 SAR analysis and determination of the minimum required pharmacophore for azaquindole activity

The following compounds (Figure S3) were prepared to explore the structure-activity relationship (SAR) around azaquindole-1 (compound **10w-j**):

Figure S3 A Summary of the SAR explored for azaquindole-1. SIA = starvation-induced autophagy. RIA= rapamycin-induced autophagy.

On the basis of the data above (Figure S3), we surmised that the following structural features were important for autophagy inhibition by indocinchona alkaloids (Figure S4):

quinine-derived = active; quinidine-derived = inactive

Figure S4 A Summary of the key features required for autophagy inhibition. RIA= rapamycin-induced autophagy.

1.4 Additional compounds tested for activity in the autophagy assay

The following compounds, which were closely related to the lead compound **10w-j**, were investigated for activity in the autophagy assay and were found to be inactive at \leq 10 μ M (Figure S5):

Figure S5 Several compounds that closely relate to the azaquindoles **10w** were found to be inactive in the autophagy assay. SIA = starvation-induced autophagy. RIA= rapamycin-induced autophagy.

*Compound **S-8** was found to inhibit hedgehog-induced osteogenesis in a cell-based assay,^[1] with $IC_{50} = 1.83 \pm 0.44 \mu M$ (the assay serves as a proxy for identifying inhibitors of the hedgehog signalling pathway – for more details see Ref. [1], Fig. 1).

Overall, new bioactivity (autophagy inhibition) was realised through the combination of azaindoles with the quinine framework (n.b. azaquindoles **10w** were found to be inactive in the hedgehog-induced osteogenesis assay). None of the fragments above were found to be active in the cell painting assay.

1.5 LC3 lipidation in starved cells treated with azaquindole-1

Figure S6 LC3 lipidation in cells (HCT8; HeLa; MCF7) undergoing starvation in the presence or absence of 10w-j or chloroquine (CQ) as indicated.

1.6 ULK1 phosphorylation in starved cells treated with azaquindole-1

Figure S7 ULK1 phosphorylation incells (HCT8; HeLa; MCF7) undergoing starvation in the presence or absence of **10w-j**, as indicated.

2.0 Supporting Tables

2.1 Synthetic yields and autophagy inhibition IC₅₀ values for Cinchona alkaloid-derived 7-azaindoles

Synthetic yields and autophagy IC_{50} values for the 7-azaindoles **9w** and **10w** (Table S1):

				From quinidine				From quinine				
Entry	Functionalised at indole position	R =	Nr	Yield /%	Starvation- induced IC ₅₀ /µM	Rapamycin- induced IC₅₀ /μM	Notes	Nr	Yield /%	Starvation- induced IC ₅₀ /µM	Rapamycin- induced IC₅₀ /μM	Notes
1	n/a	n/a	9w	17	n/a	nd	d	10w	13	4.33 ± 1.7	4.95 ± 0.7	a,e
2	4-R-7-azaindole	CI	-	_	—	_		10w-a	19	0.52 ± 0.20	0.65 ± 0.35	a,d,g
3	5-R-7-azaindole	Me	9w-b	51	n/a	n/a	а	10w-b	30	0.31 ± 0.09	0.86 ± 0.26	а
4	5-R-7-azaindole	4-CI-(C ₆ H ₅)-	-	-	-	-		10w-c	33	9.00 ± 1.1	n/a	e,h
5	5-R-7-azaindole	CF ₃	-	-	-	-		10w-d	24	0.12 ± 0.03	0.77 ± 0.29	e,g,h
6	5-R-7-azaindole	NO ₂	-	-	-	-		10w-е	10	0.67 ± 0.13	1.26 ± 0.20	a,d,g
7	5-R-7-azaindole	F	9w-f	38	n/a	n/a	а	10w-f	14	n/a	n/a	a,e
8	5-R-7-azaindole	CI	-	-	-	-		10w-g	53	0.11 ± 0.04	0.85 ± 0.14	
9	5-R-7-azaindole	Br	-	-	-	-		10w-h	17	0.08 ± 0.03	0.81 ± 0.35	a,e,g,h
10	5-R-7-azaindole	I	-	-	-	-		10w-i	5	0.08 ± 0.02	1.24 ± 0.20	a,g
11	5-Br-6-Me-azaindole	N/A	-	_	-	-		10w-j	38	0.04 ± 0.02	0.10 ± 0.02	e,g,h
12	6-R-7-azaindole	Me	9w-k	13	n/a	n/a	a,e	10w-k	3	3.12 ± 0.5	5.11 ± 1.4	a,e
13	6-R-7-azaindole	CI	_	_	_	_		10w-l	41	3.06 ± 0.9	6.21 ± 2.2	e,h

Table S1 A summary of the successful 7-azaindole formations using the Pd-catalysed annulation. Yields are unoptimised. Autophagy inhibition data are shown as the mean \pm SD of three independent experiments (N = 3; $n \ge 3$). All compounds were initially assayed at a concentration of 10 μ M. For hits reducing the number of LC3 puncta by more than 50%, IC₅₀ values were determined. n/a = inactive (no reduction of LC3 puncta at 10 μ M).

Standard conditions: ketone 5 or 6 (1.0 eq.), 2-iodoaniline (3.0 eq.), Pd(OAc)₂ (20 mol%), DABCO (3.0 eq.), DMF (0.3 M), 105 °C, 24 h. All reactions performed using 100 mg (0.32 mmol) ketone 5 or 6. See General Procedure B for more details. See the Experimental Section for full details of any deviations denoted.

Notes: ^a30 mol% Pd(OAc)₂ used (3 x 10 mol% over 72 h). ^b10 mol% Pd(OAc)₂ used over 24 h. ^cThe 2-iodoaniline HCl salt and 6.0 eq. DABCO were used. ^dPurified by massdirected preparative HPLC to give the product as the TFA salt. ^ePurified by column chromatography followed by by mass-directed preparative HPLC to give the product as the TFA salt. ^fPurified by mass-directed preparative HPLC followed by column chromatography. ^g1.5 eq. MgSO₄ was added after 24 h. ^hNet yield from initial column before subsequent purification using mass-directed preparative HPLC.

2.2 Activity data for indole-containing natural products screened in the autophagy assay

Table S2 Activity data for indole-containing natural products screened in the the autophagy assay. All compounds were initially assayed at a concentration of 10 μM. No compounds reduced the number of LC3 puncta by more than 50%, and therefore IC₅₀ values were not determined.

Entry	Trivial name	%activity (mean)	SMILES	Molecular Formula	CAS Registry No.	COMAS ID
			C/C1=C/[C@@H](C)[C@H](C)OC(=O)C[C@H](c2ccc(O)cc2)NC(=O)[C@@H](Cc2c[n			
			$H_{1}^{(2)}(2) = (0, 0) = (0$			
1	Chondramide A; Demethoxy	104	C@H](C)C1	C35H44N4O6	172430-62-5	101415
			CC[C@H](C)[C@H](NC(=O)N[C@@H]1CC			
			CCNC(=O)C(Cc2cccc2)NC(=O)[C@H](Cc			
			2c[nH]c3ccccc23)N(C)C(=O)[C@H](CC(C)			
2	Mozamide A; Deoxy	88	C)NC(=O)[C@H](C(C)C)NC1=O)C(=O)O	C45H64N8O8	909119-50-2	104794
			COc1ccc2c3c([nH]c2c1)C(=O)C=C(C)C3=			
3	Koeniginequinone A	84	0	C14H11NO3	110519-58-9	106116
			COc1cc2[nH]c3c(c2cc1OC)C(=O)C(C)=CC			
4	Koeniginequinone A; 6-Methoxy	97	3=0	C15H13NO4	211183-78-7	106117
			COC1=C(C)C(C)(O)c2[nH]c3ccccc3c2C1=			
5	Carbazomycin G	96	0	C15H15NO3	115920-44-0	106120
			COC1=C(C)C(C)(O)c2[nH]c3ccc(OC)cc3c2			
6	Carbazomycin G; 6-Methoxy	75	C1=0	C16H1/NO4	115920-42-8	106121
_	Dihydrogambirtannine; (S)-form,		c1ccc2c(c1)C[C@H]1c3[nH]c4ccccc4c3CC			
1	De(methoxycarbonyl)	92	N1C2	C19H18N2	15026-41-2	106132
			O=c1c2cccc2nc2n1CCc1c-	0401403100	04.00.4	100011
8	Rutaecarpine	97		C18H13N3O	84-26-4	108014
			COC(=O)[C@H]1[C@H]2C[C@@H]3C4[nH			
	Reserptc acid; 3-Epimer,O-					
_	(3,4,5-trimetnoxycinnamoyi), Me	100			407000 77 5	100015
9	ester	100		C35H4ZN2O9	18/082-77-5	108015
10	Nitrorino: (1) form	01		0201125112		100010
10		31		0201123113		100010
11	Aimplicino: () form	109		C21U24N2O2	192 04 5	109010
	Convoanthaine: 2.20 Dianimar	100		021112410200	403-04-3	100019
12	18.19-dihvdro	101	@H]2C[C@@H]1/C(=C\OC)C(=O)OC	C22H28N2O3	7729-22-8	108027

Entry	Trivial name	%activity (mean)	SMILES	Molecular Formula	CAS Registry No.	COMAS ID
			COC(=O)C1[C@@H](O)CC[C@@H]2CN3			
1.0			CCc4c([nH]c5ccccc45)[C@@H]3C[C@H]1			400000
13	Yohimbine	101		C21H26N2O3	146-48-5	108028
14	Vincomino: (1) form	07			1617 00 0	109020
14	2349-Tetrahydro-1-methyl-1H-	97	@j(0)(0(=0)00)01)[0@@f1]32	021112010203	1017-90-9	100029
	pyrido[3,4-b]indole-3-carboxylic					
15	acid; (1R,3S)-form	101	CC1N[C@H](C(=O)O)Cc2c1[nH]c1ccccc21	C13H14N2O2	42438-72-2	108032
			COC(=O)[C@H]1[C@H]2C[C@H]3c4[nH]c			
			5cc(OC)ccc5c4CCN3C[C@H]2C[C@@H](
			OC(=O)c2cc(OC)c(OC)c(OC)c2)[C@@H]1			
16	Reservine; (-)-form	112	OC	C33H40N2O9	50-55-5	108033
17	1,2,3,4-1 etranydro-6-nydroxy-β-	107			20315-68-8	108034
17		107	CN1c2ccccc2C(=O)N2CCc3c([nH]c4ccccc3)	01211141020	20313-00-0	100034
18	Evodiamine: (S)-form	103	4)C21	C19H17N3O	518-17-2	108040
			CC(C)[C@H]1C(=O)N2CCC[C@H]2[C@]2(
			O)O[C@](NC(=O)[C@@H]3C=C4c5cccc6[
			nH]cc(c56)C[C@H]4N(C)C3)(C(C)C)C(=O)			
19	Ergocornine	81	N12	C31H39N5O5	564-36-3	108044
20	5-Hydroxytryptamine	99	NCCc1c[nH]c2ccc(O)cc12	C10H12N2O	50-67-9	108123
	2,3,4,9-Tetrahydro-1H-					
21	pyrido[3,4-b]indole-3-carboxylic	106		C10U10N000	42428 00 4	116000
21		106			42436-90-4	110230
	1H-Indole-3-carboxylic acid	110		C9H7NO2	771-50-6	124320
23	Methylamide	117	CNC(=O)CCc1cInHlc2ccccc12	C12H14N2O	69397-85-9	127141
24	1H-Indol-3-ol: OH-form O-Ac	108	CC(-O)Oc1c[nH]c2ccccc12		608-08-2	129257
25	1H-Indole-3-methanol	101			700-06-1	132775
20	Aplysinopsin: 3'-Deimino 3'-oxo			Carlano	700-00-1	102110
26	N ² N ⁴ '-di-de-Me	87	O=C1NC(=O)/C(=C\c2c[nH]c3ccccc23)N1	C12H9N3O2		164577
27	Tryptamine	89	NCCc1c[nH]c2ccccc12	C10H12N2	61-54-1	165364
28	3.6-Diiodo-9H-carbazole	79	Ic1ccc2[nH]c3ccc(I)cc3c2c1	C12H7I2N	57103-02-3	166754
	2,3,4,9-Tetrahydro-1,1-dimethyl-			-		
	1H-pyrido[3,4-b]indole-3-					
29	carboxylic acid; (S)-form	95	CC1(C)NC(C(=O)O)Cc2c1[nH]c1ccccc21	C14H16N2O2	73198-03-5	172534
30	1H-Indole-3-butanoic acid	100	O=C(O)CCCc1c[nH]c2ccccc12	C12H13NO2	133-32-4	174746
	1,2,3,4-Tetrahydro-1-methyl-β-					
31	carboline; (±)-form	85	CC1NCCc2c1[nH]c1ccccc21	C12H14N2	525-40-6	179383

Entry	Trivial name	%activity (mean)	SMILES	Molecular Formula	CAS Registry No.	COMAS ID
32	1H-Indole-3-acetic acid	100	O=C(O)Cc1c[nH]c2ccccc12	C10H9NO2	87-51-4	200918
33	Tryptophan; (S)-form	98	NC(Cc1c[nH]c2ccccc12)C(=O)O	C11H12N2O2	73-22-3	200975
34	Tryptophan; (S)-form, N ^α -Ac	86	CC(=O)NC(Cc1c[nH]c2ccccc12)C(=O)O	C13H14N2O3	1218-34-4	201023
35	Staurosporine	98	CN[C@@H]1C[C@H]2O[C@@](C)([C@@ H]1OC)n1c3ccccc3c3c4c(c5c6ccccc6n2c5c 31)C(=O)NC4	C28H26N4O3	62996-74-1	245396
36	5-Methoxytryptamine: Nb-Ac	93	COc1ccc2[nH]cc(CCNC(C)=O)c2c1	C13H16N2O2	73-31-4	245497
37	Goniomitine	105	CC[C@@]12CCCN[C@@H]1n1c(c(CCO)c 3ccccc31)CC2	C19H26N2O	109794-95-8	245755
38	7-Hydroxy-1-methyl-β-carboline; 3,4-Dihydro, Me ether	97	COc1ccc2c3c([nH]c2c1)C(C)=NCC3	C13H14N2O	304-21-2	283249
39	7-Hydroxy-1-metnyl-β-carboline; 3,4-Dihydro	93	CC1=NCCc2c1[nH]c1cc(O)ccc21	C12H12N2O	525-57-5	246351
40	1-Methyl-β-carboline	85	Cc1nccc2c1[nH]c1ccccc12	C12H10N2	486-84-0	246352
41	7-Hydroxy-1-methyl-β-carboline; Me ether	81	COc1ccc2c(c1)[nH]c1c(C)nccc12	C13H12N2O	442-51-3	277591
42	7-Hydroxy-1-methyl-β-carboline	81	Cc1nccc2c1[nH]c1cc(O)ccc12	C12H10N2O	487-03-6	246354
43	6-Hydroxy-1-methyl-β-carboline; 3,4-Dihydro, Me ether	89	COc1ccc2[nH]c3c(c2c1)CCN=C3C	C13H14N2O	3589-73-9	246371
44	Catharanthine	86	CCC1=C[C@@H]2CN3CCc4c([nH]c5ccccc 45)[C@@](C(=O)OC)(C2)[C@@H]13	C21H24N2O2	2468-21-5	246642
45	Eburnamine; (+)-form, 16-Ketone	86	CCC12CCCN3CCc4c(n(c5ccccc45)C(=O)C 1)[C@@H]32	C19H22N2O	4880-88-0	284614
46	Yohimbine; Parent acid	104	O=C(O)[C@H]1[C@@H](O)CC[C@H]2CN 3CCc4c([nH]c5ccccc45)[C@@H]3C[C@@ H]21	C20H24N2O3	522-87-2	247974
47	Mahanine; (±)-form, Deoxy	98	ccccc23)O1	C23H25NO	24948-14-9	277601
48	Reserpinine	93	COC(=Ó)C1=CO[C@@H](C)[C@@H]2CN 3CCc4c([nH]c5cc(OC)ccc45)[C@@H]3C[C @H]12	C22H26N2O4	482-96-2	277617
49	Brevicarine	98	CNCCCCc1cnc(C)c2[nH]c3ccccc3c12	C17H21N3	25978-39-6	277645
50	Cyclo(tryptophyltryptophyl); (3R,6S)-form	97	O=C1N[C@@H](Cc2c[nH]c3ccccc23)C(=O)N[C@H]1Cc1c[nH]c2ccccc12	C22H20N4O2	175414-35-4	277679
51	1-(8-Quinolinyl)-β-carboline	94	c1cnc2c(-c3nccc4c3[nH]c3ccccc34)cccc2c1	C20H13N3	62209-25-0	277708
52	Vinblastine	133	CC[C@]1(O)C[C@@H]2CN(CCc3c([nH]c4c cccc34)[C@@](C(=O)OC)(c3cc4c(cc3OC)N (C)[C@H]3[C@@](O)(C(=O)OC)[C@H](OC	C46H58N4O9	865-21-4	278431

Entry	Trivial name	%activity (mean)	SMILES	Molecular Formula	CAS Registry No.	COMAS ID
			(C)=O)[C@]5(CC)C=CCN6CC[C@]43[C@ @H]65)C2)C1			
			C/C=C1\C[N@@+]2(C)[C@H]3C[C@@H]1			
53	Tombozine; N ⁴ -Me	103	C(CO)[C@@H]2Cc1c3[nH]c2ccccc12	C20H25N2O	6792-07-0	278563
54	Agroclavine; (-)-form	145	CC1=C[C@@H]2c3cccc4[nH]cc(c34)C[C@ H]2N(C)C1	C16H18N2	548-42-5	279968
	β-Carboline-3-carboxylic acid;					
55	Me ester	101	COC(=O)c1cc2c(cn1)[nH]c1ccccc12	C13H10N2O2	69954-48-9	279993
56	Ergocristine	91	CC(C)[C@@]1(NC(=O)[C@@H]2C=C3c4c ccc5[nH]cc(c45)C[C@H]3N(C)C2)O[C@@] 2(O)[C@@H]3CCCN3C(=O)[C@H](Cc3ccc cc3)N2C1=O	C35H39N5O5	511-08-0	279996
57	5-Hvdroxytryptamine: N ^b -Ac	99	CC(=O)NCCc1cInHlc2ccc(O)cc12	C12H14N2O2	1210-83-9	280251
58	Tryptamine: N ^b -Ac	101	CC(=0)NCCc1c[nH]c2ccccc12	C12H14N2O	1016-47-3	280288
59	Fllipticipe	326	Cc1c2ccncc2c(C)c2c1[nH]c1ccccc12	C17H14N2	519-23-3	280538
- 55	5.6-Dihydroxytryptamine: 5-Me	320			010 20 0	200000
60	ether, N ^b -Ac	123	COc1cc2c(CCNC(C)=O)c[nH]c2cc1O	C13H16N2O3	2208-41-5	280590
61	5-Hydroxy-1H-indole-3-acetic acid	94	O=C(O)Cc1c[nH]c2ccc(O)cc12	C10H9NO3	54-16-0	280613
62	5-Hvdroxytryptophan: (S)-form	103	NIC@@HI(Cc1cInHlc2ccc(O)cc12)C(=O)O	C11H12N2O3	8/09/4350	280615
63	5-Hvdroxytryptamine: N ^b -Me	94	CNCCc1cInHlc2ccc(O)cc12	C11H14N2O	1134-01-6	280703
64	Talopeptin	124	CC(C)CC(NP(=O)(O)O[C@@H]1O[C@@H](C)[C@H](O)[C@@H](O)[C@H]1O)C(=O) NC(Cc1c[nH]c2ccccc12)C(=O)O	C23H34N3O10P	84235-60-9	280895
65	Vincristine	145	CCC1(O)CC2CN(CCc3c([nH]c4ccccc34)[C @@](C(=O)OC)(c3cc4c(cc3OC)N(C=O)C3[C@@](O)(C(=O)OC)[C@H](OC(C)=O)[C@]5(CC)C=CCN6CC[C@]43[C@@H]65)C2) C1	C46H56N4O10	57-22-7	281038
			C[C@@H](CO)NC(=O)C1C=C2c3cccc4[nH			
66	Ergometrine	102]cc(c34)C[C@H]2N(C)C1	C19H23N3O2	60-79-7	282116
67	β-Carboline	84	c1ccc2c(c1)[nH]c1cnccc12	C11H8N2	244-63-3	282790
68	N-Methyltryptophan; (R)-form	107	CNC(Cc1c[nH]c2ccccc12)C(=O)O	C12H14N2O2	862504-05-0	282822
69	2,3,4,9-Tetrahydro-1H- pyrido[3,4-b]indol-1-one; N ² -(2- Methylaminobenzoyl)	81	CNc1ccccc1C(=O)N1CCc2c([nH]c3ccccc23)C1=O	C19H17N3O2	526-43-2	282896
70	Thienodolin	95	NC(=O)c1cc2c([nH]c3cc(CI)ccc32)s1	C11H7CIN2OS	149127-27-5	283324
71	Telomycin	78	CC1NC(=O)C(C(C)O)NC(=O)C(NC(=O)C(C O)NC(=O)CC(N)C(=O)O)C(C)OC(=O)C2C(C59H77N13O19	19246-24-3	283392

Entry	Trivial name	%activity (mean)	SMILES	Molecular Formula	CAS Registry No.	COMAS ID
			O)CCN2C(=O)C(C(O)C(C)C)NC(=O)C(C(C))c2c[nH]c3ccccc23)NC(=O)/C(=C/c2c[nH]c3 ccccc23)NC(=O)C2C(O)CCN2C(=O)CNC1			
			=0			
	3,4-Dihydroxy-1,2-					
72	dimethylcarbazole; 3-Me ether	78	COc1c(C)c(C)c2[nH]c3ccccc3c2c1O	C15H15NO2	75139-38-7	283710
			CC1(C)C(O)CCC2(C)C1CCC1(C)C2Cc2cc			
73	3-Greenwayodendrinol; 3α-form	62	3ccccc3n21	C23H31NO	85027-87-8	283728
			COc1cc2c([nH]c3c4c(c(C)cc32)OC(C)(C)C			
			=C4)c(-			
	Bis(7-hydroxygirinimbine A); 6,6'-		c2c(O)c(OC)cc3c2[nH]c2c4c(c(C)cc23)OC(
74	Dimethoxy	96	C)(C)C=C4)c1O	C38H36N2O6	477890-82-7	283782
			C=C[C@H]1[C@H](O[C@@H]2O[C@H](C			
			O)[C@@H](O)[C@H](O)[C@H]2O)OC=C(
			C(=O)OC)[C@H]1C[C@@H]1N[C@H](C(=			
/5	5-Carboxystrictosidine	116		C28H34N2O11	34371-11-4	283886
70	0	400	C/C=C1/CN2C3CC1C(CO)C2Cc1c3[nH]c2c	040110001000	400.00.0	000000
76	Sarpagine	102		C19H22N2O2	482-68-8	283899
	Other Andrews	00		0401400100	04007 00 0	004000
11	Girinimbine; 8-Methoxy	98		C19H19NO2	21087-98-9	284383
70	Mananimpicine; (+)-form, 7-	00	CC(C)=CCCC1(C)C=Cc2c(ccc3c2[nH]c2cc(0001105100	400070 00 0	004004
78	Hydroxy	82		623H25N02	138876-26-3	284384
70	Fumitromorgin C	100	CUC1CCC2C3C([nH]C2C1)C(C=C(C)C)N1C(= 0)C2CCCN2C(-0)C1C2		110074 02 0	204422
79	A E Dibudrovu conthin 6 onci Di	102		6228230303	116974-02-0	204423
80	4,5-Dinyuroxycantnin-6-one; DI-	75	COc1c(OC)c2nccc2c4ccccc4n(c1-O)c22	C16U12N2O2	10110 07 7	294476
00		10				204470
81	1-Acetyl-β-carboline	80	CC(=O)c1nccc2c1[nH]c1ccccc12	C13H10N2O	50892-83-6	336423
82	3,6-Dibromo-9H-carbazole	160	Brc1ccc2[nH]c3ccc(Br)cc3c2c1	C12H7Br2N	6825-20-3	393546

2.3 Kinases showing *in vitro* inhibition below 10 μM by azaquindole-1

Entry	Kinase	[ATP] /μM	IC ₅₀ /nM
1	CLK4	n/a	93.9
2	PIK3C3 (VPS34)	Apparent K _M	350
3	PIK3C2G*	Apparent K _M	497
4	CLK2	Apparent K _M	572
5	PIK3C2B	100	2160
6	SPHK2	10	2770
7	PIK3CD/PIK3R1	Apparent K _M	4790
8	PI4KB*	Apparent K _M	5160

The following kinases were inhibited <10 μ M by azaquindole-1 (compound **10w-j**, Table S3):

Table S3 Kinases inhibited at <10 µM by 10w-j. *Potential roles in autophagy inhibition devalidated previously.^[2]

For the complete list of kinases investigated in the study see Section 5.5.

2.4 Investigation of selective kinase inhibitors in the autophagy assay

To investigate any potential roles for the kinases shown in Table S3 in autophagy inhibition, we investigated potent and selective kinase inhibitors associated with each target in the autophagy assay (Table S4). The following kinases were inhibited <10 μ M by azaquindole-1 (compound **10w-j**, see also Table S3):

Entry	Kinase(s)	Inhibitor	Short description	Starvation- induced IC ₅₀ /μM	Rapamycin- induced IC₅₀ /µM	Inference
1	CLK4;	ML167	Inhibitor of CLK4 with IC ₅₀ = 136 nM, >10-fold selectivity over related related kinases CLK1 (1.52 μ M), CLK2 (1.65 μ M), CLK3 (>10 μ M), DYRK1A (>10 μ M), and DYRK1B (4.4 μ M). ^[3,4]	n/a	n/a	Inhibition of CLK4 and/or CLK2 is not likely to be
	ULK2	TG003	Inhibitor of CLKs with IC ₅₀ = 15, 20 and 200 nM for CLK4, 1 and 2, respectively, and >10 μ M for CLK3. ^[5] Also inhibits DYRK1A/B (IC ₅₀ = 24 and 34 nM respectively). ^[6]	n/a	n/a	relevant to autophagy inhibition.
2	PIK3C2B	-	No selective inhibitors were commercially available.	-	-	-
2	ABC294640		Inhibitor of SPHK2 with IC ₅₀ = 60μ M, and >1.5 selectivity over SPHK1. ^[7]	n/a	n/a	Inhibition of SPHK2 is not likely to be
3 SPHK2		PF-543	Inhibitor of SPHK1 with IC ₅₀ = 2.7 nM. Inhibits SPHK2 with IC ₅₀ = 356 nM. ^[8]	n/a	n/a	relevant to autophagy inhibition.
		IC-87114	Inhibitor of PI3K δ with IC ₅₀ = 0.5 μ M, >50-fold selectivity over PI3K γ and PI3K β (IC ₅₀ = 29 and 75 μ M, respectively) and >200-fold over PI3K α (>100 μ M). ^[9]	n/a	n/a	Inhibition of
4	PIK3CD	ldelalisib (CAL-101)	Inhibitor of PI3K δ with IC ₅₀ = 2.5nM, >30-fold selectivity over PI3K γ (89 nM) and >200-fold over PI3K α (820 nM), PI3K β (565 nM). ~400-fold activity over VPS34 (978 nM). ^[10]	5.34 ± 3.5	4.82 ± 2.4	PIK3CD is not likely to be relevant to autophagy inhibition.
		Nemiralisib	Inhibitor of PI3K δ with pK _i = 9.9, 1,000-fold selective over PI3K α , β , and γ isoforms. ^[11]	n/a	n/a	

Table S4 Investigation of selective kinase inhibitors in the autophagy assay. Autophagy inhibition data are shown as the mean \pm SD of three independent experiments (N= 3; $n \ge 3$). All compounds were initially assayed at a concentration of 10 μ M. For hits reducing the number of LC3 puncta by more than 50%, IC₅₀ values were determined. n/a = inactive (no reduction of LC3 puncta at 10 μ M).

2.5 In vitro IC₅₀ measurements for azaquindoles and related structures against VPS34

[ATP] /μM Compound No. **Compound Structure** IC₅₀ /nM Entry Br HO F 1 Apparent K_M 10w-j 350 10w-j HO Apparent K_M 2 10w-i 627 10w-i HO 3 Apparent K_M 10w-b 656 10w-b •CF₃CO₂⁻ HO Apparent K_M 10w-k 4 3280 10w-k]•CF₃CO₂⁻ Br HO Apparent K_M >10000 S-1 5 S-1

The following compounds were assessed for inhibition (<10 μ M) of VPS34 (Table S5):

3.0 Pd-catalysed indole formations: substrate scope summary

In initial investigations (manuscript Figure 2), 43/62 (69%) of Pd-catalysed indole formations attempted were successful (see Section 3.2 for failed reaction scope). In the subsequent SAR investigations around the initial hit compounds **10u** and **10w**, 3/6 (50%) and 15/22 (68%), of the additional reactions attempted were successful respectively (see Section 3.4 for failed reaction scope). Overall 61/90 (68%) of the attempted indole formations using the Pd-catalysed annulation were successful (excluding the compounds from Figure S3).

3.1 Substrate scope experiments: successful reactions

The yields for the successful reactions are summarised below in Table S6.

_			F	rom quin	idine	F	From quir	nine
Entry	Functionalised at indole position…	R =	Nr	Yield /%	Notes	Nr	Yield /%	Notes
1	4/5/6/7 = R	Н	9a	49		10a	17	b,f
2	4 = R ; 5/6/7 = H	Me	9b	49		10b	46	
3	4 = R ; 5/6/7 = H	CO ₂ Me	9c	18	а	10c	12	а
4	4 = R ; 5/6/7 = H	CI	9d	77	b	10d	10	b
5	5 = R ; 4/6/7 = H	Me	9e	45		10e	17	f
6	5 = R ; 4/6/7 = H	CO ₂ H	9f	14	a,d,f	10f	9	b,d
7	5 = R ; 4/6/7 = H	CO ₂ Me	9g	3	a,e	-	0	
8	5 = R ; 4/6/7 = H	CF ₃	9h	25		10h	23	а
9	5 = R ; 4/6/7 = H	NO ₂	9i	12	a,e	10i	3	a,e
10	5 = R ; 4/6/7 = H	OMe	9j	23	a,c	10j	6	а
11	5 = R ; 4/6/7 = H	OCF ₃	-	nd		10k	65	b
12	5 = R ; 4/6/7 = H	F	91	19	d	101	47	
13	5 = R ; 4/6/7 = H	CI	9 m	48		10 m	59	b,d
14	5 = R ; 4/6/7 = H	Br	9n	8	е	10n	15	
15	6 = R ; 4/5/7 = H	Me	90	12	a,e	100	4	
16	6 = R ; 4/5/7 = H	CO ₂ H	9р	11	b,d	10p	14	d
17	6 = R ; 4/5/7 = H	CO ₂ Me	9q	7	а		0	
18	6 = R ; 4/5/7 = H	CF ₃	9r	25		10r	70	b
19	6 = R ; 4/5/7 = H	CI	9s	26		10s	20	
20	6 = R ; 4/5/7 = H	Br	9t	9	a,e	10t	27	а
21	7 = R ; 4/5/6 = H	OMe	9u	16	a,e	10u	33	
22	4-azaindole	N/A	-	0		-	nd	
23	5-azaindole	N/A	-	0		-	nd	
24	6-azaindole	N/A	9v	50	d	10v	65	b
25	7-azaindole	N/A	9 w	17	d	10 w	13	a,e

Table S6 A summary of the successful substrate scope and yields for the indole formations using the Pd-catalysed annulation. Some notable failed substrates are included (Entries 7, 17, 22 and 23. See also Section 3.2). Yields are unoptimised.

Standard conditions: ketone **5** or **6** (1.0 eq.), 2-iodoaniline (3.0 eq.), Pd(OAc)₂ (20 mol%), DABCO (3.0 eq.), DMF (0.3 M), 105 °C, 24 h. All reactions performed using 100 mg (0.32 mmol) ketone **5** or **6** See General Procedure **B** for more details. See the Experimental Section for full details of any deviations denoted.

Notes: ^a30 mol% Pd(OAc)₂ used (3 x 10 mol% over 72 h). ^b10 mol% Pd(OAc)₂ used over 24 h. ^cThe 2-iodoaniline HCl salt and 6.0 eq. DABCO were used. ^dPurified by mass-directed preparative HPLC to give the product as the TFA salt. ^ePurified by column chromatography followed by by mass-directed preparative HPLC to give the product as the TFA salt. ^fPurified by mass-directed preparative HPLC to give the product as the TFA salt. ^fPurified by mass-directed preparative HPLC to give the product as the TFA salt. ^fPurified by mass-directed preparative HPLC followed by column chromatography. N/A = not applicable. nd = not determined (reaction not carried out).

3.2 Substrate scope experiments: failed reactions

The following reactions failed during investigation of the substrate scope of the Pd-catalysed indole formation:

Entry	2-lodoaniline	Ketone	Notes
1	H ₂ N 4-amino-3-iodopyridine	5	not observed by LCMS after 24 h
2	H ₂ N 3-amino-2-iodopyridine	5	not observed by LCMS after 24 h
3	CO ₂ H H ₂ N 3-amino-2-iodobenzoic acid	6	not observed by LCMS after 24 h
4	H ₂ N 4-amino-3- iodobenzonitrile	6	not observed by LCMS after 24 h
5	H ₂ N 2-iodo-1,4- benzenediamine	6	not observed by LCMS after 24 h
6	H ₂ N 2-iodo-5-methoxyaniline	6	not observed by LCMS after 24 h

Entry	2-lodoaniline	Ketone	Notes
7	H ₂ N F 5-fluoro-2-iodoaniline	5	trace by LCMS (<5%) after 72 h (30 mol% Pd(OAc) ₂ , unable to isolate cleanly
8	H_2N CO ₂ H 2-amino-3-iodobenzoic acid	6	not observed by LCMS after 24 h
9	H ₂ N OH 2-amino-3-iodo-phenol	6	not observed by LCMS after 24 h
10	H ₂ N 2-iodo-4,6- dimethylaniline	5	not observed by LCMS after 24 h
11	H ₂ N CI 2,4-dichloro-6- iodoaniline	6	trace by LCMS (<10%) after 72 h (30 mol% Pd(OAc) ₂ , unable to isolate cleanly

Table S7 Failed reactions in substrate scope studies. *Conditions:* ketone **5** or **6** (1.0 eq.), 2-iodoaniline (3.0 eq.), Pd(OAc)2 (20 mol%), DABCO (3.0 eq.), DMF (0.3 M), 105 °C, 24 h). All reactions performed using 100 mg (0.32 mmol) ketone **5** or **6**.

3.3 SAR investigations: successful reactions

In SAR investigations around compound **10u**, 3/6 (50%) additional reactions attempted were successful (Table S8; see Section 3.4 for the failed reaction scope):

				From quini	ine
Entry	Functionalised at indole position	R =	Nr	Yield /%	Notes
1	7 = R ; 4/5/6 = H	F	10x	18	а
2	7 = R ; 4/5/6 = H	CI	10y	53	b
3	7-OMe-5-(CO2Me)-indole	N/A	10z	1	a,c,d

Table S8 A summary of the successful 7-subsituted indole formations using the Pd-catalysed annulation. Yields are unoptimised.

Standard conditions: ketone **5** or **6** (1.0 eq.), 2-iodoaniline (3.0 eq.), Pd(OAc)₂ (20 mol%), DABCO (3.0 eq.), DMF (0.3 M), 105 °C, 24 h. All reactions performed using 100 mg (0.32 mmol) ketone **5** or **6**. See General Procedure **B** for more details. See the Experimental Section for full details of any deviations denoted.

Notes: ^a30 mol% Pd(OAc)₂ used (3 x 10 mol% over 72 h). ^b10 mol% Pd(OAc)₂ used over 24 h. ^c1.5 eq. MgSO₄ was added after 24 h. ^dPurified by column chromatography followed by by mass-directed preparative HPLC to give the product as the TFA salt.

The biological activities of the above compounds in the autophagy assay were as follows:

Entry	Compound	R-group and position	Starvation-induced IC ₅₀ /μM	Rapamycin-induced IC₅₀ /μM
1	10x	7-F	n/a	n/a
2	10y	7-Cl	n/a	n/a
3	10z	7-OMe-5-(CO ₂ Me)-	2.25 ± 0.1	2.33 ± 0.5

Table S9 Inhibition of starvation and/or rapamycin-induced autophagy by analogues of compound **10u**. All data are shown as mean \pm SD of three independent experiments (N = 3; n = 3). All compounds were initially assayed at a concentration of 10 μ M. For hits reducing the number of LC3 puncta by more than 50%, IC₅₀ values were determined. n/a = inactive (no reduction of LC3 puncta at 10 μ M). Ar = 4-Cl-(C₆H₄).

In SAR investigations around compound **10w**, 15/22 (68%) of reactions attempted were successful (Table S10; see Section 3.4 for failed reaction scope):

			From quinidine		From quinine		е	
Entry	Functionalised at indole position	R =	Nr	Yield /%	Notes	Nr	Yield /%	Notes
1	4-R-7-azaindole	CI				10w-a	19	a,d,g
2	5-R-7-azaindole	Me	9w-b	51	а	10w-b	30	а
3	5-R-7-azaindole	4-CI-(C ₆ H ₅)-	_	-		10w-c	33	e,h
4	5-R-7-azaindole	CF₃	_	-		10w-d	24	e,g,h
5	5-R-7-azaindole	NO ₂	_	-		10w-е	10	a,d,g
6	5-R-7-azaindole	F	9w-f	38	а	10w-f	14	a,e
7	5-R-7-azaindole	CI	—	_		10w-g	53	
8	5-R-7-azaindole	Br	_	-		10w-h	17	a,e,g,h
9	5-R-7-azaindole	I	_	-		10w-i	5	a,g
10	5-Br-6-Me- azaindole	N/A	_	-		10w-j	38	e,g,h
11	6-R-7-azaindole	Ме	9w-k	13	a,e	10w-k	3	a,e
12	6-R-7-azaindole	CI	_	_		10w-l	41	e,h

Table S10 A summary of the successful 7-azaindole formations using the Pd-catalysed annulation. Yields are unoptimised.

Standard conditions: ketone **5** or **6** (1.0 eq.), 2-iodoaniline (3.0 eq.), Pd(OAc)₂ (20 mol%), DABCO (3.0 eq.), DMF (0.3 M), 105 °C, 24 h). All reactions performed using 100 mg (0.32 mmol) ketone **5** or **6**. See General Procedure **B** for more details. See the Experimental Section for full details of any deviations denoted.

Notes: ^a30 mol% Pd(OAc)₂ used (3 x 10 mol% over 72 h). ^b10 mol% Pd(OAc)₂ used over 24 h. ^cThe 2-iodoaniline HCl salt and 6.0 eq. DABCO were used. ^dPurified by mass-directed preparative HPLC to give the product as the TFA salt. ^ePurified by column chromatography followed by by mass-directed preparative HPLC to give the product as the TFA salt. ^fPurified by mass-directed preparative HPLC to give the product as the TFA salt. ^fPurified by mass-directed preparative HPLC to give the product as the TFA salt. ^fPurified by mass-directed preparative HPLC followed by column chromatography. ^g1.5 eq. MgSO₄ was added after 24 h. ^hNet yield from column before subsequent purification using mass-directed preparative HPLC.

3.4 SAR investigations: failed reactions

The following reactions failed during SAR studies to investigate the preparation of analogues of compound **10u** using the Pd-catalysed indole formation (note that Entries 1 and 3 were investigated in the initial substrate scoping experiments [see Table S7] and are included here for completeness):

Table S11 Failed reactions in SAR studies. *Conditions:* ketone **6** (1.0 eq.), 2-iodoaniline (3.0 eq.), Pd(OAc)₂ (20 mol%), DABCO (3.0 eq.), DMF (0.3 M). When no conversion was observed by LCMS after 24 h, additional Pd(OAc)₂ (10 mol%) and MgSO₄ (1.5 eq.) were added. The reaction mixture was degassed with Ar (10 min), then heated at 105 °C for a further 24 h. All reactions performed using 100 mg (0.32 mmol) ketone **6**. All reactions were monitored by LCMS. *Investigated in original substrate scoping reactions, see Table S7.

The following reactions failed during SAR studies to investigate the preparation of analogues of compound **10w** using the Pd-catalysed indole formation:

Table S12 Failed reactions in SAR studies. *Conditions:* ketone **6** (1.0 eq.), 2-iodoaniline (3.0 eq.), $Pd(OAc)_2$ (20 mol%), DABCO (3.0 eq.), DMF (0.3 M). When no conversion was observed by LCMS after 24 h, additional $Pd(OAc)_2$ (10 mol%) and MgSO₄ (1.5 eq.) were added. The reaction mixture was degassed with Ar (10 min), then heated at 105 °C for a further 24 h. All reactions performed using 100 mg (0.32 mmol) ketone **6**. All reactions were monitored by LCMS.

4.0 Computational analysis

4.1 Compounds in the analysis

The following compounds were used to construct Figures 2c-d in the manuscript along with the molecular property analysis in Figure S2. A total of 55 compounds were included in the study:- indoquinidines (22 compounds, black); indoquinines (20 compounds, blue); azaquindoles (13 compounds, pink).

indoquinidines 9a-w OH abs

7-azaindoquinines 10w to 10w-l

OH abs OH abs N Abbs N H

27

4.2 NP-likeness scoring

Natural product likeness scores were calculated using the method of Ertl *et al.*^[12] using the implementation in RDKit v2017.09.1 (Greg Landrum; Open Source Cheminformatics Software; http://www.rdkit.org; last accessed 28/05/2018).

For the preparation of Figure 2d, the following databases were used:

- Drugbank Approved + Experimental v5.1.0 (7360 compounds [2325 + 5035], https://www.drugbank.ca/releases/latest#structures; downloaded 28/05/2018).
- ChEMBL v23 (35k unique compounds with *J. Nat. Prod.* as source document, release date May 2017, downloaded 28/05/2018).

4.3 Molecular properties analysis

The following data were calculated using LLAMA.^[13]

See also Figure S2, Section 1.2.

A summary of the molecular properties of the cinchona alkaloids, quinidine and quinine, is given below:

Entry	Property	Quinidine	Quinine
1	MW /Da	324	324
2	ALogP	2.73	2.73
3	tPSA	45.6	45.6
4	Fsp ³	0.45	0.45

 Table S13 Molecular properties of the Cinchona alkaloids.

A summary of the molecular properties of the indocinchona library, including azaindoles **10w**, is given below:

Entry	Property	Range	Average
1	MW /Da	385-512	427
2	ALogP	2.74-5.14	3.94
3	tPSA	61-120	73
4	Fsp ³	0.24-0.33	0.30

Table S14 Molecular properties of the indocinchona alkaloid library.Compounds included are detailed in Section 4.1 above (55 compounds in total).

Entry	Property	Range	Average
1	MW /Da	386-512	438
2	ALogP	3.06-5.14	3.86
3	tPSA	74-120	78
4	Fsp ³	0.24-0.33	0.31

A summary of the molecular properties of the 7-azaindoquinines **10w** to **10w-j** is given below:

Table S15 Molecular properties of the 7-azaindoquinines 10w.Compounds 10w to 10w-j are detailed in Section 4.1 above (13 compounds in total).

4.4 Novelty assessment

See Section 1.1, Figure S1, for substructure searches within the Dictionary of Natural Products.

A Chemical Abstracts Service (CAS) search using SciFinder (https://scifinder.cas.org, accessed 28/05/2018), and a Reaxys search (www.reaxys.com, accessed 28/05/2018), revealed that the scaffold indocinchona is unknown (Figure S8). One simple example of а 1.9 diazatetracyclo[9.2.2.02,10.03,8]pentadeca-2(10),3,5,7-tetraene (fused indole/quinuclidine) ringsystem was found in the scientific literature, whilst eight simple examples were found in the patent literature (references given below in Table S16). To the best of our knowledge no activity against kinases has been reported.

(see the Table below)

Figure S8 Substructure searches within CA

Entry	Structure	Reference(s)
1		1. C. Chen, D. R. Lieberman, R. D. Larsen, T. R.
		Verhoeven, P. J. Reider, <i>J. Org. Chem.</i> 1997,
		62, 2676–2677.
	N	2. C. Chen, R. D. Larsen, inventors; Merck & Co.,
		assignee. Palladium catalyzed indolization. US
	N H	Patent 5,811,551, 1998 . Filed Aug 7 1997,
		issued Sept 22 1998.
		3. M. R. Schrimpf, CH. Lee, T. Li, G. A. Gfesser,
		K. H. Mortell, R. Faghih, D. L. Nersesian, K. B.

Entry	Structure	Reference(s)
		Sippy, W. H. Bunnelle, M. Scanio, L. Shi, M.
		Gopalakrishnan, D. L. Donnelly-Roberts, M.
		Hu, inventors; AbbVie Inc., assignee. Indole
		thereof US Patent 9 625 475 (B2) 2017 Filed
		March 19 2010, issued April 18 2017.
2	Z	(see Entry 1, Ref. 3)
3		(see Entry 1, Ref. 3)
4		(see Entry 1, Ref. 3)
5		(see Entry 1, Ref. 3)

Table S16 Hits for the substructure search (Figure S8) within Reaxys and SciFinder.

5.0 Biological experimental

5.1 Cell culture for the autophagy assay

MCF7 cells stably transfected with eGFP-LC3 (MCF7-GFP-LC3) were cultured at 37 °C with 5% CO₂ using Eagle's MEM (Gibco cat# 21090-022) containing 10% FBS (Invitrogen cat# 10500-084), 1% L-Glutamine (Invitrogen cat# 25030-081), 1% sodium pyruvate (PAN Biotech cat# P04-43100), 1% NEAA (PAN Biotech cat# P08-32100), 0.01 mg/mL bovine insulin (Sigma Aldrich cat# I9278) and 200 μ g/ml G418 as the medium.

MCF7 wt (#2011) cells were cultured in standard DMEM (PAN Biotech, cat# P04-03500) supplemented with 10% FBS (Invitrogen cat# 10500-084), 1% sodium pyruvate (PAN Biotech, cat# P04-43100), 1% NEAA (PAN Biotech, cat# P08-32100) and 0.01 mg/mL bovine insulin (Sigma Aldrich cat# I9278) at 37 °C with 5% CO₂.

HeLa, Hek293T and Hek293A EGFP-WIPI2b cells were cultured in standard DMEM (PAN Biotech, cat# P04-03500) supplemented with 10% FBS (Invitrogen cat# 10500-084), 1% sodium pyruvate (PAN Biotech, cat# P04-43100) and 1% NEAA (PAN Biotech, cat# P08-32100) at 37 °C with 5% CO₂.

HCT8 cells were cultured in Roswell Park Memorial Institute (RPMI) 1640 medium (Sigma-Aldrich, cat# R8758) supplemented with 10% FBS(Invitrogen cat# 10500-084) and 1% NEAA (PAN Biotech, cat# P08-32100) at 37°C with 5% CO₂.

5.2 High-content screening for autophagy inhibitors

For the phenotypic autophagy assay, 4000 MCF7-GFP-LC3 cells per well were seeded in 25 μ L medium in a 384 well Greiner μ clear plate (cat# 781080, lid cat# 656191) and incubated (37 °C, 5% CO₂) overnight. Cells were then washed by a plate washer (Biotek, ELx405) three times with 1X PBS followed by a final aspiration of the washing buffer. The addition of 25 nL of compound solution (10 mM stock solution in DMSO) was then carried out with an echo dispenser (Labcyte, Echo 520 dispenser). Addition of medium to induce autophagy was carried out with a Multidrop Combi (Thermo Scientific). 25 μ L Earle's Balanced Salt Solution (EBSS, Sigma Aldrich, cat# E3024-500mL) containing 50 μ M Chloroquine (Sigma Aldrich, cat# C6628-25g) was used for starvation-induced autophagy and 25 μ L medium containing 50 μ I Chloroquine and 100 nM Rapamycin (Biomol, cat# Cay13346)-1 was used for rapamycin-induced autophagy screening. After incubation (37 °C, 5% CO₂) for three hours cells were fixed by addition of 25 μ L 1:4 formaldehyde in 1X PBS + 1:500 Hoechst (stock: 1 mg/mL, Sigma Aldrich cat# B2261-25 mg) and incubation for 20 min at

room temperature. Cells were then washed three times with 1X PBS. Four images per well were taken with ImageXpress Micro XL (Molecular Devices) at 20x. Automated image analysis was performed using the granularity setting of MetaXpress Software (Molecular Devices).

5.3 Cell painting assay

The described assay closely follows the method described by Bray et al.^[14]

Initially, 5 µl U2OS medium were added to each well of a 384-well plate (PerkinElmer CellCarrier-384 Ultra). Subsequently, U2OS cell were seeded with a density of 1600 cells per well in 20 µl medium. The plate was incubated for 10 min at the ambient temperature, followed by an additional 4 h incubation (37 °C, 5% CO2). Compound treatment was performed with the Echo 520 acoustic dispenser (Labcyte) at final concentrations of 10 µM, 3 µM or 1 µM. Incubation with compound was performed for 20 h (37 °C, 5% CO2). Subsequently, mitochondria were stained with Mito Tracker Deep Red (Thermo Fisher Scientific, Cat. No. M22426). The Mito Tracker Deep Red stock solution (1 mM) was diluted to a final concentration of 100 nM in prewarmed medium. The medium was removed from the plate leaving 10 µl residual volume and 25 µl of the Mito Tracker solution were added to each well. The plate was incubated for 30 min in darkness (37 °C, 5% CO2). To fix the cells 7 µl of 18.5 % formaldehyde in PBS were added, resulting in a final formaldehyde concentration of 3.7 %. Subsequently, the plate was incubated for another 20 min in darkness (RT) and washed three times with 70 µl of PBS. (Biotek Washer Elx405). Cells were permeabilized by addition of 25 µI 0.1% Triton X-100 to each well, followed by 15 min incubation (RT) in darkness. The cells were washed three times with PBS leaving a final volume of 10 µl. To each well 25 µl of a staining solution were added, which contains 1% BSA, 50 µl Phalloidin (Alexa594 conjugate, Thermo Fisher Scientific, A12381), 25 µg/ml Concanavalin A (Alexa488 conjugate, Thermo Fisher Scientific, Cat. No. C11252), 50 µl/ml Hoechst 33342 (Sigma, Cat. No. B2261-25mg), 15 µl/ml WGA-Alexa594 conjugate (Thermo Fisher Scientific, Cat. No. W11262) and 0.3 µl/ml SYTO 14 solution (Thermo Fisher Scientific, Cat. No. S7576). The plate is incubated for 30 min (RT) in darkness and washed three times with 70 µl PBS. After the final washing step the PBS was not aspirated. The plates were sealed and centrifuged for 1 min at 500 rpm.

The plates were prepared in triplicates with shifted layouts to reduce plate effects and imaged using a Micro XL High-Content Screening System (Molecular Devices) in 5 channels (DAPI: Ex350-400/ Em410-480; FITC: Ex470-500/ Em510-540; Spectrum Gold: Ex520-545/ Em560-585; TxRed: Ex535-585/ Em600-650; Cy5: Ex605-650/ Em670-715) with 9 sites per well and 20x magnification (binning 2).

The generated images were processed with the CellProfiler package (https://cellprofiler.org/, version 3.0.0, Git commit 235f8251bd8a39b04bc68fa1511d5b5dccf828d5) on a computing cluster of the Max Planck Society to extract 1716 cell features (parameters) per microscope site. The data was then further aggregated as medians per well (9 sites -> 1 well), then over the three replicates. Further analysis was performed with custom Python (https://www.python.org/) scripts using the Pandas (https://pandas.pydata.org/) and Dask (https://dask.org/) data processing libraries (separate publication to follow).

From the total set of 1716 parameters a subset of highly reproducible and robust parameters was determined using the procedure described by Woehrmann *et al.*^[15] in the following way: Two biological repeats of one plate containing reference compounds were analysed. For every parameter, its full profile over each whole plate was calculated. If the profiles from the two repeats showed a similarity >= 0.8 (see below), the parameter was added to the set.

This procedure was only performed once and resulted in a set of 579 robust parameters out of the total of 1716 that was used for all further analyses.

Determination of reproducible Parameters

1716	Determined by CellProfiler
ŧ	Keep parameters that have a minimum correlation of 0.80 between repeats for all cpds.
579	Final set of relevant parameters. Used for all further analyses

To determine the phenotypic profiles for each test compound Z-scores were then calculated for each parameter as how many times the Median Absolute Deviation (MAD) of the controls the measured parameter value of a test compound deviates from the Median of the controls:

The phenotypic compound profile is then determined as the list of z-scores of all parameters for one compound.

In addition to the phenotypic profile, an induction value was determined for each compound as the fraction of significantly changed parameters, in percent:

Similarities of phenotypic profiles were calculated from the correlation distances between two profiles

(https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.correlation.html;

Similarity = 1 - Correlation Distance) and the compounds with the most similar profiles were determined from a set of 3000 reference compounds that was also measured in the assay.

An example for two compounds with highly similar profiles (96% similarity):

An example for two compounds with low similarity profiles (0% similarity):

Each colored band represents one Z-score of a parameter.
5.3.1 Discussion of the Induction Parameter

The Cell Painting assay is under active development in the department since the beginning of 2017 and the induction was introduced into the analysis as a measure of the extent of the phenotypic effect. The assay is currently being developed in its third iteration.

The first iteration used a very sparse profile of only about hundred features with categorical values (0 - reduced, 1 unchanged, 2 - increased compared to control). The induction was introduced at this stage. The code for this first iteration was described^[16] and open-sourced^[17] in 2017.

The second iteration already used a much larger profile with continuous values but was based on single point measurements.

The current third iteration uses 579 features calculated from triplicate measurements with shifted layouts for reduced plate effects. It now uses induction as a measure of how many features of the profile have been significantly changed compared to DMSO controls (induction = 0%, calculation see above), making it a robust and easy to calculate parameter in our hands.

It should be noted that the induction is not a measure of activity per se, but rather of the extent of the observed phenotypic effect.

In our opinion, this is an important distinction to make, since the extent of the effect is not necessarily correlated to compound activity. It rather depends on the compound's target(s) and the extent to which the modulation of these target(s) induce phenotypic effects. In other words, a compound can have a high biological activity on a target that does cause only minor phenotypic changes in the cell and will therefore only have a small induction value. For this case, equating the low induction with low activity would be misleading.

In case by case situations, where compounds have the same target(s) the induction might be used as a proxy parameter for activity and in this context we are using the it e.g. for finding concentrations at which the compounds are having a comparable extent of the phenotypic changes.

We also use the induction as a cutoff parameter to decide whether a comparison of a profile to other profiles would make sense. A profile with an induction < 5% we consider being too sparse for a meaningful comparison, whereas a profile with an induction >= 80% is usually too crowded for a good comparison. In the first case, we re-test the compounds in question at higher doses, in the latter case, we reduce the dose.

A more detailed comparison to other measures of the extent of phenotypic effects, like the Mahalanobis distance to DMSO controls will be part of a larger methodology paper to be written. At that time the code of the current iteration will also be made available.

5.3.2 Availability of the cell painting assay code

The code and data analysis are still undergoing method development. A separate Cell Painting methodology paper detailing the finalised code will follow this manuscript. We are willing to share the code and data in its current form upon request.

5.3.3 Further discussion and interpretation of the cell painting data

Cut-off for common reference compounds

In order for reference compounds to be considered biosimilar in the cell painting assay, we considered the following parameters:

- ≥75% biosimilarity in the cell painting profile.
- The following induction range: 5% < % < 80% (see also the discussion in Section 5.3.1).

Comparison of terbutaline and SAR405

Figure S9 Comparison of Terbutaline versus SAR405 in the cell painting assay.

The profiles of terbutaline and SAR405 were found to be 83% biosimilar in the cell painting assay, however, terbutaline was inactive in our autophagy screen (see Section 5.2), whereas SAR405 was inhibited both starvation-induced autophagy (2.51 \pm 2.3 μ M) and rapamycin-induced autophagy (1.09 \pm 0.8 μ M). While terbutaline is inactive in autophagy, this does not rule out the possibility that it is a weak VPS34 inhibitor. We also note that similar phenotypes can be induced in the cell painting assay by interference with different biological processes.

5.3.4 Comparison of azaquindole-1 with other recently identified autophagy inhibitors

We compared the cell painting fingerprint of azaquindole-1 (**10w-j**) against other autophagy inhibitors that were recently identified in the Waldmann laboratory. The compounds in the study are summarised in Figure S10, and the profiles of the compounds that showed biosimilarity to azaquindole-1 are shown in Figure S11.

Figure S10 Autophagy inhibitors identified in the Waldmann group, including: azaquindole-1 (this work), oxautin-1^[18], autoquin^[19], autophinib,^[20] aumitin,^[2] DMP-1,^[21] autogramin-1^[22]. SIA= starvation-induced autophagy. RIA= rapamycin-induced autophagy.

Figure S11 Comparison of the cell painting fingerprint of azaquindole-1 (**10w-j**) with the remaining compounds shown in Figure **S10**. In the square parentheses are detailed firstly the induction, and secondly (after the forward slash), the biosimilarity of the profile to azaquindole-1.

Our analysis revealed that the profile of azaquindole-1 (**10w-j**) is similar to the profiles of oxautin-1, autoquin and autophinib. Since these compounds emerged from our internal research programmes, they were not included in the original reference compound collection used to identify the target of azaquindole-1.

Notably, autophinib is an inhibitor of VPS34. The cell painting analysis therefore further validates our earlier finding that autophinib targets VPS34. This finding also highlights the ability of the cell painting assay data to suggest and subsequently identify molecular targets. However, oxautin-1 and autoquin do not inhibit VPS34. This suggests that in these cases the profile represents the bioactivity and mode of action in a broader sense. Thus, the cell painting assay may be a good experimental means to identify clusters of compounds with similar modes of action, but not necessarily the same targets. We intend to investigate these insights more thoroughly to determine whether such clusters exist in autophagy in a wider sense, and in other areas of biology.

5.4 β-Adrenergic receptor screening

Detection of the functional inhibition or activation of beta-1 and beta-2 adrenoreceptors was carried out by Eurofins CEREP SA (France). A functional, cell-based assay with Homogeneous Time Resolved Fluorescence (HTRF) read out was performed in agonist and antagonist mode at a concentration of 10 μ M of azaquindole-1 (**10w-j**) or **10w-d**.

Information on how each assay was completed can be found using the following link (or otherwise contact the authors of this manuscript):

- https://www.eurofinsdiscoveryservices.com/catalogmanagement/viewitem/beta1-Human-Adrenoceptor-GPCR-Cell-Based-Agonist-cAMP-Assay-Cerep/1605
- https://www.eurofinsdiscoveryservices.com/catalogmanagement/viewitem/beta1-Human-Adrenoceptor-GPCR-Cell-Based-Antagonist-cAMP-Assay-Cerep/1606
- https://www.eurofinsdiscoveryservices.com/catalogmanagement/viewitem/beta2-Human-Adrenoceptor-GPCR-Cell-Based-Agonist-cAMP-Assay-Cerep/1976
- https://www.eurofinsdiscoveryservices.com/catalogmanagement/viewitem/beta2-Human-Adrenoceptor-GPCR-Cell-Based-Antagonist-cAMP-Assay-Cerep/1977

(all last accessed 12/16/2019)

Table S17 In vitro inhibition of β Adrenergic receptors by azaquindoles. Compounds screened at 10 μ M in all assays.

Assay	Compound	Measurement	Value /%
beta 1 (h) (agonist effect)	10w-j	Mean %Effect	-7.43E-01
beta 1 (h) (agonist effect)	10w-d	Mean %Effect	-1.20E+00
beta 1 (h) (antagonist effect)	10w-j	Mean %Inhibition	8.60183
beta 1 (h) (antagonist effect)	10w-d	Mean %Inhibition	-1.42E+01
beta 2 (h) (agonist effect)	10w-j	Mean %Effect	2.83625
beta 2 (h) (agonist effect)	10w-d	Mean %Effect	3.5587
beta 2 (h) (antagonist effect)	10w-j	Mean %Inhibition	22.0743
beta 2 (h) (antagonist effect)	10w-d	Mean %Inhibition	0.10949

5.5 Kinase panel data

Detection of the biochemical inhibition of 485 kinases was carried out by Life Technologies Ltd (United Kingdom). The screen was performed in three different assays formats: Adapta (activity-based), Z-Lyte (activity-based) and Lantha (binding-based) at a concentration of 10 μ M of azaquindole-1 (**10w-j**).

Information on how each assay was completed can be found using the following link (or otherwise contact the authors of this manuscript): https://www.thermofisher.com/nz/en/home/products-and-services/services/custom-services/screening-and-profiling-services/selectscreen-profiling-service.html (last accessed 07/06/2019).

For kinases showing >40% inhibition, an IC_{50} was determined.

		% Inhibition					
Entry	Kinase	Technology	ATP	1	2	% Inhibition mean	IC50 / nM
1	AAK1	Lantha	n/a	3	6	4	
2	ABL1	ZLYTE	Кт арр	2	2	2	
3	ABL1 E255K	ZLYTE	Km app	7	8	8	
4	ABL1 F317I	ZLYTE	Km app	1	1	1	
5	ABL1 F317L	ZLYTE	Km app	7	0	3	
6	ABL1 G250E	ZLYTE	Km app	2	1	2	
7	ABL1 H396P	Lantha	n/a	-7	2	-3	
8	ABL1 M351T	Lantha	n/a	9	16	13	
9	ABL1 Q252H	Lantha	n/a	-1	-20	-11	
10	ABL1 T315I	ZLYTE	Km app	5	3	4	
11	ABL1 Y253F	ZLYTE	Km app	2	1	2	
12	ABL2 (Arg)	ZLYTE	Km app	2	2	2	
13	ACVR1 (ALK2)	Lantha	n/a	3	5	4	
14	ACVR1 (ALK2) R206H	Lantha	n/a	38	44	41	>10000
15	ACVR1B (ALK4)	ZLYTE	Km app	-8	-3	-5	
16	ACVR2A	Lantha	n/a	-33	-8	-20	
17	ACVR2B	Lantha	n/a	-7	6	0	
18	ACVRL1 (ALK1)	Lantha	n/a	-3	-13	-8	
19	ADCK3	Lantha	n/a	33	34	33	
20	ADRBK1 (GRK2)	ZLYTE	Km app	1	-7	-3	
21	ADRBK2 (GRK3)	ZLYTE	Km app	8	7	7	
22	AKT1 (PKB alpha)	ZLYTE	Km app	55	60	58	>10000
23	AKT2 (PKB beta)	ZLYTE	Km app	13	17	15	
24	AKT3 (PKB gamma)	ZLYTE	Km app	12	9	11	
25	ALK	ZLYTE	Km app	10	-3	4	
26	ALK C1156Y	Lantha	n/a	-3	1	-1	
27	ALK F1174L	Lantha	n/a	-13	-1	-7	
28	ALK L1196M	Lantha	n/a	-1	-18	-9	
29	ALK R1275Q	Lantha	n/a	10	10	10	
30	ALK T1151_L1152insT	Lantha	n/a	-13	-10	-12	

Table S18 In vitro inhibition of kinases by azaquindole-1.

				% Inhi	bition		
Entry	Kinase	Technology	ATP	1	2	% Inhibition mean	IC50 / nM
31	AMPK (A1/B1/G2)	Lantha	n/a	4	-2	1	
32	AMPK (A1/B1/G3)	Lantha	n/a	0	-4	-2	
33	AMPK (A1/B2/G1)	Lantha	n/a	-3	3	0	
34	AMPK (A1/B2/G2)	ZLYTE	Km app	-1	3	1	
35	AMPK (A1/B2/G3)	ZLYTE	Km app	-2	6	2	
36	AMPK (A2/B1/G2)	ZLYTE	Кт арр	6	3	5	
37	AMPK (A2/B1/G3)	ZLYTE	Кт арр	8	12	10	
38	AMPK (A2/B2/G1)	Lantha	n/a	-2	-4	-3	
39	AMPK (A2/B2/G2)	Lantha	n/a	1	2	1	
40	AMPK (A2/B2/G3)	ZLYTE	Кт арр	8	8	8	
41	AMPK A1/B1/G1	ZLYTE	Кт арр	22	24	23	
42	AMPK A2/B1/G1	ZLYTE	Кт арр	14	15	15	
43	ANKK1	Lantha	n/a	5	11	8	
44	AURKA (Aurora A)	ZLYTE	Кт арр	3	5	4	
45	AURKB (Aurora B)	ZLYTE	Кт арр	3	6	4	
46	AURKC (Aurora C)	ZLYTE	Km app	8	5	6	
47	AXL	ZLYTE	Кт арр	3	3	3	
48	AXL R499C	Lantha	n/a	-29	-34	-31	
49	BLK	ZLYTE	Km app	0	4	2	
50	BMPR1A (ALK3)	Lantha	n/a	16	17	16	
51	BMPR1B (ALK6)	Lantha	n/a	1	-3	-1	
52	BMPR2	Lantha	n/a	0	3	2	
53	ВМХ	ZLYTE	Km app	-7	-6	-7	
54	BRAF	ZLYTE	100	27	19	23	
55	BRAF	Lantha	n/a	-5	-2	-3	
56	BRAF V599E	ZLYTE	, 100	-2	-9	-5	
57	BRAF V599E	Lantha	n/a	4	6	5	
58	BRSK1 (SAD1)	ZLYTE	, Km app	22	23	23	
59	BRSK2	Lantha	n/a	-14	-36	-25	
60	ВТК	ZLYTE	Km app	6	6	6	
61	CAMK1 (CaMK1)	Adapta	10	-11	-9	-10	
62	CAMK1D (CaMKI delta)	ZLYTE	Km app	6	6	6	
63	CAMK1G (CAMKI gamma)	ZLYTE	Km app	0	0	0	
64	CAMK2A (CaMKII alpha)	ZLYTE	Km app	4	4	4	
65	CAMK2B (CaMKII beta)	ZLYTE	Km app	-5	-4	-5	
66	CAMK2D (CaMKII delta)	ZLYTE	Km app	7	9	8	
67	CAMK2G (CaMKII gamma)	Lantha	n/a	-5	-11	-8	
68	CAMK4 (CaMKIV)	ZLYTE	Km app	4	6	5	
69		Lantha	n/a	-8	-8	-8	
70	CAMKK2 (CaMKK beta)	Lantha	n/a	15	17	16	
71	CASK	Lantha	n/a	-5	-2	-4	
72	CDC42 BPA (MRCKA)	ZLYTE	Km app	4	4	4	
73	CDC42 BPB (MRCKB)	ZLYTE	Km app	2	1	1	
74	CDC42 BPG (MRCKG)	ZLYTE	Km app	-2	3	1	
75	CDC7/DBF4	Lantha	n/a	7	3	5	
76	CDK1/cyclin B	ZI YTE	Km ann	1	-1	0	
77	CDK11 (Inactive)	Lantha	n/a	14	8	11	
78	CDK11/cvclin C	Lantha	, ∝ n/a	4	-7	-7	
79	CDK13/cvclin K	Lantha	, ∝ n/a	-2	, 8	- 3	
80	CDK14 (PETK1)/cyclin V	Lantha	n/a	- <u>-</u> -11	-23	-17	
81	CDK16 (PCTK1)/cyclin V	Lantha	n/a	-26	-5	-15	
82	CDK17/cyclin Y	ZLYTE	Km ann	1	3	2	
52			in app	-	5	<u> </u>	

				% Inhi	bition		
Entry	Kinase	Technology	ATP	1	2	% Inhibition mean	IC50 / nM
83	CDK18/cyclin Y	ZLYTE	Km app	-11	8	-1	
84	CDK2/cyclin A	ZLYTE	Km app	0	5	2	
85	CDK2/cyclin A1	Lantha	n/a	0	1	1	
86	CDK2/cyclin E1	Lantha	n/a	1	-1	0	
87	CDK2/cyclin O	Lantha	n/a	-1	3	1	
88	CDK3/cyclin E1	Lantha	n/a	-9	-8	-9	
89	CDK4/cyclin D1	Adapta	10	-13	-12	-13	
90	CDK4/cyclin D3	Adapta	10	11	8	10	
91	CDK5 (Inactive)	Lantha	n/a	-7	-11	-9	
92	CDK5/p25	ZLYTE	Km app	-4	7	1	
93	CDK5/p35	ZLYTE	Km app	-1	6	3	
94	CDK6/cyclin D1	Adapta	10	-14	-20	-17	
95	CDK7/cyclin H/MNAT1	Adapta	Km app	12	6	9	
96	CDK8/cyclin C	Lantha	n/a	14	15	14	
97	CDK9 (Inactive)	Lantha	, n/a	-7	-15	-11	
98	CDK9/cvclin K	Lantha	, n/a	-3	6	2	
99	CDK9/cvclin T1	Adapta	Km app	20	21	20	
100	CDKL5	ZLYTE	Km app	5	11	8	
101	CHEK1 (CHK1)	ZLYTE	Km app	-1	-8	-4	
102	CHEK2 (CHK2)	ZI YTE	Km ann	21	11	16	
102	CHUK (IKK alpha)	Adanta	Km ann	9	6	7	
104		71 YTF	Km ann	15	12	13	
105		ZLITE	Km ann	51	12	47	572
106			Km ann	2	 Л	3	572
107		Lantha	n/a	78	83	<u>81</u>	93.9
108	CSE1R (EMS)	ZLYTE	Km ann	12	7	10	55.5
109	CSK	ZLYTE	Km ann	-8	2	-3	
110	CSNK1A1 (CK1 alpha 1)	ZLYTE	Km ann	-9	-5	-7	
111	CSNK1A1	ZLITE	Km ann	1	3	2	
112	CSNK1D (CK1 delta)		Km ann	9	5	2	
113	CSNK1E (CK1 ensilon)		Km ann	7	3	, 5	
114	CSNK1E (CK1 ensilon) B178C		Km ann	, Д	4	4	
115	CSNK1G1 (CK1 gamma 1)		Km ann	-3	7		
116	CSNK1G2 (CK1 gamma 2)		Km app	10	, 11	11	
117	CSNK1G3 (CK1 gamma 3)	ZLITE	Km app	25	5	15	
118	$CSNK2\Delta1$ (CK2 alpha 1)		Km app	25	<u>л</u>	6	
110	CSNK2A2 (CK2 alpha 2)		Km app	9	1	5	
120		Adanta	Km app	12	7	g	
120		Lantha	n/a	-34	, _21	-27	
121			Km ann	-3 4 1	-21 -1	-27	
172			Km app	6	-1	6	
123			Km app	6	2	0	
124	DDP1	Lantha	n/app	2	0	4	
125		Lantha	n/a	-5 10	20	-1	
120		Lantha	n/a	22	20	20	
127		Lantha	n/a	-52	-9 16	-20	
120		Lantha	n/a	14 E	с ТО	E CT	
120		Lantila 71 VTE	li/d Km ann	5 1	0	5 E	
121			Kiii app	71 T	ש רר	ت مر	
122			кі і арр	24 11	23 10	24 10	
132		Loutha	кіп арр	11	л ТО	13	
133 124			li/d Km ann	U T	5 10	۲ 10	
134	CIUID	ZLTIE	кш арр	-9	-10	-10	

Entry	Kinase	Technology	ATP	1	2	% Inhibition mean	IC50 / nM
135	DYRK4	ZLYTE	Km app	5	3	4	
136	EEF2K	ZLYTE	Кт арр	1	2	2	
137	EGFR (ErbB1)	ZLYTE	Km app	-11	4	-4	
138	EGFR (ErbB1) C797S	ZLYTE	Km app	1	-1	0	
139	EGFR (ErbB1) d746-750	Lantha	n/a	-11	-2	-6	
140	EGFR (ErbB1) d747-749 A750P	Lantha	n/a	-7	-14	-11	
141	EGFR (ErbB1) G719C	ZLYTE	Кт арр	-3	-5	-4	
142	EGFR (ErbB1) G719S	ZLYTE	Кт арр	-3	0	-2	
143	EGFR (ErbB1) L858R	ZLYTE	Кт арр	-16	4	-6	
144	EGFR (ErbB1) L861Q	ZLYTE	Km app	4	0	2	
145	EGFR (ErbB1) T790M	ZLYTE	Кт арр	3	1	2	
146	EGFR (ErbB1) T790M C797S L858R	ZLYTE	Кт арр	-2	-1	-2	
147	EGFR (ErbB1) T790M L858R	ZLYTE	Кт арр	-1	1	0	
148	EIF2AK2 (PKR)	Lantha	n/a	-9	3	-3	
149	EPHA1	ZLYTE	Km app	7	-1	3	
150	EPHA2	ZLYTE	Km app	-6	-6	-6	
151	EPHA3	Lantha	n/a	-5	-1	-3	
152	EPHA4	ZLYTE	Km app	10	14	12	
153	EPHA5	ZLYTE	Km app	-1	2	0	
154	EPHA6	Lantha	n/a	-2	10	4	
155	EPHA7	Lantha	n/a	-2	12	5	
156	EPHA8	ZLYTE	Km app	3	5	4	
157	EPHB1	ZLYTE	Km app	-1	5	2	
158	EPHB2	ZLYTE	Km app	-1	-4	-3	
159	EPHB3	ZLYTE	Km app	10	8	9	
160	EPHB4	ZLYTE	Km app	0	-3	-1	
161	ERBB2 (HER2)	ZLYTE	Km app	3	1	2	
162	ERBB4 (HER4)	ZLYTE	Km app	-8	-4	-6	
163	ERN1	Lantha	n/a	-5	-20	-13	
164	ERN2	Lantha	n/a	4	3	4	
165	FER	ZLYTE	, Km app	6	9	8	
166	FES (FPS)	ZLYTE	Km app	8	10	9	
167	FGFR1	ZLYTE	Km app	-3	-4	-4	
168	FGFR1 V561M	Lantha	n/a	10	7	9	
169	FGFR2	ZLYTE	, Km app	-10	-11	-11	
170	FGFR2 N549H	ZLYTE	Km app	1	-4	-2	
171	FGFR3	ZLYTE	Km app	-2	-4	-3	
172	FGFR3 G697C	Lantha	n/a	-22	-21	-21	
173	FGFR3 K650E	ZLYTE	Km app	-6	-4	-5	
174	FGFR3 K650M	Lantha	n/a	6	4	5	
175	FGFR3 V555M	ZLYTE	Km app	-11	8	-1	
176	FGFR4	ZLYTE	Km app	9	3	6	
177	FGR	ZLYTE	Km app	15	15	15	
178	FLT1 (VEGFR1)	ZLYTE	Km app	-3	2	0	
179	FLT3	ZLYTE	Km app	12	13	13	
180	FLT3 D835Y	ZLYTE	Km app	5	5	5	
181	FLT3 ITD	Lantha	n/a	-52	-59	-55	
182	FLT4 (VEGFR3)	ZLYTE	Km app	-6	1	-2	
183	FRAP1 (mTOR)	ZLYTE	Km app	11	5	8	
184	FRK (PTK5)	ZLYTE	Km app	5	3	4	
185	FYN	ZLYTE	Km app	3	0	2	
186	FYN A	Lantha	n/a	2	9	6	

% Inhibition

				% Inhi	ibition		
Entry	Kinase	Technology	ATP	1	2	% Inhibition mean	IC50 / nM
187	GAK	Lantha	n/a	-3	16	6	
188	GRK1	Lantha	n/a	7	-4	2	
189	GRK4	ZLYTE	Кт арр	9	8	9	
190	GRK5	ZLYTE	Km app	3	-4	0	
191	GRK6	ZLYTE	Km app	2	7	5	
192	GRK7	ZLYTE	Km app	3	-5	-1	
193	GSG2 (Haspin)	Adapta	Km app	23	24	24	
194	GSK3A (GSK3 alpha)	ZLYTE	Km app	5	3	4	
195	GSK3B (GSK3 beta)	ZLYTE	Km app	12	11	12	
196	НСК	ZLYTE	Km app	1	9	5	
197	HIPK1 (Myak)	ZLYTE	Km app	0	0	0	
198	HIPK2	ZLYTE	Km app	3	3	3	
199	ΗΙΡΚ3 (ΥΑΚ1)	ZLYTE	Km app	1	3	2	
200	НІРК4	ZLYTE	Km app	-5	-9	-7	
201	HUNK	Lantha	n/a	-10	1	-4	
202	ICK	Lantha	n/a	-2	16	7	
203	IGF1R	ZLYTE	, Km app	-7	-7	-7	
204	IKBKB (IKK beta)	ZLYTE	Km app	-1	0	0	
205	IKBKE (IKK epsilon)	ZLYTE	Km app	8	15	12	
206	INSR	ZLYTE	Km app	4	4	4	
207	INSRR (IRR)	ZLYTE	Km app	4	10	7	
208	IRAK1	Adapta	Km app	16	19	17	
209	IRAK3	Lantha	n/a	-10	-3	-7	
210	IRAK4	ZI YTE	Km ann	4	5	4	
211	ITK	ZIYTE	Km ann	6	2	4	
212	IAK1	ZIYTE	Km ann	-7	-6	-6	
213	IAK2	ZIYTE	Km ann	10	1	5	
214		ZIYTE	Km ann	-15	-19	-17	
215	JAK2 JH1 JH2 V617F	ZLYTE	Km app	1	-5	-2	
216	JAK3	ZLYTE	Km app	3	-1	1	
217	KDR (VEGER2)	ZLYTE	Km app	9	11	10	
218	KIT	ZLYTE	Km app	7	13	10	
219	KIT A829P	Lantha	n/a	-8	-11	-10	
220	KIT D816H	Lantha	n/a	-8	4	-2	
221	KIT D816V	Lantha	n/a	-7	-6	-6	
222	KIT D820E	Lantha	n/a	8	9	9	
223	KIT N822K	Lantha	n/a	-1	0	-1	
224	KIT T670F	Lantha	n/a	-5	-4	-4	
225	KIT T670I	ZI YTE	Km ann	-4	-14	-9	
226	KIT V559D	ZLYTE	Km app	-9	-2	-6	
227	KIT V559D T670I	Lantha	n/a	3	-12	-5	
228	KIT V559D V654A	ZI YTE	Km ann	12	-5	4	
229	KIT V560G	ZLYTE	Km ann	-6	-6	-6	
230	KIT V654A	Lantha	n/a	-1	0	0	
231	KIT Y823D	Lantha	n/a	-4	-6	-5	
232	KSR2	ZI YTE	Km ann	8	11	9	
232	LATS2	Lantha	n/a	-5	3	-1	
234		7I YTF	Km ann	-16	-3	-10	
235		Lantha	n/a	4	n	2	
236		Lantha	n/a	-3	4	- 1	
230	I RRK2	Adanta	Km ann	-8	-Д	-6	
238	LRRK2 FL	Adapta	Km app	-1	-5	-3	
				-	2	-	

				% Inhi	bition		
Entry	Kinase	Technology	ATP	1	2	% Inhibition mean	IC50 / nM
239	LRRK2 G2019S	Adapta	Кт арр	10	14	12	
240	LRRK2 G2019S FL	Adapta	Km app	6	-3	2	
241	LRRK2 I2020T	Adapta	Кт арр	1	1	1	
242	LRRK2 R1441C	Adapta	Km app	1	2	2	
243	LTK (TYK1)	ZLYTE	Km app	-1	2	0	
244	LYN A	ZLYTE	Km app	10	13	11	
245	LYN B	ZLYTE	Km app	3	2	2	
246	MAP2K1 (MEK1)	ZLYTE	100	1	5	3	
247	MAP2K1 (MEK1)	Lantha	n/a	-2	-7	-5	
248	MAP2K1 (MEK1) S218D S222D	Lantha	n/a	8	2	5	
249	MAP2K2 (MEK2)	ZLYTE	100	7	9	8	
250	MAP2K2 (MEK2)	Lantha	n/a	-3	2	-1	
251	MAP2K4 (MEK4)	Lantha	n/a	9	18	13	
252	MAP2K5 (MEK5)	Lantha	n/a	5	4	5	
253	MAP2K6 (MKK6)	ZLYTE	100	3	6	5	
254	MAP2K6 (MKK6)	Lantha	n/a	12	15	13	
255	MAP2K6 (MKK6) S207E T211E	Lantha	n/a	14	15	14	
256	MAP3K10 (MLK2)	Lantha	n/a	8	4	6	
257	MAP3K11 (MLK3)	Lantha	n/a	-2	3	0	
258	MAP3K14 (NIK)	Lantha	n/a	8	-2	3	
259	MAP3K19 (YSK4)	ZLYTE	Km app	-7	-3	-5	
260	MAP3K2 (MFKK2)	Lantha	n/a	1	10	6	
261	MAP3K3 (MEKK3)	Lantha	n/a	-11	-13	-12	
262	MAP3K5 (ASK1)	Lantha	n/a	4	0	2	
263		Lantha	n/a	11	7	9	
264	MAP3K8 (COT)	ZI YTF	100	6	4	5	
265		ZLYTE	Km ann	21	21	21	
266		Lantha	n/a	16	16	16	
267	MAP4K2 (GCK)	ZLYTE	Km app	3	18	10	
268	MAP4K3 (GLK)	Lantha	n/a	-1	-2	-1	
269	MAP4K4 (HGK)	ZLYTE	Km app	9	8	8	
270	MAP4K5 (KHS1)	ZLYTE	Km app	15	18	16	
271	MAPK1 (FRK2)	ZLYTE	Km app	-6	-18	-12	
272	MAPK10 (INK3)	ZLYTE	100	1	0	1	
273	MAPK10 (JNK3)	Lantha	n/a	3	7	5	
274	MAPK11 (p38 beta)	ZLYTE	Km app	-4	-5	-5	
275	MAPK12 (p38 gamma)	ZLYTE	Km app	8	14	11	
276	MAPK13 (p38 delta)	7I YTF	Km ann	8	9	8	
277	MAPK14 (p38 alpha)	ZLYTE	100	13	11	12	
278	MAPK14 (p38 alpha) Direct	7I YTF	Km ann	-16	-20	-18	
279	MAPK15 (FRK7)	Lantha	n/a	7	2	4	
280	MAPK3 (FRK1)	7I YTF	Km ann	0	0	0	
281	MAPK7 (FRK5)	7I YTF	Km ann	10	11	10	
282	MAPK8 (INK1)	7I YTF	100	-8	-9	-8	
283	MAPK8 (INK1)	Lantha	n/a	6	4	5	
284		7I YTF	100	6	11	9	
285	MAPK9 (INK2)	Lantha	n/a	11	13	12	
286	ΜΑΡΚΑΡΚ2	7I YTF	Km ann	8	-8	0	
287	МАРКАРКЗ		Km ann	19	12	15	
282	ΜΑΡΚΑΡΚ5 (ΡΡΔΚ)		Km ann	1	7	15 4	
200	MARK1 (MARK)		Km ann	י ר	, 6	5	
290	MARK2	7I YTF	Km ann	-6	-5	-5	
	· · · · · · · · · · · · · · · · · · ·			-	2	0	

		% Inhibition						
Entry	Kinase	Technology	ATP	1	2	% Inhibition mean	IC50 / nM	
291	MARK3	ZLYTE	Km app	19	17	18		
292	MARK4	ZLYTE	Km app	16	12	14		
293	MASTL	Lantha	n/a	-22	-1	-11		
294	MATK (HYL)	ZLYTE	Km app	1	-6	-3		
295	MELK	ZLYTE	Km app	22	24	23		
296	MERTK (cMER)	ZLYTE	Km app	1	1	1		
297	MERTK (cMER) A708S	Lantha	n/a	-3	-5	-4		
298	MET (cMet)	ZLYTE	Km app	6	7	6		
299	MET (cMet) Y1235D	ZLYTE	Km app	-5	3	-1		
300	MET D1228H	Lantha	n/a	-10	-1	-6		
301	MET M1250T	ZLYTE	Km app	-3	0	-2		
302	MINK1	ZLYTE	Km app	-6	-1	-4		
303	MKNK1 (MNK1)	ZLYTE	Km app	4	-4	0		
304	MKNK2 (MNK2)	Lantha	n/a	-13	11	-1		
305	MLCK (MLCK2)	Lantha	n/a	8	14	11		
306	MLK4	Lantha	n/a	-38	-16	-27		
307	MST1R (RON)	ZLYTE	Km app	4	-2	1		
308	MST4	ZLYTE	Km app	5	-10	-2		
309	MUSK	ZLYTE	Km app	1	-2	-1		
310		Lantha	n/a	-1	2	0		
311	MYLK2 (skMLCK)	ZI YTF	Km ann	3	1	2		
312	MYI K4	Lantha	n/a	9	3	6		
313	MYO3A (MYO3 alpha)	Lantha	n/a	-6	-6	-6		
314	MYO3B ($MYO3$ beta)	Lantha	n/a	0	-4	-2		
315	NFK1		Km ann	4	-6	-1		
316	NEK2		Km ann	-6	2	-2		
310	NEK2		Km ann	-0 2	5	- <u>2</u> 1		
210	NEK6		Kiii app Km ann	16	5	4		
310	NEKS	Lantha	n/a n/a	-18	-17	-18		
220	NEKO		lija Km ann	-10	-17	-10		
220			Kiii app Km app	-2	2	-1		
221		ZLTTE Lantha	n/a n/a	2	10	2		
322			li/d Km ann	0 22	10	10		
525 224			Kiii app	-55	-10	-21		
324	NTRKZ (TRKB)		кп арр	-1	-3	-2		
325		ZLYIE	кп арр	2 10	-0 F	-2		
320		Auapta	kii app	10	5 17	8		
327			n/a Kmaann	10	2	14		
328			ктарр	-1	3	1 A		
329	PAKZ (PAKOS)		кт арр Кт арр	2 17	0 10	4		
330		ZLYIE	кт арр	1/	12	14		
331		ZLYTE	кт арр	-8	-9	-8		
332		ZLYTE	кт арр	-13	3	-5		
333	PAK7 (KIAA1264)	ZLYTE	кт арр	-14	/	-4		
334	PASK	ZLYTE	кт арр	8	1/	12		
335	PDGFRA (PDGFR alpha)	ZLYTE	Km app	-2	4	1		
336	PDGFRA D842V	ZLYTE	Km app	-1	-8	-4		
337	PDGFRA 16/41		кт арр	-26	-38	-32		
338	PDGFRA V561D		кт арр	0	0	0		
339	PDGFRB (PDGFR beta)	ZLYTE	Km app	-12	-3	-8		
340	PDK1	ZLYTE	100	-1	3	1		
341	PDK1 Direct	ZLYTE	Кт арр	-4	6	1		
342	PEAK1	ZLYTE	Km app	-4	-3	-3		

		% Inhibition					
Entry	Kinase	Technology	ATP	1	2	% Inhibition mean	IC50 / nM
343	PHKG1	ZLYTE	Кт арр	12	7	10	
344	PHKG2	ZLYTE	Km app	4	8	6	
345	PI4K2A (PI4K2 alpha)	Adapta	Кт арр	-3	-3	-3	
346	PI4K2B (PI4K2 beta)	Adapta	Кт арр	-8	-3	-6	
347	PI4KA (PI4K alpha)	Adapta	10	11	14	12	
348	PI4KB (PI4K beta)	Adapta	Km app	78	78	78	5160
349	PIK3C2A (PI3K-C2 alpha)	Adapta	Кт арр	11	16	13	
350	PIK3C2B (PI3K-C2 beta)	Adapta	10	77	76	76	2160
351	PIK3C2G (PI3K-C2 gamma)	Adapta	Km app	86	86	86	497
352	PIK3C3 (hVPS34)	Adapta	Km app	97	97	97	350
353	PIK3CA E542K/PIK3R1 (p110 alpha E542K/p85 alpha)	Adapta	10	26	24	25	
354	PIK3CA E545K/PIK3R1 (p110 alpha E545K/p85 alpha)	Adapta	Km app	0	2	1	
355	PIK3CA/PIK3R1 (p110 alpha/p85 alpha)	Adapta	Km app	12	14	13	
356	PIK3CA/PIK3R3 (p110 alpha/p55 gamma)	Adapta	Km app	10	12	11	
357	PIK3CB/PIK3R1 (p110 beta/p85 alpha)	Adapta	Km app	0	-3	-1	
358	PIK3CB/PIK3R2 (p110 beta/p85 beta)	Adapta	Km app	-11	-8	-9	
359	PIK3CD/PIK3R1 (p110 delta/p85 alpha)	Adapta	Km app	78	79	79	4790
360	PIK3CG (p110 gamma)	Adapta	Кт арр	-4	-10	-7	
361	PIM1	ZLYTE	Кт арр	1	3	2	
362	PIM2	ZLYTE	Кт арр	5	4	5	
363	PIM3	ZLYTE	Кт арр	5	-5	0	
364	PIP4K2A	Adapta	10	7	-2	2	
365	PIP5K1A	Adapta	10	3	-4	0	
366	PIP5K1B	Adapta	10	4	0	2	
367	PIP5K1C	Adapta	10	-23	-21	-22	
368	PKMYT1	Lantha	n/a	6	10	8	
369	PKN1 (PRK1)	ZLYTE	Km app	5	0	2	
370	PKN2 (PRK2)	Lantha	n/a	-6	-4	-5	
371	PLK1	ZLYTE	Кт арр	7	6	7	
372	PLK2	ZLYTE	Кт арр	8	5	6	
373	PLK3	ZLYTE	Km app	19	5	12	
374	PLK4	Lantha	n/a	14	11	13	
375	PRKACA (PKA)	ZLYTE	Km app	6	8	7	
376	PRKACB (PRKAC beta)	Lantha	n/a	11	5	8	
377	PRKACG (PRKAC gamma)	Lantha	n/a	16	12	14	
378	PRKCA (PKC alpha)	ZLYTE	Km app	11	10	11	
379	PRKCB1 (PKC beta I)	ZLYTE	Km app	0	1	1	
380	PRKCB2 (PKC beta II)	ZLYTE	Km app	3	13	8	
381	PRKCD (PKC delta)		Кт арр	-9	-3	-6	
382			кт арр	-6	10	2	
383	PRKCG (PKC gamma)		кт арр	6	23	15	
384	PRKCH (PKC eta)		кт арр	1	14	1	
385			кт арр	5	U	2	
386			кт арр	3	10	/	
387	PRKCQ (PKC theta)	ZLYIE	кт арр	4	-6	-1	

				% Inhi	bition		
Entry	Kinase	Technology	ATP	1	2	% Inhibition mean	IC50 / nM
388	PRKCZ (PKC zeta)	ZLYTE	Кт арр	3	3	3	
389	PRKD1 (PKC mu)	ZLYTE	Km app	4	1	2	
390	PRKD2 (PKD2)	ZLYTE	Кт арр	2	1	2	
391	PRKG1	ZLYTE	Кт арр	7	11	9	
392	PRKG2 (PKG2)	ZLYTE	Кт арр	12	14	13	
393	PRKX	ZLYTE	Km app	5	14	10	
394	PTK2 (FAK)	ZLYTE	Кт арр	-2	-2	-2	
395	PTK2B (FAK2)	ZLYTE	Km app	-1	1	0	
396	PTK6 (Brk)	ZLYTE	Km app	-2	-2	-2	
397	RAF1 (cRAF) Y340D Y341D	ZLYTE	100	19	20	20	
398	RAF1 (cRAF) Y340D Y341D	Lantha	n/a	-3	-2	-3	
399	RET	ZLYTE	Km app	-2	-1	-2	
400	RET A883F	ZLYTE	Km app	-6	-4	-5	
401	RET G691S	Lantha	n/a	-17	-24	-20	
402	RET M918T	Lantha	n/a	-6	-25	-15	
403	RET S891A	ZLYTE	Km app	-4	-6	-5	
404	RET V804E	ZLYTE	Km app	0	-5	-3	
405	RET V804L	ZLYTE	Km app	1	-1	0	
406	RET V804M	Lantha	n/a	-15	-18	-16	
407	RET Y791F	ZLYTE	Km app	6	7	7	
408	RIPK2	Lantha	n/a	7	9	8	
409	RIPK3	Lantha	n/a	-48	-48	-48	
410	ROCK1	ZLYTE	Km app	1	-4	-1	
411	ROCK2	ZLYTE	Km app	10	8	9	
412	ROS1	ZLYTE	Km app	5	0	2	
413	RPS6KA1 (RSK1)	ZLYTE	Km app	14	6	10	
414	RPS6KA2 (RSK3)	ZLYTE	Km app	-8	9	0	
415	RPS6KA3 (RSK2)	ZLYTE	Km app	13	12	13	
416	RPS6KA4 (MSK2)	ZLYTE	Кт арр	4	6	5	
417	RPS6KA5 (MSK1)	ZLYTE	Кт арр	3	15	9	
418	RPS6KA6 (RSK4)	ZLYTE	Кт арр	5	16	11	
419	RPS6KB1 (p70S6K)	ZLYTE	Кт арр	-1	-1	-1	
420	RPS6KB2 (p70S6Kb)	ZLYTE	Кт арр	-2	0	-1	
421	SBK1	ZLYTE	Кт арр	3	4	4	
422	SGK (SGK1)	ZLYTE	Кт арр	10	22	16	
423	SGK2	ZLYTE	Кт арр	14	10	12	
424	SGKL (SGK3)	ZLYTE	Кт арр	0	6	3	
425	SIK1	Lantha	n/a	-4	1	-2	
426	SIK3	Lantha	n/a	7	-4	2	
427	SLK	Lantha	n/a	-9	-7	-8	
428	SNF1LK2	ZLYTE	Кт арр	4	1	2	
429	SPHK1	Adapta	Кт арр	22	27	24	
430	SPHK2	Adapta	10	75	74	75	2770
431	SRC	ZLYTE	Кт арр	-8	-2	-5	
432	SRC N1	ZLYTE	Кт арр	6	8	7	
433	SRMS (Srm)	ZLYTE	Кт арр	10	17	13	
434	SRPK1	ZLYTE	Кт арр	12	8	10	
435	SRPK2	ZLYTE	Km app	-7	4	-2	
436	STK16 (PKL12)	Lantha	n/a	-21	-11	-16	
437	STK17A (DRAK1)	Lantha	n/a	9	0	4	
438	STK17B (DRAK2)	Lantha	n/a	7	-11	-2	
439	STK22B (TSSK2)	ZLYTE	Кт арр	9	14	11	

		% Inhibition					
Entry	Kinase	Technology	ATP	1	2	% Inhibition mean	IC50 / nM
440	STK22D (TSSK1)	ZLYTE	Km app	4	1	2	
441	STK23 (MSSK1)	ZLYTE	Km app	2	4	3	
442	STK24 (MST3)	ZLYTE	Km app	12	8	10	
443	STK25 (YSK1)	ZLYTE	Km app	2	27	15	
444	STK3 (MST2)	ZLYTE	Km app	-3	-7	-5	
445	STK32B (YANK2)	Lantha	n/a	11	11	11	
446	STK32C (YANK3)	Lantha	n/a	-6	13	4	
447	STK33	Lantha	n/a	8	9	8	
448	STK38 (NDR)	Lantha	n/a	2	17	9	
449	STK38L (NDR2)	Lantha	n/a	-6	-8	-7	
450	STK39 (STLK3)	Lantha	, n/a	8	-16	-4	
451	STK4 (MST1)	ZLYTE	Km app	-1	-3	-2	
452	SYK	ZLYTE	Km app	6	9	7	
453	TAOK1	Lantha	n/a	-1	-2	-1	
454		ZLYTE	Km ann	-6	1	-2	
455		Lantha	n/a	-5	6	1	
456	TBK1		Km ann	4	5	5	
450	TEC	Lantha	n/a	_9	-4	-7	
458			Km ann	8	10	, 9	
450 159	TEK (TIE2) R8/9\/	Lantha	n/a	-14	-20	-17	
455	TEK (TIE2) V1108E	Lantha	n/a	_1/	-10	17 -12	
400			Km ann	-14	2	-12	
401	TEK (1122) 18973	Lantha	n/a	,	1/	7	
402		Lantha	n/a	_25	-7	-16	
403		Lantha	n/a	-25	-/	-10	
404		Lantha	n/a	4	15	J 14	
405		Lantha	n/a	-12	-13	-14	
400		Lantha	n/a	-5 2	-0 27	-5	
407		Lantha	n/a	-5 7	-27	-15	
408			ll/d Km ann	/	9	8	
409		ZLTIE	kii app	-9	9	0	
470		Lantha	n/a	11	4	/	
471		Lantha	n/a Kwa awa	1/	13	15	
472		ZLYTE	кт арр	1	10	5	
473		ZLYTE	кт арр	0	3	1	
474	TYRU3 (RSE)	ZLYTE	кт арр	1	0	1	
475	ULKI	Lantha	n/a	-2	-11	-/	
476	ULK2	Lantha	n/a	/	10	9	
4//	ULK3	Lantha	n/a	-14	-4	-9	
478	VRK2	Lantha	n/a	4	0	2	
479	WEE1	Lantha	n/a	-3	14	5	
480	WNK1	Lantha	n/a	-32	-24	-28	
481	WNK2	Lantha	n/a	29	9	19	
482	WNK3	Lantha	n/a	-2	-12	-7	
483	YES1	ZLYTE	Km app	5	5	5	
484	ZAK	Lantha	n/a	0	2	1	
485	ZAP70	ZLYTE	Кт арр	-3	-7	-5	

5.6 Immunoblotting

Cells were lysed in ice cold lysis buffer (20 mM Tris-HCl pH 8, 300 mM KCl, 10% Glycerol, 0.25% Nonidet P-40, 0.5 mM EDTA, 0.5 mM EGTA, 1 mM PMSF, 1x complete protease inhibitor) and passed 5X trough a 21G needle. After clearance by centrifugation protein concentrations were determined via Bradford assay (Bio-Rad Protein Reagent, cat# 5000006) and lysates normalized. Lysates were mixed with 4X sample buffer, boiled for 10 min, proteins separated by SDS-PAGE, then transferred to nitrocellulose membrane (Bio-Rad, cat# 1704159) using a Trans-Blot Turbo transfer system (Bio-Rad). Membranes were blocked with 5% skim milk (in TBST) and incubated with primary antibody overnight at 4°C. Membranes were washed with TBST and incubated with an HRP-conjugated secondary antibody diluted in 5% skim milk for 1 h at room temperature. After washing, protein detection was carried out using chemiluminescence and imaged using a ChemiDoc imaging system (Bio-Rad).

5.7 Live-cell microscopy

For live-cell imaging of Hek293A EGFP-WIPI2b cells, cells were seeded on poly-I-lysine coated 8well cover glass bottom chamber slides (Sarstedt, cat# 94.6190.802) and incubated for 24 h. Imaging was performed on a Zeiss Cell Observer spinning disk confocal (ANDOR iXon Ultra) (Carl Zeiss) equipped with a 63x immersion oil objective lens (Plan-Apochromat 1.40 Oil DIC M27) and a temperature-controlled hood maintained at 37°C and 5% CO₂. Quantification of puncta was performed using the spot tracking function of the open-source bioimage processing software, Icy.^[23]

5.8 Cellular thermal shift assay (CETSA) in cell lysate

Procedure:

Two T75 cell culture Flasks were seeded with each 6x10⁵ MCF7#2011 cells in 12 mL DMEM and incubated at 37°C and 5% CO₂ for three days. Cells were detached, transferred to two separate tubes and washed three times with PBS. Then 0.6 mL PBS containing 0.04% NP-40 Alternative were added to each tube and cells were lysed by means of freeze and thaw. Either 50 µM of Azaquindole-1 or DMSO were added to the lysates, samples were mixed and incubated for 10 min. Treated and non-treated lysates were divided into ten aliquots, each 50 µL in PCR tubes. The aliquots were individually heated at different temperatures (Eppendorf Mastercycler ep Gradient S). After the heat treatment the cell lysates were completely transferred to polycarbonate tubes and centrifuged (Beckman Optima MAX-TL) at 100,000 g, 4°C for 25 min. 16 µL of each supernatant was added with 4 µL of 5x loading buffer and incubated for 5 min at 95°C, before samples were analyzed by Immunoblotting. Proteins were separated by SDS-PAGE, and transferred to PDVF membrane using wet transfer. The membranes were blocked with Odvssev Blocking Buffer (TBS: Li-Cor) for 1 h and incubated with the primary antibody (PI3 Kinase Class III (D4E2) Rabbit mAb #3358 Cell Signalling in Odyssey blocking buffer containing 0.2% Tween-20) at 4°C over night. After washing with TBS-T (TBS containing 0.1 % Tween) the membrane was incubated with the secondary antibody coupled to IRDye® 800CW (Donkey anti-Rabbit IgG, Li-COR) for 1 h, in Odyssey blocking buffer containing 0.2% Tween-20 and 0.1 % SDS at room temperature. Membranes were washed with TBS-T, then TBS before images were taken (*Bio-Rad ChemiDoc*™ MP Imaging System).

Analysis: Images were analyzed with ImageJ (FUJI). Normalisation and all calculations were done with PRISM. (Curves: IC₅₀ variable slope \rightarrow turning points correspond to melting temperature in obtained curves).

5.9 VPS34 kinetic experiments

5.9.1 Experimental protocol

Determination of the kinetic parameters of **10w-j** against VPS34 was carried out by SignalChem (Kanada). VPS34 was cloned, expressed and purified at SignalChem using proprietary methods. Quality control testing is routinely performed on each of the SignalChem targets to ensure compliance to acceptable standards. The protein kinase assays were performed using the ADP-GIoTM assay kit purchased from Promega. The assay conditions for the kinases were optimized to yield acceptable enzymatic activity. In addition, the assays were optimized to give high signal-to-noise ratio. The optimized conditions are as follows:

The protein kinase assays were performed in duplicate at room temperature for 40 min in a final volume of 5 μ L in 384-well plates according to the following assay reaction recipe:

- Component 1. 1 μ L of diluted active protein kinase
- Component 2. 1 μ L of peptide substrate
- Component 3. 1 µL kinase assay buffer
- Component 4. 1 µL compound (various concentrations) or 10% DMSO
- **Component 5.** 1µL of ATP stock solution (final µM as below)

The following final ATP concentrations were attained in the experiment: 12.5, 25, 50, 100, 200, 400 μ M. The assay was started by incubating the reaction mixture in a 384-well plate at room temperature for 40 minutes. After the incubation period, the assay was terminated by the addition of 5 μ I of ADP-GloTM Reagent (Promega). The plate was shaken and then incubated for 40 minutes at ambient temperature. Then 10 μ L of Kinase Detection Reagent was added, the plate shaken and then incubated for further 30 min at ambient temperature. Readout of the Luminescence signal was performed using the ADP-GloTM Luminescence Protocol on a GloMax plate reader. A Blank control was set up that included all the assay components except the addition of the enzyme (replace with equal volume of kinase assay buffer). The corrected activity for protein kinase targets were determined by removing the blank control value. A nonlinear regression (curve fit) – mixed model inhibition analysis was run on GraphPad Prism using the obtained corrected data. Given Curves were generated from results of three independent runs (*n* = 3).

5.9.2 Michaelis–Menten Saturation Curves

Plotted below are the mean data \pm SD (n = 3):

5.9.3 %inhibition versus [10w-j] plot

Plotted below are the mean data \pm SD (n = 3):

5.9.4 Lineweaver–Burk Plot

Plotted below are the mean data \pm SD (n = 3):

	v pmol/s (0 nM)	v pmol/s (10 nM)	v pmol/s (30 nM)	v pmol/s (100 nM)	v pmol/s (300 nM)	v pmol/s (1000 nM)
V _{max}	0.037786667	0.041013333	0.04029	0.040976667	0.04354667	0.043653333
SD	0.003809544	0.005810074	0.004234745	0.004145362	0.00339038	0.003843491
K _m	117.7666667	153.6	158.6333333	193.6666667	322.5	815.3333333
SD	9.90633916	38.91760527	24.38309979	17.88748787	42.1369988	44.04409407

6.0 Synthetic experimental

6.1 General experimental

All non-aqueous reactions were performed under an atmosphere of N₂ unless otherwise stated. Dry solvents were received from Sigma-Aldrich or Acros in anhydrous quality and used without further purification. All other reaction solvents were HPLC grade. Milli-Q grade water was used in all experiments. Commercially available starting materials were obtained from Acros, Alfa Aesar, Enamine, Fluorochem, Key Organics, Sigma-Aldrich and TCI, and were used without purification. Thin layer chromatography (TLC) was performed on Merck silica gel aluminium plate with F-254 indicator. Visualisation of the plates was achieved using an ultraviolet lamp ($\lambda_{max} = 254$ nm) and/or KMnO₄ staining (1.5 g in 400 mL H₂O, 5 g NaHCO₃). Flash chromatography was carried out using silica gel (particle size 40-60 μ m, 230-400 mesh) from Acros Organics. Chromatography solvents were technical grade.

Mass-directed preparative HPLC purifications were carried out using an Agilent 1100/LC/MSD VL system equipped with a C18 column (flow 20.0 mL/min, solvent A: 0.1% TFA in H₂O, solvent B: 0.1% TFA in MeCN).

Chemical yields refer to pure isolated substances. Optical rotations were measured on a Schmitd + Hansch Polartronic HH8. $[\alpha]_D^{20}$ values are given in [° mL g⁻¹ dm⁻¹].

High resolution mass spectra (HRMS) were recorded on a LTQ Orbitrap mass spectrometer coupled to an Accela HPLC-System (HPLC column: Hypersyl GOLD, 50 mm x 1 mm, particle size 1.9 μ m, ionisation method: electron spray ionisation).

Proton (¹H) and carbon (¹³C) NMR spectral data were collected on *Bruker AVANCE NEO* (500 MHz), *Bruker AVANCE HD-III* (600 MHz) and *Bruker AVANCE HDX-III* (700 MHz)spectrometers. Chemical shifts (δ) are quoted in parts per million (ppm) and referenced to the residual solvent peak. Coupling constants (*J*) are quoted in Hertz (Hz) and splitting patterns reported in an abbreviated manner: app. (apparent), br. (broad), s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet). All fully characterised products were assigned with the aid of COSY and HSQC experiments. Compounds are numbered with respect to their IUPAC names.

6.2 General procedures

General procedure A: Preparation of the ketones

Step I: Isomerisation of the Cinchona alkaloid double bond:

Following a modification of a procedure by Portlock *et al.*,^[24] in two batches, quinidine or quinine $(2 \times 6.0 \text{ g}, 2 \times 18.4 \text{ mmol} [18.4 \text{ mmol} in each batch, 36.8 \text{ mmol} over 2 batches], 1.0 eq) was dissolved in 1:1 H₂O/EtOH (2 × 120 mL, [120 mL in each batch, 240 mL overall]) and concentrated HCI (2 × 15.6 mL, 181 mmol [181 mmol in each batch, 362 mmol over 2 batches], 10 eq.) was added. Rh/C (5 wt%, 2 × 100 mg [100 mg in each batch, 200 mg overall], 1.7 w/w%) was added and the reaction mixtures were heated at reflux (101.5°C) under Ar for 17 h. The reaction mixtures were cooled to rt and the two batches were combined and filtered through celite, flushing through with MeOH.[*] The filtrate was concentrated$ *in vacuo*.[†] To the resulting oil was added H₂O (100 mL). Lyophilisation (72 h) gave the internal alkenes**7**or**8**as the hydrochloride salts, which were carried forward to the next step without further purification.

Step II: Oxidative cleavage of the alkene to the ketone:

Following a modification of a procedure by Carroll *et al.*,^[25] the relevant hydrochloride salt **7** or **8** (5.0 mmol) was dissolved in 8:2 AcOH/H2O (24 mL) and K₂OsO₄•2H₂O (18 mg, 0.05 mmol, 1.0 mol%) was added. The reaction mixture was stirred at rt for 10 min, then cooled to 0 °C. NalO₄ (2.14 g, 10.0 mmol, 2.0 eq.) was added. The mixture was warmed to rt and stirred for 17 h. The mixture obtained was quenched with aqueous NaOH (10 M, ~50 mL) at 0°C until it was basic (tested with pH indicator paper). Sat. aq. Na₂SO₃ solution (10 mL) was added to destroy OsO₄. The resulting solution was extracted with 9:1 CHCl₃/MeOH (4 x 50 mL) and 8:2 CHCl₃/MeOH (2 x 50 mL).

^{*} Analysis of the crude reaction products by ¹H NMR spectroscopy showed complete conversion to a 2:1 mixture of Z/E alkenes.

[†] The HCl was scrubbed using 2.0 M NaOH (200 mL).

The combined organic fractions were dried over Na₂SO₄, filtered, and concentrated *in vacuo*. Flash column chromatography gave the ketones 5 or 6.

General Procedure B: Pd-catalysed indole formation

Following a modification of a procedure by Chen et al.,^[26] ketone 5 or 6 (100 mg, 0.32 mmol, 1.0 eq.), 2-iodoaniline (0.96 mmol, 3.0 eq.), DABCO (108 mg, 0.96 mmol, 3.0 eq.) and Pd(OAc)₂ (7 mg, 10 mol%) were added to a 7.0 mL reaction vial equipped with a screw-cap lid bearing a PTFE/silicone septum.[‡] The reactants were dissolved in anhydrous DMF (1.0 mL, 0.3 M) and degassed under a stream of Argon for 10 min. The lid was additionally sealed with parafilm and transferred to a pre-heated heating block at 105 °C (the solvent level in the vial was submerged below level of the heating block). The reaction progress was monitored every 24 h by HPLC-MS. In case of incomplete conversion.§ the reaction mixture was cooled to rt, and additional Pd(OAc)₂ (7 mg, 10 mol%) was added. The resulting solution was degassed under a steam of argon for 10 min and returned to the heating block for additional 24 h. Following complete conversion of starting ketone (or after a maximum 72 h reaction time) the reaction mixture was cooled to rt, diluted in MeOH (5 mL) and passed through a syringe filter^{**}. After removal of the solvents in vacuo the products 9 or 10 were purified by column chromatography and/or by mass-directed preparative HPLC (MeCN + 0.1% TFA/H₂O +0.1%TFA).

[‡] Supelco-27151 vials and Supelco-27019 lids purchased from Sigma-Aldrich

[§] As judged by the presence of the mass (MH+) of any unreacted starting ketone by LCMS. In cases where the conversion was deemed to be particularly poor (~5-10%), MgSO₄ (1.5 eq.) was added to the reaction mixture after 24 h, as stipulated. Chromafil® PET-45/15 MS (729023).

6.3 Compound data

6.3.1 Preparation of the Cinchona alkaloid derived ketones

(1S,2R,4S)-5-Ethylidene-2-[(S)-hydroxy(6-methoxyquinolin-4-yl)methyl]-1azabicyclo[2.2.2]octan-1-ium chloride 7

General procedure A, Part I, was followed using quinidine in two batches (2 × 6.0 g, 2 × 18.4 mmol [18.4 mmol in each batch, 36.8 mmol over 2 batches]) to give the title product **7** (15.2 g^{††}) as a pale yellow solid which was carried forward to the next step without further purification. ¹H NMR (500 MHz, CD₃OD, 2:1 mixture of Z/E alkenes, NH⁺ and OH not observed): δ 9.05-9.01 (1H, m, quinoline 2-H), 8.31-8.28 (1H, m,

quinoline 3-H), 8.22 (1H, d, J 9.3, quinoline 8-H), 7.91-7.84 (2H, m, quinoline 5-H and 7-H), 6.67 (0.67H, s, major C*H*(OH)), 6.65 (0.33H, s, minor CH(OH)), 5.58-5.52 (0.67H, m, major C=C*H*CH₃), 5.51-5.44 (0.33H, m, minor C=C*H*CH₃), 5.01-4.95 (1H, m, 6-H_A), 4.19 (2H, s, major OCH₃), 4.18 (1H, s, minor OCH₃), 4.09 (0.67H, d, *J* 15.9, major 6-H_B), 3.98-3.86 (1.33H, m, 2-H and minor 6-H_B), 3.64-3.56 (1H, m, 7-H_A), 3.37-3.25 (1H, m, 7-H_B), 3.13 (0.33H, s, minor 4-H), 2.68 (0.67H, s, major 4-H), 2.35 (1H, app. t, *J* 9.7, 3-H_A), 1.99-1.84 (2H, m, 8-H_A and 8-H_B), 1.72 (1H, d, *J* 6.9, minor C=CHCH₃), 1.63 (2H, d, *J* 6.9, major C=CHCH₃), 1.60-1.49 (1H, m, 3-H_B). ¹³C NMR (125 MHz, CD₃OD, 2:1 mixture of Z/E alkenes): δ 162.6 (2 peaks, Ar-C_q), 158.2 (2 peaks, Ar-C_q), 141.8 (quinoline 2-C), 134.9 (2 peaks, Ar-C_q), 132.6 (major 5-C), 131.7 (minor 5-C), 129.6 (quinoline 7-C), 129.2 (2 peaks, Ar-C_q), 123.9 (quinoline 8-C), 121.3 (quinoline 3-C), 119.5 (minor C=CHCH₃), 119.4 (major C=CHCH₃), 103.6 (2 peaks, quinoline 5-C), 68.3 (CH(OH)), 60.7 (major 2-C), 51.4 (major 6-C), 32.9 (major 4-C), 26.0 (minor 4-C), 24.6 (2 peaks, major 3-C or major 8-C), 23.9 (minor 3-C or minor 8-C), 12.8 (minor C=CHCH₃), 12.7 (major C=CHCH₃).

⁺⁺ Maximum theoretical yield = 13.3 g.

(1S,2S,4S)-5-Ethylidene-2-[(*R*)-hydroxy(6-methoxyquinolin-4-yl)methyl]-1azabicyclo[2.2.2]octan-1-ium chloride 8

General procedure A, Part I, was followed using quinine in two batches (2 × 6.0 g, 2 × 18.4 mmol [18.4 mmol in each batch, 36.8 mmol over 2 batches]) to give the title product **8** (14.9 g^{‡‡}) as a pale yellow solid which was carried forward to the next step without further purification. ¹H NMR (500 MHz, CD₃OD, 2:1 mixture of Z/E alkenes, NH⁺ and OH not observed): δ 9.08 (1H, d, *J* 3.4, quinoline 2-H), 8.38 (1H, d, *J* 3.4,

quinoline 3-H), 8.26 (1H, d, J 8.8, quinoline 8-H), 7.90 (0.67H, s, major quinoline 5-H), 7.88 (0.33H, s, minor quinoline 5-H), 7.83 (1H, d, J 8.8, quinoline 7-H), 6.71 (1H, s, CH(OH)), 5.56-5.49 (0.67H, m, major C=CHCH₃), 5.49-5.43 (0.33H, m, minor C=CHCH₃), 4.47-4.39 (1H, m, 7-H_A), 4.23 (1H, d, J 16.1, 6-H_A), 4.14-4.01 (1H, m, 6-H_B), 3.85-3.77 (0.67H, m, major 2-H), 3.77-3.67 (0.33H, s, minor 2-H), 3.47-3.38 (1H, m, 7-H_B), 3.17 (0.33H, s, minor 4-H), 2.71 (0.67H, s, major 4-H), 2.52-2.41 (1H, m, 3-H_A), 2.31-2.21 (1H, m, 8-H_A), 2.02-1.91 (1H, m, 8-H_B), 1.63 (1H, d, J 4.8, minor C=CHCH₃), 1.57 (2H, d, J 5.9, major C=CHCH₃), 1.53-1.41 (1H, m, 3-H_B). ¹³C NMR (125 MHz, CD₃OD, 2:1 mixture of Z/E alkenes): δ 162.5 (Ar-C_q), 158.3 (major Ar-C_q), 158.2 (minor Ar-C_q), 141.7 (2 peaks, quinoline 2-C), 134.8 (2 peaks, Ar-C_q), 131.9 (major 5-C), 131.0 (minor 5-C), 129.6 (major Ar-C_q), 129.5 (minor Ar-C_q), 129.1 (quinoline 7-C), 124.0 (minor quinoline 8-C), 123.9 (major quinoline 8-C), 121.4 (quinoline 3-C), 121.2 (minor $C = CHCH_3),$ quinoline 5-C), 103.5 (minor quinoline 5-C), 120.9 (major $C=CHCH_3$), 103.6 (major 68.1 (minor CH(OH)), 68.0 (major CH(OH)), 61.7 (major 2-C), 61.5 (minor 2-C), 58.7 (major OCH₃), 58.6 (minor OCH₃), 58.2 (minor 6-C), 56.5 (major 6-C), 46.0 (major 7-C), 45.8 (minor 7-C), 32.6 (major 4-C), 25.8 (minor 4-C), 25.6 (major 8-C), 24.7 (major 3-C), 24.5 (minor 8-C), 23.9 (minor 3-C), 13.0 (minor C=CHCH₃), 12.8 (major C=CHCH₃).

^{‡‡} Maximum theoretical yield = 13.3 g.

(1S,4S,6R)-6-[(S)-Hydroxy(6-methoxyquinolin-4-yl)methyl]-1-azabicyclo[2.2.2]octan-3-one 5

General Procedure A, Part II, was followed using compound **7** (2.0 g, assume 4.9 mmol). Flash column chromatography eluting with 5-35% (50:80:1 CH₂Cl₂:EtOH:NH₄OH_(sat. aq.)) in CH₂Cl₂ gave the title product **5** (591 mg,^{§§} 1.89 mmol, 38%) as a colourless solid. ¹H NMR (500 MHz, CD₃OD, OH not observed): δ 8.71 (1H, d, J 4.6, quinoline 2-H), 8.00 (1H, d, J 9.0,

quinoline 8-H), 7.72 (1H, d, *J* 4.6, quinoline 3-H), 7.50-7.44 (2H, m, quinoline 5-H and 7-H), 5.76 (1H, d, *J* 2.4, *CH*(OH)), 4.37 (1H, app. dd, *J* 18.7, 1.9, quinuclidine 2-H_A), 4.04 (3H, s, OCH₃), 3.41-3.36 (1H, m, quinuclidine 6-H), 3.26 (1H, d, *J* 18.7, quinuclidine 2-H_B), 3.20-3.10 (1H, m, quinuclidine 7-H_A), 2.99 (1H, ddd, *J* 13.9, 10.2, 6.8, quinuclidine 7-H_B), 2.50-2.38 (2H, m, quinuclidine 4-H and 5-H_A), 2.06-1.89 (2H, m, quinuclidine 8-H), 1.74-1.65 (1H, m, quinuclidine 5-H_B). ¹³**C NMR** (125 MHz, CD₃OD, quinuclidine 2-C not observed due to deuterium exchange): δ 220.5 (quinuclidine 3-C), 159.8 (quinoline 6-C), 150.0 (Ar-Cq), 148.2 (quinoline 2-C), 144.7 (Ar-Cq), 131.4 (quinoline 8-C), 127.9 (Ar-Cq), 123.4 (quinoline 7-C), 119.8 (quinoline 3-C), 102.2 (quinuclidine 4-C), 25.3 (quinuclidine 5-C or 8-C), 25.2 (quinuclidine 5-C or 8-C). **HRMS** (ESI): C₁₈H₂₁N₂O₃ [M+H]⁺; calculated: 313.1549, found: 313.1547. [*α*]^{*D*}_{*Q*} = +122 (c. 1.0, MeOH).

^{§§} Average yield from 8 reaction attempts.

(1S,4S,6S)-6-[(R)-Hydroxy(6-methoxyquinolin-4-yl)methyl]-1-azabicyclo[2.2.2]octan-3-one 6

General Procedure A, Part II, was followed using compound **8** (2.0 g, assume 5.1 mmol). Flash column chromatography eluting with 5-35% {50:80:1 CH₂Cl₂:EtOH:NH₄OH_(sat. aq.)} in CH₂Cl₂ gave the title product **6** (788 mg,^{***} 2.52 mmol, 50%) as a colourless solid. ¹H NMR (500 MHz, CD₃OD, OH not observed): δ 8.67 (1H, d, J 4.6, quinoline 2-H), 7.94 (1H, d, J 9.2,

quinoline 8-H), 7.71 (1H, d, J 4.6, quinoline 3-H), 7.46 (1H, d, J 2.7, quinoline 5-H), 7.42 (1H, dd, J 9.2, 2.7, quinoline 7-H), 5.69 (1H, d, J 3.7, CH(OH)), 3.98 (3H, s, OCH₃), 3.90-3.82 (1H, m, quinuclidine 7-H_A), 3.37-3.23 (3H, m, quinuclidine 2-H_A and 2-H_B and quinuclidine 6-H), 2.88-2.80 (1H, m, quinuclidine 7-H_B), 2.49-2.38 (2 H, m, quinuclidine 4-H and quinuclidine 5-H_A), 2.27-2.19 (1H, m, quinuclidine 8-H_A), 1.97-1.86 (1H, m, quinuclidine 8-H_B), 1.74-1.65 (1H, m, quinuclidine 5-H_B). ¹³C NMR (125 MHz, CD₃OD): δ 220.2 (quinuclidine 3-C), 159.7 (quinoline 6-C), 150.5 (Ar-C_q), 148.2 (quinoline 2-C), 144.8 (Ar-C_q), 131.3 (quinoline 8-C), 128.2 (Ar-C_q), 123.4 (quinoline 7-C), 120.0 (quinoline 3-C), 102.6 (quinoline 5-C), 71.9 (CH(OH)), 65.5 (2-C), 61.4 (quinuclidine 6-C), 56.4 (OCH₃), 43.6 (quinuclidine 7-C), 41.9 (quinuclidine 4-C), 26.1 (quinuclidine 5-C), 25.8 (quinuclidine 8-C). HRMS (ESI): C₁₈H₂₁N₂O₃ [M+H]⁺; calculated: 313.1547, found: 313.1548. $[\alpha]_{20}^{D} = -147$ (c. 0.1, MeOH).

⁶³

^{***} Average yield from 10 reaction attempts.

64

6.3.2 Preparation of the Cinchona alkaloid derived indoles

4, 5, 6, 7 = R = H: 9a (49%); 10a (17%)

4 = R; 5-7 = H. R =

Me: 9b (49%); 10b (46%) CO₂Me: 9c (18%)^a; 10c (12%)^a Cl: 9d (77%)^b; 10d (10%)^b 5 = R; 4, 6-7 = H. R = Me: 9e (45%); 10e (4%) CO₂H: 9f (14%)^{*a*,*d*}; 10f (9%)^{*b*,*d*} CO₂Me: 9g (3%)^{*a*,*d*} CF₃: 9h (25%); 10h (23%)^{*a*} NO₂: 9i (12%)^{*a*,*d*}; 10i (3%)^{*a*,*d*} OMe: 9j (23%)^{*a*,*c*}; 10j (6%)^{*a*} OCF₃: 10k (65%)^{*b*} F: 9l (19%)^{*d*}; 10l (47%) Cl: 9m (48%); 10m (59%)^{*b*,*d*} Br: 9n (8%)^{*d*}; 10n (15%)

6 = R; 4-5, 7 = H. R = Me: 90 $(12\%)^{a,d}$; 100 (4%)CO₂H: 9p $(11\%)^{b,d}$; 10p $(14\%)^d$ CO₂Me: 9q $(7\%)^a$ CF₃: 9r (25%); 10r $(70\%)^b$ CI: 9s (26%); 10s (20%) Br: 9t $(9\%)^{a,d}$; 10t $(27\%)^a$

7 = R; 4-6 = H. R =

OMe: **9u** (16%)^{*a,d*}; **10u** (33%)^{*a,d*}

9v (50%)^d;

10v (65%)^b

9w (17%)^{*d*}; **10w** (13%)^{*a*,*d*}

(*S*)-(*11S*, *13R*)-1,9-Diazatetracyclo[9.2.2.0²,¹⁰.0^{3,8}]pentadeca-2(10),3(8),4,6-tetraen-13-yl(6methoxyquinolin-4-yl)methanol 9a

Prepared according to General Procedure B using ketone **5** and 20 mol% Pd(OAc)₂ (48 h). Flash column chromatography eluting with 20% {50:80:1 CH₂Cl₂:EtOH:NH₄OH} in CH₂Cl₂ gave the *title compound* **9a** (60 mg, 0.16 mmol, 49%) as a pale brown solid. ¹H NMR (500 MHz, CD₃OD, NH and OH not observed): δ 8.70 (1H, d, *J* 4.6, quinoline 2-H), 7.95 (1H, d, *J* 9.2,

quinoline 8-H), 7.53 (1H, d, *J* 4.6, quinoline 3-H), 7.39-7.34 (2H, m, 7-H and quinoline 7-H), 7.16 (1H, d, *J* 2.3, quinoline 5-H), 7.03-6.97 (1H, m, 6-H), 6.85-6.76 (2H, m, 4-H and 5-H), 5.47 (1H, s, OH), 4.55 (1H, d, *J* 9.0, *CH*(OH)), 4.01-3.90 (1H, m, 13-H), 3.52-3.48 (1H, m, 11-H), 3.42 (3H, s, OCH₃), 3.23-3.13 (1H, m, 14-H_A), 2.46 (1H, app. td, *J* 11.1, 5.1, 14-H_B), 2.27 (1H, ddd, *J* 12.4, 8.2, 3.0, 12-H_A), 2.00-1.92 (1H, m, 15-H_A), 1.91-1.84 (1H, m, 12-H_B), 1.55-1.46 (1H, m, 15-H_B). ¹³**C NMR** (125 MHz, CD₃OD, 1 × Ar-C_q not observed): δ 159.0 (quinoline 6-C), 150.2 (Ar-C_q), 148.2 (quinoline 2-C), 145.2 (Ar-C_q), 142.7 (Ar-C_q), 135.9 (Ar-C_q), 131.0 (quinoline 8-C), 129.2 (Ar-C_q), 124.0 (Ar-C_q), 123.6 (quinoline 7-C), 121.5 (quinoline 3-C), 121.1 (6-C), 120.2 (4-C or 5-C), 117.6 (4-C or 5-C), 112.6 (7-C), 103.4 (quinoline 5-C). **T4MS** (ESI): C₂₄H₂₄N₃O₂ [M+H]⁺; calculated: 386.1869, found: 386.1866. [*α*]^{*D*}₂₀ = +116 (c. 0.2, MeOH).

(S)-(6-Methoxyquinolin-4-yl)[(11S,13R)-4-methyl-1,9diazatetracyclo[9.2.2.0^{2,10}.0^{3,8}]pentadeca-2(10),3(8),4,6-tetraen-13-yl]methanol 9b

Prepared according to General Procedure B using ketone **5** and 20 mol% Pd(OAc)₂ (48 h). Flash column chromatography eluting with 5-35% {50:80:1 CH₂Cl₂:EtOH:NH₄OH} in CH₂Cl₂ gave the *title compound* **9b** (63 mg, 0.16 mmol, 49%) as a brown solid. ¹H NMR (500 MHz, CD₃OD, NH and OH not observed): δ 8.67 (1H, d, *J* 4.7, quinoline 2-H), 7.88 (1H,

d, J 9.2, quinoline 8-H), 7.65 (1H, d, J 4.7, quinoline 3-H), 7.29 (1H, dd, J 9.2, 2.6, quinoline 7-H), 7.10 (1H, d, J 8.1, 7-H), 6.88 (1H, d, J 2.6, quinoline 5-H), 6.80 (1H, app. t, J 7.6, 6-H), 6.40 (1H, d, J7.1, 5-H), 4.59 (1H, d, J8.9, CH(OH)), 3.86 (1H, app. td, J8.5, 5.2, 13-H), 3.43-3.39 (1H, m, 11-H), 3.26-3.21 (4H, m, includes 14-H_A; and at δ 3.26: 3H, s, OCH₃), 2.52 (1H, ddd, *J* 12.4, 10.8, 4.9, 14-H_B), 2.21-2.14 (1H, m, 15-H_A), 1.92-1.82 (2H, m, 12-H_A and 15-H_B), 1.47-1.38 (4H, m, includes 12-H_B; and at δ 1.44: 3H, s, CH₃). ¹³C NMR (125 MHz, CD₃OD): δ 159.2 (quinoline 6-C), 150.2 (Ar-C_q), 148.1 (quinoline 2-C), 145.0 $(Ar-C_q)$, 142.5 $(Ar-C_q)$, 135.7 $(Ar-C_q)$, 124.0 130.8 (quinolone 8-C), 129.8 $(Ar-C_q),$ 129.2 $(Ar-C_q),$ $(Ar-C_{a})$. 123.9 $(Ar-C_{a})$. 123.7 (quinolone 7-C), 121.0 (5-C or 6-C), 120.9 (5-C or 6-C), 120.6 (quinoline 3-C), 109.8 (7-C), 102.3 (quinoline 5-C), 72.2 (CH(OH)), 65.5 (13-C), 55.5 (OCH₃), 54.1 (14-C), 35.2 (15-C), 29.2 (11-C and 12-C), 17.9 (C_qCH₃). **HRMS** (ESI): C₂₅H₂₆N₃O₂ [M+H]⁺; calculated: 400.2020, found: 400.2010. $[\alpha]_{20}^{D} = +317$ (c. 0.1, MeOH).

Methyl (*11S*, *13R*)-13-[(*S*)-hydroxy(6-methoxyquinolin-4-yl)methyl]-1,9diazatetracyclo[9.2.2.0^{2,10}.0^{3,8}]pentadeca-2(10),3(8),4,6-tetraene-4-carboxylate 9c

Prepared according to General Procedure B using ketone **5** and 30 mol% $Pd(OAc)_2$ (72 h). Flash column chromatography eluting with 5-20% {50:80:1 CH₂Cl₂:EtOH:NH₄OH} in CH₂Cl₂ gave the *title compound* **9c** (25 mg, 56 µmol, 18%) as a pale brown solid. ¹H NMR (700 MHz, CD₃OD, NH and OH not observed): δ 8.75 (1H, d, *J* 4.4, quinoline 2-H), 8.15 (1H,

app. s, 5-H), 8.01 (1H, d, J 9.1, quinoline 8-H), 7.57 (1H, d, J 8.3, 7-H), 7.55 (1H, d, J 4.4, quinoline 3-H), 7.43 (1H, dd, J 9.1, 2.3, quinoline 7-H), 7.20 (1H, s, quinoline 5-H), 6.85 (1H, app. d, J 8.2, 6-H), 4.58 (1H, d, J 8.6, C*H*(OH)), 4.02-3.94 (1H, m, 13-H), 3.94 (3H, s, CO₂CH₃), 3.57 (1H, app. s, 11-H), 3.49 (3H, s, ArOCH₃), 3.27-3.21 (1H, m, 14-H_A), 2.54-2.48 (1H, m, 14-H_B), 2.35-2.30 (1H, m, 15-H_A), 2.07-2.00 (1H, m, 12-H_A), 1.95-1.89 (1H, m, 15-H_B), 1.60-1.53 (1H, m, 12-H_B). ¹³C NMR (125 MHz, CD₃OD): δ 170.1 (*C*O₂CH₃), 159.1 (quinoline 6-C), 150.3 (quinoline 2-C), 148.2 (Ar-Cq), 147.7 (Ar-Cq), 145.2 (Ar-Cq), 135.0 (Ar-Cq), 131.1 (quinoline 8-C), 129.1 (Ar-Cq), 127.5 (Ar-Cq), 123.5 (quinoline 7-C), 123.1 (Ar-Cq), 122.3 (Ar-Cq), 121.4 (2 peaks, 7-C and quinoline 3-C), 117.0 (6-C), 115.1 (5-C), 103.4 (quinoline 5-C), 74.0 (CH(OH)) 66.2 (13-C), 55.5 (ArOCH₃), 54.3 (14-C), 52.4 (CO₂CH₃), 34.9 (15-C), 29.4 (11-C), 28.7 (12-C). HRMS (ESI): C₂₆H₂₆N₃O₄ [M+H]⁺; calculated: 444.1918, found: 444.1916. [α]^{*p*}₂₀ = +56.5 (c. 0.2, MeOH).

(*S*)-[(*11S*, *13R*)-4-Chloro-1,9-diazatetracyclo[9.2.2.0^{2,10}.0^{3,8}]pentadeca-2(10),3(8),4,6-tetraen-13-yl](6-methoxyquinolin-4-yl)methanol 9d

Prepared according to General Procedure B using ketone **5** and 10 mol% $Pd(OAc)_2$ (24 h). Flash column chromatography eluting with 5-35% {50:80:1 CH₂Cl₂:EtOH:NH₄OH} in CH₂Cl₂ gave the *title compound* **9d** (103 mg, 0.25 mmol, 77%) as a brown solid. ¹H NMR (500 MHz, CD₃OD, NH and OH not observed): δ 8.65 (1H, d, *J* 4.7, quinoline 2-H), 7.91 (1H,

d, J 9.2, quinoline 8-H), 7.60 (1H, d, J 4.7, quinoline 3-H), 7.34 (1H, dd, J 9.2, 2.6, quinoline 7-H), 7.29 (1H, d, J 8.1, 5-H), 7.18 (1H, d, J 2.6, quinoline 5-H), 6.91 (1H, app. t, J 7.8, 6-H), 6.76 (1H, d, J 7.5, 7-H), 4.83 (1H, d, J 7.5, C*H*(OH)), 3.86 (1H, app. dd, J 13.4, 7.8, 13-H), 3.54 (3H, s, OCH₃), 3.50-3.44 (1H, m, 11-H), 3.30-3.26 (1H, m, 14-H_A), 2.60 (1H, ddd, J 12.5, 10.8, 5.1, 14-H_B), 2.11-2.04 (1H, m, 15-H_A), 1.96-1.85 (2H, m, 12-H_A and 15-H_B), 1.54-1.45 (1H, m, 12-H_B). ¹³C NMR (125 MHz, CD₃OD): δ 159.3 (quinoline 6-C), 150.0 (Ar-C_q), 148.0 (quinoline 2-C), 145.0 (Ar-C_q), 144.4 (Ar-C_q), 136.9 (Ar-C_q), 130.9 (quinoline 8-C), 129.6 (Ar-C_q), 124.4 (Ar-C_q), 123.4 (quinoline 7-C), 122.8 (Ar-C_q), 122.3 (Ar-C_q), 121.3 (6-C), 120.7 (7-C and quinoline 3-C), 111.3 (5-C), 102.7 (quinoline 5-C), 72.7 (CH(OH)), 65.3 (13-C), 55.8 (OCH₃), 54.3 (14-C), 33.9 (15--C), 29.3 (11-C), 28.8 (12-C). HRMS (ESI): C₂₄H₂₃³⁵ClN₃O₂ [M+H]⁺; calculated: 420.1473, found: 420.1473. [α]^D₂₀ = +186 (c. 0.1, MeOH).

(S)-(6-Methoxyquinolin-4-yl)[(11S,13R)-5-methyl-1,9-

$diazate tracyclo [9.2.2.0^{2,10}.0^{3,8}] pentade ca-2(10), 3(8), 4, 6-tetra en-13-yl] methanol 9e$

Prepared according to General Procedure B using ketone **5** and 20 mol% Pd(OAc)₂ (48 h). Flash column chromatography eluting with 5-20% {50:80:1 CH₂Cl₂:EtOH:NH₄OH} in CH₂Cl₂ gave the *title compound* **9e** (58 mg, 0.15 mmol, 45%) as a pale brown solid. ¹H NMR (700 MHz, CD₃OD, NH and OH not observed): δ 8.77 (1H, d, *J* 4.6, quinoline 2-H),

8.01 (1H, d, J 9.1, quinoline 8-H), 7.64 (1H, d, J 4.6, quinoline 3-H), 7.41 (1H, dd, J 9.1, 2.5, quinolone 7-H), 7.27 (1H, d, J 8.2, 7-H), 7.01 (1H, d, J 2.5, quinoline 5-H), 6.86 (1H, dd, J 8.2, 1.0, 6-H), 6.38 (1H, s, 4-H), 4.58 (1H, d, J 9.3, CH(OH)), 3.93 (1H, td, J 8.5, 5.2, 13-H), 3.52-3.49 (1H, m, 11-H), 3.37 (3H, s, OCH₃), 3.20 (1H, ddd, J 12.6, 8.7, 4.0, 14-H_A), 2.50-2.44 (1H, m, 14-H_B), 2.34 (1H, ddd, J 12.6, 8.1, 3.0, 12-H_A), 2.21 (3H, s, CH₃), 2.02-1.97 (1H, m, 15-H_A), 1.91-1.87 (1H, m, 12-H_B), 1.57-1.51 (1H, m, 15-H_B). ¹³C NMR (175 MHz, CD₃OD): δ 158.9 (quinoline 6-C), 150.6 (Ar-C_q), 148.3 (quinoline 2-C), 145.4 (Ar-C_q), 142.9 (Ar-C_q), 134.3 $(Ar-C_{\alpha}).$ 130.9 (quinolone 8-C), 129.3 (Ar-Cq), 129.2 (Ar-Cq), 124.2 (Ar-Cq), 123.7 (quinoline 7-C), 122.6 (6-C), 121.9 (Ar-C_q), 121.1 (quinoline 3-C), 117.8 (4-C), 112.2 (7-C), 103.2 (quinoline 5-C), 73.2 (CH(OH)), 66.8 (13-C), 55.4 (OCH₃), 54.2 (14-C), 35.6 (12-C), 29.2 (11-C or 15-C), 29.1 (11-C or 15-C), 21.6 (CH₃). HRMS (ESI): C₂₅H₂₆N₃O₂ [M+H]⁺; calculated: 400.2020, found: 400.2017. $[\alpha]_{20}^{D} = -12$ (c. 0.1, MeOH).

(*1R*, *11S*, *13R*)-5-Carboxy-13-[(*S*)-hydroxy(6-methoxyquinolin-4-yl)methyl]-1,9-diazatetracyclo[9.2.2.0^{2,10}.0^{3,8}]pentadeca-2(10),3(8),4,6-tetraen-1-ium trifluoroacetate 9f

Prepared according to General Procedure B using ketone 5 and 30 mol% Pd(OAc)₂ (72 h). Purification by mass-directed preparative HPLC (MeCN in H₂O + 0.1% TFA; Rt = 6.2 min) followed by flash column chromatography eluting with 1:9 MeOH/CH₂Cl₂ gave the *title compound* 9f (24 mg,

45 μmol, 14%) as a colourless solid. ¹H NMR (600 MHz, CD₃OD, CO₂H, NH⁺, NH and OH not observed): δ 8.93 (1H, d, J 5.4, quinoline 2-H), 8.17 (1H, d, J 9.4, quinoline 8-H), 8.03 (1H, d, J 5.5, quinoline 3-H), 7.92-7.87 (2H, m, indole 4-H and indole 6-H), 7.75 (1H, dd, J9.4, 2.5, quinoline 7-H), 7.58 (1H, d, J 8.6, indole 7-H), 7.39 (1H, d, J 2.5, quinoline 5-H), 5.56 (1H, d, J 6.0, CH(OH)), 4.65-4.60 (1H, m, 13-H), 4.00-3.93 (1H, m, 14-H_A), 3.87-3.83 (1H, m, 11-H), 3.69 (3H, s, OCH₃), 3.19-3.11 (1H, m, 14-H_B), 2.38-2.32 (1H, m, 12-H_A), 2.31-2.22 (1H, m, 15-H_A), 2.15-2.10 (1H, m, 12-H_B), 1.91-1.83 (1H, m, 15-H_B). ¹³C NMR (125 MHz, CD₃OD, CF₃CO₂⁻ not observed): δ 170.4 (CO₂H), 170.0 (indole 5-C), 163.1 (q, J_{CF} 38.1, CF₃CO₂⁻), 161.6 (quinoline 6-C), 150.2 (Ar-C_a), (quinoline 2-C), 141.6 (Ar-C_a), (Ar-C_a), 143.1 138.2 129.4 $(Ar-C_{a})$. 128.5 (quinoline 7-C), 125.3 (quinoline 8-C), 124.5 (indole 4-C or indole 6-C), 124.5 (Ar-Cq), 122.4 (Ar-C_q), 122.1 8 (quinoline 3-C), 120.4 (indole 4-C or indole 6-C), 114.1 (Ar-C_q), 113.2 (indole 7-C), 103.4 (quinoline 5-C), 69.7 (CH(OH)), 68.1 (13-C), 57.1 (14-C), 56.6 (OCH₃), 30.6 (12-C), 28.6 (11-C), 25.4 (15-C). HRMS (ESI): C₂₅H₂₄O₄N₃ [M+H]⁺; calculated: 430.17613, found: 430.17615. $[\alpha]_{20}^{D} = +42$ (c. 0.1, MeOH).

(*1R*, *11S*, *13R*)-13-[(*S*)-hydroxy(6-methoxyquinolin-4-yl)methyl]-5-(methoxycarbonyl)-1,9diazatetracyclo[9.2.2.0^{2,10}.0^{3,8}]pentadeca-2(10),3(8),4,6-tetraen-1-ium trifluoroacetate 9g

Prepared according to General Procedure B using ketone **5** and 30 mol% Pd(OAc)₂ (72 h). Flash column chromatography eluting with 1:9 to 1:4 ($\{50:80:1 \text{ CH}_2\text{Cl}_2:\text{EtOH}:NH_4\text{OH}\}/CH_2\text{Cl}_2$) followed by mass-directed preparative HPLC (MeCN in H₂O + 0.1% TFA; Rt = 12 min) gave the *title compound* **9g** (6 mg,

10 μmol, 3%) as a yellow solid. ¹H NMR (600 MHz, CD₃OD, NH⁺, NH and OH not observed): δ 8.86 (1H, d, J 5.0, quinoline 2-H), 8.12 (1H, d, J 9.3, quinoline 8-H), 7.89 (1H, dd, J 8.6, 1.4, indole 6-H), 7.86 (1H, d, J 5.0, quinoline 2-H), 7.73 (1H, s, indole 4-H), 7.61 (1H, dd, J 9.3, 2.6, quinoline 7-H), 7.58 (1H, d, J 8.6, indole 7-H), 7.19 (1H, d, J 2.3, quinoline 5-H), 5.28 (1H, d, J 6.7, CH(OH)), 4.59-4.55 (1H, m, 13-H), 3.94-3.88 (4H, m, CO₂CH₃ or OCH₃ and 14-H_A), 3.86-3.83 (1H, m, 11-H), 3.56 (3H, s, CO₂CH₃ or OCH₃), 3.11-3.04 (1H, m, 14-H_B), 2.45-2.39 (1H, m, 12-H_A), 2.32-2.26 (1H, m, 15-H_A), 2.13-2.09 (1H, m, 12-H_B), 1.88-1.81 (1H, m, 15-H_B). ¹³C NMR (150 MHz, CD₃OD, CF₃CO₂⁻ not observed): δ 169.1 (CO₂CH₃), 163.2 (q, J_{CF} 37.2, CF₃CO₂⁻), 160.7 (quinoline 6-C), 145.6 (quinoline 2-C), 142.1 (Ar-Cq), 141.9 (Ar-Cq), 138.2 (Ar-Cq), 128.9 (Ar-Cq), 128.2 (quinolone 8-C), 126.5 (quinoline 7-C), 124.2 (Ar-Cq), 124.0 (Ar-Cq), 123.8 (indole 6-C), 121.8 (quinoline 3-C), 120.2 (Ar-C_q), 119.9 (Ar-C_q), 113.3 (indole 7-C), 102.9 (quinoline 5-C), 70.0 (CH(OH)), 68.4 (13-C), 56.9 (14-C), 56.2 (CO₂CH₃ or OCH₃), 52.4 (CO₂CH₃ or OCH₃), 31.3 (12-C), 28.7 (11-C), 25.7 (15-C). HRMS (ESI): C₂₆H₂₆O₄N₃ [M+H]⁺; calculated: 444.1918, found: 444.1918; C₂₆H₂₅O₄NaN₃ [M+Na]⁺; calculated: 466.1737, found: 466.1738. $[\alpha]_{20}^{D} = +150$ (c. 0.1, MeOH).
(S)-(6-Methoxyquinolin-4-yl)[(*11S*, *13R*)-5-(trifluoromethyl)-1,9diazatetracyclo[9.2.2.0^{2,10}.0^{3,8}]pentadeca-2(10),3(8),4,6-tetraen-13-yl]methanol 9h

Prepared according to General Procedure B using ketone **5** and 20 mol% Pd(OAc)₂ (48 h). Flash column chromatography eluting with 1:9 to 1:4 ({50:80:1 CH₂Cl₂:EtOH:NH₄OH}/CH₂Cl₂) gave the *title compound* **9h** (36 mg, 80 μ mol, 25%) as a yellow solid. ¹H NMR (500 MHz, CD₃OD): δ 8.71 (1H, d, *J* 4.6, quinoline 2-H), 7.97 (1H, d, *J* 9.3, quinoline 8-H),

7.54-7.49 (2H, m, quinoline 3-H and indole 7-H), 7.38 (1H, dd, *J* 9.3, 2.7, quinoline 7-H), 7.27 (1H, dd, *J* 8.6, 1.7, indole 6-H), 7.10 (1H, d, *J* 2.7, quinoline 5-H), 7.07 (1H, s, indole 4-H), 4.56 (1H, d, *J* 8.8, C*H*(OH)), 3.95 (1H, app. td, *J* 8.5, 5.3, 13-H), 3.57-3.54 (1H, m, 11-H), 3.41 (3 H, s, OCH₃), 3.26-3.20 (1H, m, 14-H_A), 2.51-2.44 (1H, m, 14-H_B), 2.35-2.28 (1H, m, 12-H_A), 2.01-1.98 (1H, m, 15-H_A), 1.94-1.84 (1H, m, 12-H_B), 1.58-1.46 (1H, m, 15-H_B). ¹³**C** NMR (125 MHz, CD₃OD): δ 159.1 (quinoline 6-C), 150.2 (Ar-C_q), 145.3 (quinoline 2-C), 145.2 (Ar-C_q), 137.1 (Ar-C_q), 130.9 (quinoline 8-C), 129.0 (Ar-C_q), 128.0 (Ar-C_q), 126.9 (q, *J*_{CF} 270.7, CF₃), 125.8 (Ar-C_q), 123.8 (quinoline 7-C), 123.3 (Ar-C_q), 122.5 (q, *J*_{CF} 31.3, indole 5-C), 121.3 (quinoline 3-C), 117.5 (q, *J*_{CF} 3.8, indole 6-C), 115.1 (q, *J*_{CF} 4.6, indole 4-C), 113.1 (indole 7-C), 102.9 (quinoline 5-C), 73.8 (CH(OH)), 66.2 (13-C), 55.4 (OCH₃), 54.3 (14-C), 35.1 (12-C), 29.3 (11-C), 28.9 (15-C). HRMS (ESI): C₂₅H₂₃O₂N₃F₃ [M+H]⁺; calculated: 454.1737, found: 454.1734. [*a*]^{*p*}_{*Q*0} = +174 (c. 0.1, MeOH).

(*1R*, *11S*, *13R*)-13-[(*S*)-Hydroxy(6-methoxyquinolin-4-yl)methyl]-5-nitro-1,9diazatetracyclo[9.2.2.0^{2,10}.0^{3,8}]pentadeca-2(10),3(8),4,6-tetraen-1-ium trifluoroacetate 9i

Prepared according to General Procedure B using ketone **5** and 30 mol% Pd(OAc)₂ (96 h). Flash column chromatography eluting with 1:9 to 1:3 ($\{50:80:1 \text{ CH}_2\text{Cl}_2:\text{EtOH}:NH_4\text{OH}\}/CH_2\text{Cl}_2$) followed by mass-directed preparative HPLC (MeCN in H₂O + 0.1% TFA; Rt = 9.0 min) gave the *title compound* **9i** (20 mg,

38 μmol, 12%) as a yellow solid. ¹H NMR (500 MHz, CD₃OD, NH⁺, NH and OH not observed): δ 8.93 (1H, d, *J* 5.5, quinoline 2-H), 8.18 (1H, d, *J* 9.4, quinoline 8-H), 8.16 (1H, d, *J* 2.4, indole 4-H), 8.11 (1H, dd, *J* 9.1, 2.4, indole 6-H), 8.01 (1H, d, *J* 5.5, quinoline 3-H), 7.73 (1H, dd, *J* 9.4, 2.6, quinoline 7-H), 7.65 (1H, d, *J* 9.1, indole 7-H), 7.43 (1H, d, *J* 2.6, quinoline 5-H), 5.70 (1H, d, *J* 5.4, *CH*(OH)), 4.55-4.50 (1H, m, 13-H), 3.97-3.92 (1H, m, 14-H_A), 3.87-3.83 (1H, m, 11-H), 3.74 (3 H, s, OCH₃), 3.17-3.10 (1H, m, 14-H_B), 2.29-2.21 (2 H, m, 12-H_A and 15-H_A), 2.12-2.06 (1H, m, 15-H_B), 1.90-1.81 (1H, m, 12-H_B). ¹³**C NMR** (125 MHz, CD₃OD): δ 162.7 (d, *J*_{CF} 36.5, CF₃CO₂⁻), 161.5 (quinoline 6-C), 155.8 (Ar-C_q), 144.0 (Ar-C_q), 143.5 (Ar-C_q), 143.3 (quinoline 2-C), 138.6 (Ar-C_q), 137.3 (Ar-C_q), 129.3 (Ar-C_q), 128.3 (quinoline 7-H), 125.5 (quinoline 8-C), 121.8 (quinoline 3-C), 119.9 (Ar-C_q), 118.0 (q, *J*_{CF} 291.5, *C*F₃CO₂⁻), 117.9 (indole 6-C), 116.2 (Ar-C_q), 114.7 (indole 4-C), 113.7 (indole 7-C), 103.3 (quinoline 5-C), 69.5 (CH(OH)), 67.6 (13-C), 56.7 (OCH₃), 56.7 (14-C), 30.5 (12-C), 28.8 (11-C), 25.4 (15-C). **HRMS** (ESI): C₂₄H₂₃O₄N₄ [M+H]⁺; calculated: 431.1714 found: 431.1709. [*a*]^D₂₀ = +199 (c. 0.1, MeOH).

(*S*)-[(*11S*, *13R*)-5-Methoxy-1,9-diazatetracyclo[9.2.2.0^{2,10}.0^{3,8}]pentadeca-2(10),3(8),4,6-tetraen-13-yl](6-methoxyquinolin-4-yl)methanol 9j

Prepared according to General Procedure B using ketone **5** and 6.0 eq. DABCO (added in one portion at the start of the reaction) and 30 mol% $Pd(OAc)_2$ (72 h). Flash column chromatography eluting with 5-50% {50:80:1 CH₂Cl₂:EtOH:NH₄OH} in CH₂Cl₂ gave the *title compound* **9j** (31 mg, 74 µmol, 23%) as a colourless solid. ¹H NMR (500 MHz, CD₃OD,

NH and OH not observed): δ 8.76 (1H, d, *J* 4.6, quinoline 2-H), 8.00 (1H, d, *J* 9.2, quinoline 8-H), 7.64 (1H, d, *J* 4.6, quinoline 3-H), 7.42 (1H, dd, *J* 9.2, 2.5, quinoline 7-H), 7.30 (1H, d, *J* 8.8, 7-H), 7.08 (1H, d, *J* 2.5, quinoline 5-H), 6.72 (1H, dd, *J* 8.8, 2.1, 6-H), 6.25 (1H, d, *J* 2.1, 4-H), 4.74 (1H, d, *J* 8.3, *CH*(OH)), 4.28-4.18 (1H, m, 13-H), 3.67-3.58 (1H, m, 11-H), 3.52 (3H, s, OCH₃), 3.51-3.42 (4H, m, includes 14-H_A; and at δ 3.44 (3H, s, OCH₃), 2.76-2.64 (1H, m, 14-H_B), 2.44-2.35 (1H, m, 12-H_A), 2.16-2.06 (1H, m, 15-H_A), 2.02-1.95 (1H, m, 12-H_B), 1.69-1.58 (1H, m, 15-H_B). ¹³**C NMR** (125 MHz, CD₃OD, 3 × Ar-Cq not observed): δ 159.3 (quinoline 6-C), 155.6 (Ar-Cq), 148.3 (quinoline 2-C), 145.2 (Ar-Cq), 131.1 (quinoline 8-C), 130.8 (Ar-Cq), 129.0 (Ar-Cq), 124.0 (quinoline 7-C), 121.5 (quinoline 3-C), 113.7 (7-C), 112.1 (6-C), 102.9 (quinoline 5-C), 99.0 (4-C), 72.1 (CH(OH)), 67.3 (13-C), 55.6 (2 peaks, 2 × OCH₃), 55.4 (14-C), 33.9 (15-C), 29.0 (11-C), 27.8 (12-C). **HRMS** (ESI): C₂₅H₂₆O₃N₃ [M+H]⁺; calculated: 416.1969, found: 416.1966. [α]^{*p*}₂₀ = +372 (c. 0.1, MeOH).

(*1R*, *11S*, *13R*)-5-Fluoro-13-[(*S*)-hydroxy(6-methoxyquinolin-4-yl)methyl]-1,9diazatetracyclo[9.2.2.0^{2,10}.0^{3,8}]pentadeca-2(10),3(8),4,6-tetraen-1-ium trifluoroacetate 9I

Prepared according to General Procedure B using ketone **5** and 20 mol% Pd(OAc)₂ (48 h). Purification by mass-directed preparative HPLC (MeCN in H₂O + 0.1% TFA) gave the *title compound* **9I** (32 mg, 62 μmol, 19%) as a colourless solid. ¹H NMR (500 MHz, CD₃OD, NH⁺, NH and OH not observed):

δ 8.91 (1H, d, *J* 4.6, quinoline 2-H), 8.17 (1H, d, *J* 8.9, quinoline 8-H), 8.01-7.92 (1H, m, quinolone 3-H), 7.76 (1H, d, *J* 8.9, quinoline 7-H), 7.52-7.45 (2H, m, includes quinoline 5-H; and at δ 7.48: 1H, dd, *J* 8.8, 4.2, 7-H), 7.01-6.89 (2H, m, 4-H and 6-H), 5.69 (1H, s, *CH*(OH)), 4.59 (1H, app. dt, *J* 8.6, 5.9, 13-H), 4.02-3.93 (1H, m, 14-H_A), 3.84-3.79 (4H, m, includes 11-H; and at δ 3.82: 3H, s, OCH₃), 3.14 (1H, td, *J* 11.5, 5.5, 14-H_B), 2.30-2.21 (2H, m, 12-H_A and 15-H_A), 2.12-2.06 (1H, m, 15-H_B), 1.88-1.80 (1H, m, 12-H_B). ¹³**C** NMR (125 MHz, CD₃OD, *C*F₃CO₂⁻ not observed): δ 161.6 (quinoline 6-C), 159.7 (d, *J* 235.3, 5-C), 143.4 (quinoline 2-C), 141.4 (Ar-C_q), 132.3 (Ar-C_q), 129.3 (Ar-C_q), 128.1 (quinoline 7-C), 126.1 (quinoline 8-C), 122.0 (quinoline 3-C), 120.3 (d, *J* 11.4, Ar-C_q), 118.2 (Ar-C_q), 118.0 (Ar-C_q), 114.5 (d, *J* 9.1, 7-C), 113.4 (Ar-C_q), 111.2 (d, *J* 26.2, 6-C), 103.4 (quinoline 5-C), 102.7 (d, *J* 24.8, 4-C), 69.6 (CH(OH)), 67.6 (13-C), 57.2 (14-C), 56.8 (OCH₃), 30.1 (15-C), 28.7 (11-C), 25.2 (12-C). HRMS (ESI): C₂₄H₂₃FN₃O₂ [M+H]⁺; calculated: 404.1769, found: 404.1765. [*α*]^{*D*}₂₀ = +69.3 (c. 0.8, MeOH).

(*S*)-[(*11S*, *13R*)-5-Chloro-1,9-diazatetracyclo[9.2.2.0^{2,10}.0^{3,8}]pentadeca-2(10),3(8),4,6-tetraen-13-yl](6-methoxyquinolin-4-yl)methanol 9m

Prepared according to General Procedure B using ketone **5** and 20 mol% Pd(OAc)₂ (48 h). Flash column chromatography eluting with 5-20% {50:80:1 CH₂Cl₂:EtOH:NH₄OH} in CH₂Cl₂ gave the *title compound* **9m** (64 mg, 0.16 mmol, 48%) as a colourless solid. ¹H NMR (500 MHz, CD₃OD, NH and OH not observed): δ 8.73 (1H, d, *J* 4.6, quinoline 2-H),

7.99 (1H, d, *J* 9.2, quinoline 8-H), 7.55 (1H, d, *J* 4.6, quinoline 3-H), 7.42 (1H, dd, *J* 9.2, 2.5, quinolone 7-H), 7.33 (1H, d, *J* 8.6, 7-H), 7.10 (1H, d, *J* 2.5, quinoline 5-H), 6.97 (1H, dd, *J* 8.6, 1.9, 6-H), 6.63 (1H, d, *J* 1.9, 4-H), 4.56 (1H, d, *J* 8.9, C*H*(OH)), 3.97-3.89 (1H, m, 13-H), 3.53-3.49 (1H, m, 11-H), 3.47 (3H, s, OCH₃), 3.23-3.16 (1H, m, 14-H_A), 2.49-2.42 (1H, m, 14-H_B), 2.33-2.26 (1H, m, 12-H_A), 2.01-1.94 (1H, m, 15-H_A), 1.90-1.83 (1H, m, 12-H_B), 1.56-1.48 (1H, m, 15-H_B). ¹³C NMR (125 MHz, CD₃OD): δ 159.1 (quinoline 6-C), 150.4 (Ar-Cq), 148.2 (Ar-Cq), 145.2 (quinolone 2-C), 144.8 (Ar-Cq), 134.2 (Ar-Cq), 130.9 (quinoline 8-C), 129.1 (Ar-Cq), 126.1 (Ar-Cq), 125.0 (Ar-Cq), 123.8 (quinoline 7-C), 122.1 (Ar-Cq), 121.2 (quinoline 3-C), 121.0 (6-C), 117.2 (4-C), 113.7 (7-C), 103.1 (quinoline 5-C), 73.6 (CH(OH)), 66.4 (13-C), 55.5 (OCH₃), 54.3 (14-C), 35.2 (15-C), 29.3 (11-C), 28.9 (12-C). HRMS (ESI): C₂₄H₂₃³⁵CIN₃O₂ [M+H]⁺; calculated: 420.1473, found: 420.1476. [α]^{*p*}₂₀ = +158 (c. 1.0, MeOH).

(*1R*, *11S*, *13R*)-5-Bromo-13-[(*S*)-hydroxy(6-methoxyquinolin-4-yl)methyl]-1,9-diazatetracyclo[9.2.2.0^{2,10}.0^{3,8}]pentadeca-2(10),3(8),4,6-tetraen-1-ium trifluoroacetate 9n

Prepared according to General Procedure B using ketone **5** and 20 mol% Pd(OAc)₂ (48 h). Flash column chromatography eluting with 1:9 to 1:4 ({50:80:1 CH₂Cl₂:EtOH:NH₄OH}/CH₂Cl₂) followed by mass-directed preparative HPLC (MeCN in H₂O + 0.1% TFA; Rt = 10.3 min) gave the *title compound* **9n** (16 mg, 27 μ mol, 8%)

as a yellow solid. ¹H NMR (500 MHz, CD₃OD, NH⁺, NH and OH not observed): δ 8.90 (1H, d, J 5.3, quinoline 2-H), 8.16 (1H, d, J 9.3, quinoline 8-H), 7.97 (1H, d, J 5.3, quinoline 3-H), 7.75 (1H, dd, J 9.2, 2.5, quinoline 7-H), 7.43 (1H, d, J 8.7, indole 7-H), 7.38 (1H, d, J 2.4, quinoline 5-H), 7.30 (1H, dd, J 8.7, 1.8, indole 6-H), 7.27 (1H, d, J 1.8, indole 4-H), 5.58 (1H, d, J 5.8, CH(OH)), 4.57 (1H, dt, J 8.6, 5.8, 13-H), 4.00-3.91 (1H, m, 14-H_A), 3.85-3.79 (1H, m, 11-H), 3.72 (3H, s, OCH₃), 3.16-3.08 (1H, m, 14-H_B), 2.34-2.22 (2H, m, 12-H_A and 15-H_A), 2.13-2.06 (1H, m, 12-H_B), ¹³C NMR (125 MHz, CD₃OD, $CF_3CO_2^-$ 1.90-1.78 (1H, m, 15-H_в). not observed): δ 162.6 (q, J_{CF} 35.4, CF₃CO₂⁻), 161.4 (quinoline 6-C), 154.2 (Ar-C_q), 143.9 (quinoline 2-C), (Ar-C_a), 134.4 (Ar-C_q), 129.2 (Ar-C_a), 141.1 (Ar-C_a), 138.4 127.9 (quinoline 8-C). 126.2 (quinolone 7-C), 125.8 (indole 6-C), 121.9 (quinoline 3-C), 121.6 (Ar-Cq), 120.1 (indole 4-C), 117.0 (Ar-C_q), 115.0 (indole 7-C), 114.6 (Ar-C_q), 103.1 (quinoline 5-C), 69.5 (CH(OH)), 67.9 (13-C), 57.0 (14-C), 56.6 (OCH₃), 30.5 (12-C), 28.6 (11-C), 25.4 (15-C). HRMS (ESI): C₂₄H₂₃BrN₃O₂ [M+H]⁺; calculated: 466.0948, found: 466.0945. $[\alpha]_{20}^{D} = +127$ (c. 0.1, MeOH).

(*1R*, *11S*, *13R*)-13-[(*S*)-Hydroxy(6-methoxyquinolin-4-yl)methyl]-6-methyl-1,9-diazatetracyclo[9.2.2.0^{2,10}.0^{3,8}]pentadeca-2(10),3(8),4,6-tetraen-1-ium trifluoroacetate 90

Prepared according to General Procedure B using ketone 5 and 30 mol% Pd(OAc)₂ (72 h). Flash column chromatography eluting with 1:9 to 1:4 ({50:80:1 CH₂Cl₂:EtOH:NH₄OH}/CH₂Cl₂) followed by mass-directed preparative HPLC (MeCN in H₂O + 0.1% TFA; Rt = 9.5 min) gave the *title compound* 90 (21 mg,

40 μmol, 12%) as a yellow solid. ¹H NMR (500 MHz, CD₃OD, NH⁺, NH and OH not observed): δ 8.82 (1H, d, J 5.1, quinoline 2-H), 8.10 (1H, d, J 9.3, quinoline 8-H), 7.83 (1H, d, J 5.1, quinoline 3-H), 7.64 (1H, dd, J 9.3, 2.6, quinoline 7-H), 7.32-7.29 (2 H, m, quinoline 5-H and indole 7-H), 6.96 (1H, d, J 8.2, indole 4-H), 6.91 (1H, d, J 8.2, indole 5-H), 5.29 (1H, d, J 6.8, CH(OH)), 4.65-4.60 (1H, m, 13-H), 3.95-3.89 (1H, m, 14-H_A), 3.83-3.79 (1H, m, 11-H), 3.66 (3H, s, OCH₃), 3.11-3.03 (1H, m, 14-H_B), 2.46 (3H, s, CH₃), 2.44-2.38 (1H, m, 12-H_A), 2.31-2.23 (1H, m, 15-H_A), 2.14-2.08 (1H, m, 12-H_B), 1.85-1.78 (1H, m, 15-H_B). ¹³C NMR (125 MHz, CD₃OD, CF₃CO₂⁻ not observed): δ 160.8 (quinoline 6-C), 151.2 (Ar-C_q), 145.3 (quinoline 2-C), 140.6 (Ar-C_q), 133.3 (Ar-C_a), 138.8 (Ar-C_a), 136.2 $(Ar-C_{q})$, 129.1 (Ar-C_a), 128.0 (quinoline 8-C). 126.5 (quinoline 7-C), 123.6 (indole 5-C), 122.2 (quinoline 3-C), 117.9, 116.9 (indole 4-C), 113.3 (indole 7-C), 112.5 (Ar-C_q), 103.2 (quinoline 5-C), 70.4 (CH(OH)), 68.4 (13-C), 57.2 (14-C), 56.2 (OCH₃), 31.0 (12-C), 28.5 (11-C), 25.6 (15-C), 21.7 (CH₃). HRMS (ESI): C₂₅H₂₆O₂N₃ [M+H]⁺; calculated: 400.2020, found: 400.2020. $[\alpha]_{20}^{D} = +115$ (c. 0.1, MeOH).

(*1R*, *11S*, *13R*)-6-Carboxy-13-[(*S*)-hydroxy(6-methoxyquinolin-4-yl)methyl]-1,9-diaza-tetracyclo[9.2.2.0^{2,10}.0^{3,8}]pentadeca-2(10),3(8),4,6-tetraen-1-ium trifluoroacetate 9p

•CF₃CO₂⁻ Prepared according to General Procedure B using ketone **5** and 10 mol% Pd(OAc)₂ (24 h). Purification by mass-directed preparative HPLC (MeCN in H₂O + 0.1% TFA; Rt = 6.0 min) gave the *title compound* **9p** (20 mg, 47 μmol, 11%) as a yellow solid. ¹H NMR (500 MHz,

CD₃OD, CO₂H, NH⁺, NH and OH not observed): δ 8.83 (1H, d, *J* 5.2, quinoline 2-H), 8.24 (1H, s, indole 7-H), 8.11 (1H, d, *J* 9.3, quinoline 8-H), 7.82 (1H, d, *J* 5.2, quinoline 3-H), 7.78 (1H, dd, *J* 8.5, 1.3, indole 5-H), 7.67 (1H, dd, *J* 9.3, 2.4, quinoline 7-H), 7.42 (1H, d, *J* 2.4, quinoline 5-H), 7.30 (1H, d, *J* 8.4, indole 4-H), 5.52 (1H, d, *J* 5.5, C*H*(OH)), 4.61-4.55 (1H, m, 13-H), 4.01-3.92 (1H, m, 14-H_A), 3.87-3.83 (1H, m, 11-H), 3.78 (3H, s, OCH₃), 3.18-3.09 (1H, m, 14-H_B), 2.33-2.23 (2H, m, 12 H_A and 15-H_A), 2.13-2.06 (1H, m, 12-H_B), 1.90-1.82 (1H, m, 15-H_B). ¹³C NMR (125 MHz, CD₃OD, CF₃CO_{2⁻} not observed): δ 170.5 (CO₂H), 162.9 (q, *J*_{CF} 33.4, CF₃CO_{2⁻}), 162.8 (Ar-C_q), 161.0 (quinoline 6-C), 145.0 (quinoline 2-C), 143.3 (Ar-C_q), 140.0 (Ar-C_q), 135.1 (Ar-C_q), 131.0 (Ar-C_q), 128.9 (Ar-C_q), 127.7 (quinoline 8-C), 126.6 (quinoline 7-C), 125.2 (Ar-C_q), 123.4 (Ar-C_q), 123.1 (indole 5-C), 121.8 (quinoline 3-C), 116.8 (indole 4-C), 115.9 (indole 7-C), 103.2 (quinoline 5-C), 70.0 (CH(OH)), 67.7 (13-C), 57.1 (14-C), 56.5 (OCH₃), 30.1 (12-C), 28.7 (11-C), 25.3 (15-C). HRMS (ESI): C₂₅H₂₄O₄N₃ [M+H]⁺; calculated: 430.1761, found: 430.1765. [*a*]^{*p*}₂₀ = +73 (c. 0.1, MeOH).

Methyl (*11S*, *13R*)-13-[(*S*)-hydroxy(6-methoxyquinolin-4-yl)methyl]-1,9-diazatetracyclo [9.2.2.0^{2,10}.0^{3,8}]pentadeca-2(10),3(8),4,6-tetraene-6-carboxylate 9q

Prepared according to General Procedure B using ketone **5** and 30 mol% Pd(OAc)₂ (72 h). Flash column chromatography eluting with 1:9 to 1:4 ({50:80:1 CH₂Cl₂:EtOH:NH₄OH}/CH₂Cl₂) gave the *title compound* **9q** (11 mg, 24 μ mol, 7%) as a yellow solid. ¹H NMR (500 MHz, CD₃OD, NH and OH not observed): δ 8.72 (1H,

d, *J* 4.6, quinoline 2-H), 8.13 (1H, d, *J* 1.4, indole 7-H), 7.98 (1H, d, *J* 9.2, quinoline 8-H), 7.55 (1H, dd, *J* 8.4, 1.4, indole 5-H), 7.52 (1H, d, *J* 4.6, quinoline 3-H), 7.40 (1H, dd, *J* 9.2, 2.7, quinoline 7-H), 7.18 (1H, d, *J* 2.7, quinoline 5-H), 6.83 (1H, d, *J* 8.3, indole 4-H), 4.55 (1H, d, *J* 8.7, *CH*(OH)), 3.97-3.93 (1H, m, 13-H), 3.92 (3H, s, ArOCH₃), 3.56-3.53 (1H, m, 11-H), 3.47-3.45 (3H, s, CO₂CH₃), 3.25-3.18 (1H, m, 14-H_A), 2.52-2.44 (1H, m, 14-H_B), 2.33-2.27 (1H, m, 12-H_A), 2.03-1.97 (1H, m, 15-H_A), 1.92-1.86 (1H, m, 12-H_B), 1.57-1.50 (1H, m 15-H_B). ¹³**C NMR** (125 MHz, CD₃OD): δ 170.1 (*C*O₂CH₃), 159.0 (quinoline 6-C), 150.2 (Ar-C_q), 148.2 (Ar-C_q), 147.7 (quinoline 2-C), 145.2 (Ar-C_q), 135.1 (Ar-C_q), 131.1 (quinoline 8-H), 129.1 (Ar-C_q), 127.5 (Ar-C_q), 123.5 (quinoline 7-C), 123.2 (Ar-C_q), 122.3 (Ar-C_q), 121.4 (indole 5-H or quinoline 3-H), 121.4 (indole 5-H or quinoline 3-H), 117.0 (indole 4-C), 115.1 (indole 7-C), 103.4 (quinoline 5-C), 74.0 (CH(OH)), 66.2 (13-C), 55.6 (ArOCH₃), 54.2 (14-C), 52.3 (CO₂CH₃), 34.9 (12-C), 29.4 (11-C), 28.7 (15-C). **HRMS** (ESI): C₂₆H₂₆O₄N₃ [M+H]⁺; calculated: 444.1918, found: 444.1917. [*a*]^{*p*}₂₀ = +94 (c. 0.1, MeOH).

(*S*)-(6-Methoxyquinolin-4-yl)[(*11S*, *13R*)-6-(trifluoromethyl)-1,9-diazatetracyclo [9.2.2.0^{2,10}.0^{3,8}]pentadeca-2(10),3(8),4,6-tetraen-13-yl]methanol 9r

Prepared according to General Procedure B using ketone **5** and 20 mol% Pd(OAc)₂ (48 h). Flash column chromatography eluting with 1:9 to 1:4 ({ $50:80:1 \text{ CH}_2\text{Cl}_2:\text{EtOH}:NH_4\text{OH}$ }/CH₂Cl₂) gave the *title compound* **9r** (34 mg, 76 µmol, 25%) as a yellow solid. ¹H NMR (500 MHz, CD₃OD, NH and OH not observed): δ 8.74 (1H, d,

J 4.7, quinoline 2-H), 7.99 (1H, d, J 9.3, quinoline 8-H), 7.70 (1H, s, indole 7-H), 7.56 (1H, d, J 4.7, quinoline 3-H), 7.41 (1H, dd, J 9.3, 2.6, quinoline 7-H), 7.10-7.05 (2H, m, quinoline 5-H and indole 5-H), 6.84 (1H, d, J 8.4, indole 4-H), 4.53 (1H, d, J 8.9, C*H*(OH)), 3.98-3.90 (1H, m, 13-H), 3.58-3.53 (1H, m, 11-H), 3.39 (3H, s, OCH₃), 3.27-3.18 (1H, m, 14-H_A), 2.53-2.43 (1H, m, 14-H_B), 2.36-2.28 (1H, m, 12-H_A), 2.04-1.97 (1H, m, 15-H_A), 1.93-1.86 (1H, m, 12-H_B), 1.58-1.49 (1H, m, 15-H_B). ¹³**C NMR** (125 MHz, CD₃OD): δ 159.0 (quinoline 6-C), 150.3 (Ar-C_q), 148.3 (quinoline 2-C), 146.6 (Ar-C_q), 145.2 (Ar-C_q), 134.6 (Ar-C_q), 131.1 (quinoline 8-C), 129.1 (Ar-C_q), 127.0 (q, *J*_{CF} 270.5, CF₃), 126.2 (Ar-C_q), 123.6 (quinoline 7-C), 122.8 (Ar-C_q), 122.7 (q, *J*_{CF} 31.2, indole 6-C), 121.3 (quinoline 3-C), 117.9 (indole 4-C), 116.6 (q, *J*_{CF} 3.5, indole 5-C), 110.0 (q, *J*_{CF} 4.3, indole 7-C), 103.2 (quinoline 5-C), 73.7 (CH(OH)), 66.3 (13-C), 55.5 (OCH₃), 54.2 (14-C), 35.1 (12-C), 29.3 (11-C), 28.8 (15-C). **HRMS** (ESI): C₂₅H₂₃O₂N₃F [M+H]⁺; calculated: 454.1737, found: 454.1737. [*α*]^{*p*}₂₀ = +129 (c. 0.1, MeOH).

(*S*)-[(*11S*, *13R*)-6-Chloro-1,9-diazatetracyclo[9.2.2.0^{2,10}.0^{3,8}]pentadeca-2(10),3(8),4,6-tetraen-13-yl](6-methoxyquinolin-4-yl)methanol 9s

Prepared according to General Procedure B using ketone **5** and 20 mol% Pd(OAc)₂ (48 h). Flash column chromatography eluting with 5-20% { $50:80:1 \text{ CH}_2\text{Cl}_2:\text{EtOH}:\text{NH}_4\text{OH}$ } in CH₂Cl₂ gave the *title compound* **9s** (35 mg, 83 µmol, 26%) as a pale brown solid. ¹H NMR (700 MHz, CD₃OD, NH and OH not observed): δ 8.72 (1H, d, J

4.5, quinoline 2-H), 7.98 (1H, d, J 9.2, quinoline 8-H), 7.53 (1H, d, J 4.5, quinoline 3-H), 7.40 (1H, dd, J 9.2, 2.6, quinoline 7-H), 7.40 (1H, d, J 1.8, 7-H), 7.14 (1H, s, quinoline 5-H), 6.81 (1H, dd, J 8.4, 1.8, 5-H), 6.69 (1H, d, J 8.4, 4-H), 4.53 (1H, d, J 8.9, C*H*(OH)), 3.96-3.86 (1H, m, 13-H), 3.52-3.49 (1H, m, 11-H), 3.48 (3H, s, OCH₃), 3.22-3.14 (1H, m, 14-H_A), 2.51-2.42 (1H, m, 14-H_B), 2.33-2.23 (1H, m, 12-H_A), 2.02-1.94 (1H, m, 15-H_A), 1.91-1.83 (1H, m, 12-H_B), 1.54-1.47 (1H, m, 15-H_B). ¹³**C NMR** (175 MHz, CD₃OD): δ 159.0 (quinoline 6-C), 150.3 (Ar-C_q), 148.3 (quinoline 2-C), 145.3 (Ar-C_q), 144.0 (Ar-C_q), 136.2 (Ar-C_q), 131.1 (quinoline 8-C), 129.1 (Ar-C_q), 126.7 (Ar-C_q), 123.5 (quinoline 7-C), 122.8 (Ar-C_q), 122.6 (Ar-C_q), 121.4 (quinoline 3-C), 120.6 (5-C), 118.5 (4-C), 112.5 (7-C), 103.4 (quinoline 5-C), 73.9 (CH(OH), 66.3 (13-C), 55.5 (OCH₃), 54.2 (14-C), 35.1 (12-C), 29.2 (15-C), 28.9 (11-C). **HRMS** (ESI): C₂₄H₂₃³⁷CIN₃O₂ [M+H]⁺; calculated: 422.1444, found: 422.1444. [*a*]^{*D*}_{*D*} = +142 (c. 0.1, MeOH).

(*1R*, *11S*, *13R*)-6-Bromo-13-[(*S*)-hydroxy(6-methoxyquinolin-4-yl)methyl]-1,9-diazatetracyclo[9.2.2.0^{2,10}.0^{3,8}]pentadeca-2(10),3(8),4,6-tetraen-1-ium trifluoroacetate 9t

•CF₃CO₂⁻ Prepared according to General Procedure B using ketone 5 and 30 mol% Pd(OAc)₂ (72 h). Flash column chromatography eluting with 1:9 to 1:4 ({50:80:1 CH₂Cl₂:EtOH:NH₄OH}/CH₂Cl₂) followed by mass-directed preparative HPLC (MeCN in H₂O + 0.1% TFA; Rt = 10.6 min) gave the *title compound* 9t (16 mg,

27 μmol, 9%) as a yellow solid. ¹H NMR (600 MHz, CD₃OD, NH⁺, NH and OH not observed): δ 8.89 (1H, d, *J* 5.3, quinoline 2-H), 8.15 (1H, d, *J* 9.4, quinoline 8-H), 7.92 (1H, d, *J* 5.3, quinolone 3-H), 7.73 (1H, dd, *J* 9.3, 2.6, quinoline 7-H), 7.68 (1H, d, *J* 1.3, indole 7-H), 7.47 (1H, d, *J* 2.6, quinoline 5-H), 7.23-7.16 (2 H, m, indole 4-H and indole 5-H), 5.62 (1H, d, *J* 5.5, *CH*(OH)), 4.61-4.55 (1H, m, 13-H), 4.00-3.92 (1H, m, 14-H_A), 3.81 (4 H, s, OCH₃ and 11-H), 3.16-3.10 (1H, m, 14-H_B), 2.29-2.18 (2 H, m, 12-H_A and 15-H_A), 2.13-2.05 (1H, m, 12-H_B), 1.89-1.79 (1H, m, 15-H_B). ¹³C NMR (125 MHz, CD₃OD, *C*F₃CO₂⁻ not observed): δ 162.61 (q, *J*_{CF} 35.7, *C*F₃CO₂⁻), 161.4 (quinoline 6-C), 154.1 (Ar-C_q), 143.9 (quinoline 2-C), 140.4 (Ar-C_q), 138.3 (Ar-C_q), 136.5 (Ar-C_q), 129.2 (Ar-C_q), 127.7 (quinoline 7-C), 126.3 (quinoline 8-C), 124.9 (indole 4-C or indole 5-C), 122.0 (quinoline 3-C), 119.2 (indole 4-C or indole 5-C), 128.8 (Ar-C_q), 113.5 (Ar-C_q), 103.3 (quinoline 5-C), 69.7 (CH(OH)), 67.6 (13-C), 57.1 (14-C), 56.6 (OCH₃), 30.1 (12-C), 28.6 (11-C), 25.2 (15-C). HRMS (ESI): C₂₄H₂₃O₂N₃⁷⁹Br [M+H]⁺; calculated: 464.0968, found: 464.0967; C₂₄H₂₃O₂N₃⁸¹Br [M+H]⁺; calculated: 466.0948, found: 466.0946. [*α*]^{*D*}_{*D*} = +69 (c. 0.1, MeOH).

(*1R*, *11S*, *13R*)-13-[(*S*)-Hydroxy(6-methoxyquinolin-4-yl)methyl]-7-methoxy-1,9-diazatetracyclo[9.2.2.0^{2,10}.0^{3,8}]pentadeca-2(10),3(8),4,6-tetraen-1-ium trifluoroacetate 9u

Prepared according to General Procedure B using ketone **5** and 30 mol% Pd(OAc)₂ (72 h). Flash column chromatography eluting with 1:9 to 1:4 ({50:80:1 CH₂Cl₂:EtOH:NH₄OH}/CH₂Cl₂) followed by mass-directed preparative HPLC (MeCN in H₂O + 0.1% TFA; Rt = 9 min) gave the *title compound* **9u** (27 mg, 49 μ mol, 16%)

as a yellow solid. ¹**H NMR** (500 MHz, CD₃OD, NH⁺, NH and OH not observed): δ 8.85 (1H, d, *J* 5.3, quinoline 2-H), 8.13 (1H, d, *J* 9.3, quinoline 8-H), 7.88 (1H, d, *J* 5.3, quinoline 3-H), 7.69 (1H, dd, *J* 9.3, 2.5, quinoline 7-H), 7.42 (1H, d, *J* 2.5, quinoline 5-H), 7.01 (1H, t, *J* 7.9, indole 5-H), 6.77 (2H, d, *J* 7.9, indole 4-H and indole 6-H), 5.41 (1H, d, *J* 6.4, *CH*(OH)), 4.66-4.59 (1H, m, 13-H), 4.00 (3H, s, OCH₃), 3.97-3.91 (1H, m, 14-H_A), 3.83-3.80 (1H, m, 11-H), 3.74 (3 H, s, OCH₃), 3.13-3.06 (1H, m, 14-H_B), 2.41-2.35 (1H, m, 12-H_A), 2.31-2.23 (1H, m, 15-H_A), 2.13-2.06 (1H, m, 12-H_B), 1.85-1.78 (1H, m, 15-H_B). ¹³**C NMR** (125 MHz, CD₃OD, *C*F₃CO₂⁻ not observed): δ 162.5 (q, *J*_{CF} 35.1, CF₃*C*O₂⁻), 161.1 (quinoline 2-C), 152.7 (Ar-Cq), 148.4 (Ar-Cq), 144.4 (quinoline 2-C), 139.2 (Ar-Cq), 128.9 (Ar-Cq), 129.2 (Ar-Cq), 127.2 (quinoline 7-C), 126.9 (quinoline 8-C), 125.9 (Ar-Cq), 122.7 (indole 5-C), 122.3 (quinoline 3-C), 121.1 (Ar-Cq), 113.1 (Ar-Cq), 109.9 (indole 4-C or indole 6-C), 103.4 (quinoline 5-C), 103.4 (indole 4-C or indole 6-C), 70.3 (CH(OH)), 68.2 (13-C), 57.2 (14-C), 56.5 (OCH₃), 56.0 (OCH₃), 30.7 (12-C), 28.4 (11-C), 25.5 (15-C). **HRMS** (ESI): C₂₅H₂₆O₃N₃ [M+H]⁺; calculated: 416.1969, found: 416.1967. [α]²⁰ = +98 (c. 0.1, MeOH).

(1R,11S,13R)-13-[(S)-Hydroxy(6-methoxyquinolin-4-yl)methyl]-1,6,9-

triazatetracyclo[9.2.2.0^{2,10}.0^{3,8}]pentadeca-2(10),3(8),4,6-tetraen-1-ium trifluoroacetate 9v

•CF₃CO₂⁻ Prepared according to General Procedure B using ketone 5 and 20 mol% Pd(OAc)₂ (48 h). Purification by mass-directed preparative HPLC (MeCN in H₂O + 0.1% TFA) gave the *title compound* 9v (80 mg, 0.16 mmol, 50%) as a colourless solid.
¹H NMR (700 MHz, CD₃OD, NH⁺ and OH not observed):

δ 9.05 (1H, s, 7-H), 8.95 (1H, d, *J* 5.5, quinoline 2-H), 8.20 (1H, d, *J* 9.2, quinoline 8-H), 8.13 (1H, d, *J* 6.5, 5-H), 7.92 (1H, d, *J* 5.5, quinoline 3-H), 7.78 (1H, dd, *J* 9.2, 2.6, quinoline 7-H), 7.60 (1H, d, *J* 2.6, quinoline 5-H), 7.54 (1H, d, *J* 6.5, 4-H), 5.26 (1H, d, *J* 5.9, CH(OH)), 4.11 (1H, app. dd, *J* 14.5, 6.2, 13-H), 3.87 (3H, s, OCH₃), 3.82-3.79 (1H, m, 11-H), 3.57-3.52 (1H, m, 14-H_A), 2.76-2.69 (1H, m, 14-H_B), 2.27-2.22 (1H, m, 15-H_A), 2.18-2.13 (1H, m, 12-H_A), 2.02-1.97 (1H, m, 15-H_B), 1.72-1.66 (1H, m, 12-H_B). ¹³**C NMR** (175 MHz, CD₃OD): δ 162.6 (q, *J* 35.7, CF₃CO_{2⁻}), 161.4 (quinoline 6-C), 158.9 (Ar-C_q), 158.5 (Ar-C_q), 143.1 (quinoline 2-C), 137.1 (Ar-C_q), 131.1 (Ar-C_q), 131.0 (Ar-C_q), 129.8 (5-C or Ar-C_q), 129.5 (5-C or Ar-C_q), 128.2 (7-C), 127.9 (quinolone 7-C), 125.4 (quinoline 8-C), 123.5 (Ar-C_q), 121.5 (quinoline 3-C), 117.9 (q, *J* 292, CF₃CO_{2⁻}), 113.6 (4-C), 104.1 (quinoline 5-C), 72.4 (CH(OH)), 65.7 (13-C), 56.8 (OCH₃), 54.6 (14-C), 31.9 (15-C), 29.9 (11-C), 26.8 (12-C). **HRMS** (ESI): C₂₃H₂₃N₄O₂ [M+H]⁺; calculated: 387.1816, found: 387.1817. [*a*]^{*D*}₂₀ = +44 (c. 1.5, MeOH).

(1R,11S,13R)-13-[(S)-Hydroxy(6-methoxyquinolin-4-yl)methyl]-1,7,9triazatetracyclo[9.2.2.0^{2,10}.0^{3,8}]pentadeca-2(10),3(8),4,6-tetraen-1-ium trifluoroacetate 9w

•CF₃CO₂⁻ Prepared according to General Procedure B using ketone 5 and 20 mol% Pd(OAc)₂ (48 h). Purification by mass-directed preparative HPLC (MeCN in H₂O + 0.1% TFA) gave the *title compound* 9w (28 mg, 56 μmol, 17%) as a pale yellow solid.
¹H NMR (700 MHz, CD₃OD, NH⁺ and OH not observed):

δ 8.91 (1H, d, *J* 5.4, quinoline 2-H), 8.30 (1H, d, *J* 3.9, 6-H), 8.18 (1H, d, *J* 9.2, quinoline 8-H), 7.95 (1H, d, *J* 5.4, quinoline 3-H), 7.91 (1H, d, *J* 7.9, 4-H), 7.78 (1H, dd, *J* 9.2, 2.5, quinoline 7-H), 7.65-7.58 (1H, m, quinoline 5-H), 7.25 (1H, dd, *J* 7.9, 4.9, 5-H), 5.83 (1H, br. s, *CH*(OH)), 4.55-4.50 (1H, m, 13-H), 4.13-4.08 (1H, m, OH), 4.00-3.94 (1H, m, 14-Ha), 3.93 (3H, s, OCH₃), 3.86-3.82 (1H, m, 11-H), 3.16 (1H, td, *J* 11.3, 5.5, 14-H_B), 2.28-2.22 (1H, m, 15-H_A), 2.20-2.13 (1H, m, 12-H_A), 2.11-2.05 (1H, m, 12-H_B), 1.92-1.85 (1H, m, 15-H_B). ¹³**C NMR** (125 MHz, CD₃OD, 3 × Ar-C_q not observed): δ 162.2 (q, *J* 36.4, CF₃CO₂⁻), 161.7 (quinoline 6-C), 146.3 (Ar-C_q), 143.5 (quinoline 2-C), 142.7 (6-C), 141.4 (Ar-C_q), 129.2 (Ar-C_q), 127.9 (quinoline 7-C), 127.2 (4-C), 125.9 (quinoline 8-C), 121.7 (quinoline 3-C), 118.0 (5-C), 117.8 (q, 288.7, *C*F₃CO₂⁻), 103.4 (quinoline 5-C), 69.8 (CH(OH)), 67.1 (13-C), 56.9 (2 peaks, 14-C and OCH₃), 29.9 (12-C), 28.5 (11-C), 25.2 (15-C). **HRMS** (ESI): C₂₃H₂₃N₄O₂ [M+H]⁺; calculated: 387.1816, found: 387.1818. [*α*]^{*D*}₂₀ = +64 (c. 0.2, MeOH).

(S)-(6-Methoxyquinolin-4-yl)[(11S,13R)-5-methyl-1,7,9-

triazatetracyclo[9.2.2.0^{2,10}.0^{3,8}]pentadeca-2(10),3(8),4,6-tetraen-13-yl]methanol 9w-b

Prepared according to General Procedure B using ketone **5** and 30 mol% Pd(OAc)₂ (72 h). Flash column chromatography eluting with 5-35% { $50:80:1 \text{ CH}_2\text{Cl}_2:\text{EtOH}:\text{NH}_4\text{OH}$ } in CH₂Cl₂ gave the *title compound* **9w-b** (65 mg, 0.16 mmol, 51%) as a colourless solid. ¹H NMR (500 MHz, CD₃OD, NH and OH not observed): δ 8.70 (1H, d, *J* 4.6, quinoline 2-H),

7.94 (1H, d, *J*9.2, quinoline 8-H), 7.85 (1H, d, *J*1.3, 6-C), 7.56 (1H, d, *J*4.6, quinoline 3-H), 7.35 (1H, d, *J*9.2, 2.3, quinoline 7-H), 6.90 (1H, d, *J*2.3, quinoline 5-H), 6.65 (1H, s, 4-H), 4.51 (1H, d, *J*9.0, CH(OH)), 3.88-3.79 (1H, m, 13-H), 3.51-3.45 (1H, m, 11-H), 3.28 (3H, s, OCH₃), 3.17-3.10 (1H, m, 14-H_A), 2.39 (1H, ddd, *J*12.3, 10.9, 5.1, 14-H_B), 2.32-2.26 (1H, m, 15-H_A), 2.17 (3H, s, Py-CH₃), 1.97-1.90 (1H, m, 12-H_A), 1.87-1.81 (1H, m, 15-H_B), 1.52-1.43 (1H, m, 12-H_B). ¹³**C NMR** (125 MHz, CD₃OD): δ 158.9 (quinoline 6-C), 150.6 (Ar-C_q), 148.4 (quinoline 2-C), 145.9 (Ar-C_q), 145.2 (Ar-C_q), 144.9 (Ar-C_q), 141.8 (6-C), 131.1 (quinoline 8-C), 129.1 (Ar-C_q), 126.7 (4-C), 126.0 (Ar-C_q), 123.6 (quinoline 7-C), 121.1 (quinoline 3-C), 120.7 (Ar-C_q), 117.3 (Ar-C_q), 103 (quinoline 5-C), 73.0 (CH(OH)), 66.7 (13-C), 55.4 (OCH₃), 54.1 (14-C), 35.5 (15-C), 29.0 (11-C and 12-C), 18.4 (Py-CH₃). **HRMS** (ESI): C₂₄H₂₅N₄O₂ [M+H]⁺; calculated: 401.1972, found: 401.1965. [*α*]^p₀ = +353 (c. 0.1, MeOH).\

(S)-[(11S,13R)-5-Fluoro-1,9-diazatetracyclo[9.2.2.0^{2,10}.0^{3,8}]pentadeca-2(10),3(8),4,6-tetra-en-13-yl](6-methoxyquinolin-4-yl)methanol 9w-f

Prepared according to General Procedure B using ketone **5** and 30 mol% $Pd(OAc)_2$ (72 h). Flash column chromatography eluting with 1:9 to 1:3 ({50:80:1 CH₂Cl₂:EtOH:NH₄OH}/CH₂Cl₂) gave the *title compound* **9w-f** (49 mg, 121 µmol, 38%) as yellow solid. ¹H NMR (500 MHz, CD₃OD, NH and OH not observed): δ 8.73 (1H, d, *J* 4.6, quinoline 2-H), 8.05-7.97 (2H,

m, quinoline 8-H and indole 6-H), 7.54 (1H, d, J 4.6, quinoline 3-H), 7.43 (1H, dd, J 9.2, 2.7, quinolone 7-H), 7.16 (1H, d, J 2.7, quinoline 5-H), 6.85 (1H, dd, J 9.3, 2.7, indole 4-H), 4.65 (1H, d, J 8.2, CH(OH)), 3.93-3.86 (1H, m, 13-H), 3.59 (3H, s, OCH₃), 3.56-3.48 (1H, m, 11-H), 3.27-3.18 (1H, m, 14-H_A), 2.53-2.45 (1H, m, 14-H_B), 2.31-2.24 (1H, m, 12-H_A), 2.05-1.96 (1H, m, 15-H_A), 1.94-1.88 (1H, m, 12-H_B), 1.64-1.50 (1H, m, 15-H_B). ¹³**C NMR** (125 MHz, CD₃OD): δ 159.1 (quinolone 6-C), 157.0 (d, *J*_{CF} 240.1, indole 5-C), 150.3 (Ar-C_q), 148.3 (quinoline 2-C), 147.6 (Ar-C_q), 145.1 (Ar-C_q), 144.4 (Ar-C_q), 131.2 (quinoline 8-C), 129.2 (d, *J*_{CF} 30.4, indole 6-C), 128.9 (Ar-C_q), 123.3 (quinoline 7-C), 121.4 (d, *J*_{CF} 4.0, indole 8-C) 121.2 (quinoline 3-C), 117.4 (d, *J*_{CF} 7.0, indole 3-C), 111.6 (d, *J*_{CF} 21.9, indole 4-C), 103.3 (quinoline 5-C), 73.6 (CH(OH)), 66.2 (13-C), 55.7 (OCH₃), 54.3 (14-C), 34.8 (12-C), 29.1 (11-C), 28.7 (15-C). **HRMS** (ESI): C₂₃H₂₂O₂N₄F [M+H]⁺; calculated: 405.1721, found: 405.1721. [*α*]^{*p*}₂₀ = +168 (c. 0.1, MeOH).

(1*R*,11*S*,13*R*)-13-[(*S*)-Hydroxy(6-methoxyquinolin-4-yl)methyl]-6-methyl-1,7,9-triazatetracyclo[9.2.2.0^{2,10}.0^{3,8}]pentadeca-2(10),3(8),4,6-tetraen-1-ium trifluoroacetate 9w-k

• $CF_3CO_2^-$ Prepared according to General Procedure B using ketone **5** and 30 mol% Pd(OAc)₂ (72 h). Flash column chromatography eluting with 1:9 to 1:4 ({50:80:1 CH₂Cl₂:EtOH:NH₄OH}/CH₂Cl₂) followed by mass-directed preparative HPLC (MeCN in H₂O + 0.1% TFA; Rt = 6 min) gave the *title compound* **9w-k** (21 mg, 42 µmol, 13%)

as yellow solid. ¹H NMR (500 MHz, CD₃OD, NH⁺, NH and OH not observed): δ 8.90 (1H, d, *J* 5.4, quinoline 2-H), 8.16 (1H, d, *J* 9.3, quinoline 8-H), 7.93 (1H, d, *J* 5.4, quinoline 3-H), 7.83 (1H, d, *J* 8.1, indole 4-H), 7.76 (1H, dd, *J* 9.3, 2.4, quinoline 7-H), 7.59 (1H, d, *J* 2.4, quinoline 5-H), 7.16 (1H, d, *J* 8.1, indole 5-H), 5.78 (1H, d, *J* 4.4 C*H*(OH)), 4.52-4.45 (1H, m, 13-H), 3.95-3.92 (1H, m, 14-H_A), 3.91 (3H, s, OCH₃), 3.83-3.79 (1H, m, 11-H), 3.14-3.08 (1H, m, 14-H_B), 2.67 (3H, s, Py-CH₃), 2.26-2.18 (1H, m, 15-H_A), 2.17-2.11 (1H, m, 12-H_A), 2.08-2.02 (1H, m, 12-H_B), 1.88-1.81 (1H, m, 15-H_B). ¹³C NMR (125 MHz, CD₃OD, *C*F₃CO_{2⁻} not observed): δ 162.7 (d, *J*_{CF} 36.3, CF₃CO_{2⁻}), 161.6 (quinoline 6-C), 155.3 (Ar-C_q), 151.6 (Ar-C_q), 145.0 (Ar-C_q), 143.5 (quinoline 2-H), 140.8 (Ar-C_q), 137.6 (Ar-C_q), 129.2 (Ar-C_q), 128.6 (indole 4-C), 128.0 (quinoline 7-C), 125.9 (quinoline 8-C), 121.7 (quinoline 3-C), 118.1 (indole 5-C), 114.0 (Ar-C_q), 113.1 (Ar-C_q), 103.4 (quinoline 5-C), 23.0 (Py-CH₃). HRMS (ESI): C₂₄H₂₅O₂N₄ [M+H]⁺; calculated: 401.1972, found: 401.1972. [α]^{*D*}_{*D*} = +52 (c. 0.1, MeOH).

(*R*)-[(*11S*, *13S*)-1,9-Diazatetracyclo[9.2.2.0^{2,10}.0^{3,8}]pentadeca-2(10),3(8),4,6-tetraen-13-yl] (6-methoxyquinolin-4-yl)methanol 10a

Prepared according to General Procedure B using ketone **6** and 10 mol% Pd(OAc)₂ (24 h). Flash column chromatography eluting with 1:9 to 1:4 ($\{50:80:1 \ CH_2Cl_2:EtOH:NH_4OH\}/CH_2Cl_2$) gave the *title compound* **10a** (21 mg, 55 µmol, 17%) as a yellow solid. ¹H NMR (500 MHz, CD₃OD, NH and OH not observed) δ 8.63 (1H, d, *J* 4.7, quinoline 2-H), 7.84 (1H, d,

J 9.2, quinoline 8-H), 7.75 (1H, d, J 4.7, quinoline 3-H), 7.67-7.62 (1H, m, indole 4-H), 7.37 (1H, d, J 2.4 Hz, quinoline 5-H), 7.32-7.26 (2H, m, quinoline 7-H and indole 7-H), 7.05-6.98 (2H, m, indole 5-H and 6-H), 6.04 (1H, app. s, C*H*(OH)), 4.26 (1H, ddd, J 12.4, 8.9, 3.9 Hz 14-H_A), 3.97 (3H, s, OCH₃), 3.40 (1H, s, 11-H), 3.10-3.04 (1H, m, 13-H), 2.67 (1H, app. td, J 11.2, 4.2, 14-H_B), 2.38-2.32 (1H, m, 12-H_A), 2.21-2.13 (1H, m, 15-H_A), 1.68-1.60 (1H, m 15-H_B), 1.18-1.11 (1H, m, 12-H_B). ¹³**C NMR** (125 MHz, CD₃OD) δ 159.7 (quinoline 6-C), 151.0 (Ar-C_q), 148.1 (quinoline 2-C), 144.5 (Ar-C_q), 142.2 (Ar-C_q), 135.6 (Ar-C_q), 131.2 (quinoline 8-C), 127.7 (Ar-C_q), 127.2 (Ar-C_q), 123.7 (quinoline 7-C), 122.0 (Ar-C_q) 121.2 (indole 5-C or indole 6-C), 101.8 (quinoline 5-C), 71.4 (CH(OH)), 67.1 (13-C), 56.6 (OCH3), 49.2[§] (14-C), 30.3 (15-C), 29.5 (11-C), 27.4 (12-C) ppm. **HRMS** (ESI): C₂₄H₂₄O₂N₃ [M+H]⁺; calculated: 386.1863, found: 386.1863. [α]^D₂₀ = +76 (c. 0.1, MeOH).

[§] Inferred from HSQC analysis.

(*R*)-(6-Methoxyquinolin-4-yl)[(*11S*, *13S*)-4-methyl-1,9-diazatetracyclo[9.2.2.0^{2,10}.0^{3,8}] pentadeca-2(10),3(8),4,6-tetraen-13-yl]methanol 10b

Prepared according to General Procedure B using ketone **6** and 20 mol% $Pd(OAc)_2$ (48 h). Flash column chromatography eluting with 1:9 to 1:4 ({50:80:1 CH₂Cl₂:EtOH:NH₄OH}/CH₂Cl₂) gave the *title compound* **10b** (59 mg, 147 µmol, 46%) as a yellow solid. ¹H NMR (500 MHz, CD₃OD, NH and OH not observed): δ 8.65 (1H, d, J 4.6, quinoline 2-H), 7.93 (1H, d, J

9.2, quinoline 8-H), 7.71 (1H, d, J 4.6, quinoline 3-H), 7.63 (1H, d, J 2.6, quinoline 5-H), 7.38 (1H, dd, J 9.2, 2.6, quinoline 7-H), 7.08 (1H, d, J 8.1, indole 7-H), 6.82 (1H, app. t, J 7.6, indole 6-H), 6.62 (1H, d, J 7.1, indole 5-H), 5.71 (1H, d, J 6.5, C*H*(OH)), 3.92 (3H, s, OCH₃), 3.78-3.69 (1H, m, 14-H_A), 3.39-3.35 (1H, m, 11-H), 3.21-3.15 (1H, m, 13-H), 2.47-2.40 (1H, m, 14-H_B), 2.25 (3H, s, ArCH₃), 2.18-2.11 (1H, m, 12-H_A), 2.11-2.03 (1H, m, 15-H_A), 1.69-1.62 (1H, m, 12-H_B), 1.57-1.51 (1H, m, 15-H_B). ¹³**C NMR** (125 MHz, CD₃OD): δ 159.3 (quinoline 6-C), 151.6 (Ar-C_q), 148.1 (quinoline 2-C), 144.9 (Ar-C_q), 142.1 (Ar-C_q), 135.3 (Ar-C_q), 131.1 (quinoline 8-C), 130.3 (Ar-C_q), 128.9 (Ar-C_q), 128.8 (Ar-C_q), 123.0 (quinoline 7-C), 122.0 (Ar-C_q), 120.8 (indole 5-C), 120,7 (indole 6-C), 120.6 (quinoline 3-C), 110.0 (indole 7-C), 103.4 (quinoline 5-C), 73.5 (CH(OH)), 67.7 (13-C), 56.2 (OCH₃), 47.2 (14-C), 31.7 (12-C), 31.2 (15-C), 29.5 (11-C), 18.7 (CH₃). **HRMS** (ESI): C₂₅H₂₆O₂N₃ [M+H]⁺; calculated: 400.2020, found: 400.2020. [*α*]^{*p*}₂₀ = +48 (c. 0.1, MeOH).

Methyl (*11S*, *13S*)-13-[(*R*)-hydroxy(6-methoxyquinolin-4-yl)methyl]-1,9-diazatetracyclo [9.2.2.0^{2,10}.0^{3,8}]pentadeca-2(10),3(8),4,6-tetraene-4-carboxylate 10c

Prepared according to General Procedure B using ketone **6** and 30 mol% $Pd(OAc)_2$ (72 h). Flash column chromatography eluting with 1:9 to 1:4 ({50:80:1 CH₂Cl₂:EtOH:NH₄OH}/CH₂Cl₂) gave the *title compound* **10c** (17 mg, 38 µmol, 12%) as a yellow solid. ¹H NMR (500 MHz, CD₃OD, NH and OH not observed): δ 8.64 (1H, d, *J* 4.6, quinoline 2-H), 8.06 (1H, app.

s, indole 5-H), 7.86 (1H, d, J 9.2, quinoline 8-H), 7.76 (1H, d, J 4.6, quinoline 3-H), 7.72 (1H, dd, J 8.4, 1.4, indole 6-H), 7.67 (1H, d, J 8.4, indole 7-H), 7.39 (1H, d, J 2.7, quinoline 5-H), 7.31 (1H, dd, J 9.2, 2.7, quinoline 7-H), 6.02 (1H, s, CH(OH)), 4.28-4.22 (1H, m, 14-H_A), 3.98 (3H, s, CO₂CH₃ or OCH₃), 3.88 (3H, s, CO₂CH₃ or OCH₃), 3.45 (1H, s, 11-H), 3.08-3.02 (1H, m, 13-H), 2.65 (1H, app. td, J 11.1, 4.0, 14-H_B), 2.41-2.35 (1H, m, 12-H_A), 2.24-2.17 (1H, m, 15-H_A), 1.68-1.61 (1H, m, 12-H_B), 1.22-1.15 (1H, m, 12-H_B). ¹³C NMR (125 MHz, CD₃OD): δ 170.0 (CO₂CH₃), 159.7 (quinolone 6-C), 151.0 (quinoline 2-C), 148.2 (Ar-C_q), 147.4 (Ar-C_q), 144.6 (Ar-C_q), 134.7 (Ar-C_a), 131.3 (quinoline 8-C), 128.3 (Ar-C_q), 127.8 $(Ar-C_q),$ 125.5 $(Ar-C_{\alpha})$. 123.6 (quinolone 7-C), 122.3 (Ar-Cq), 121.8 (indole 6-C), 119.4 (quinoline 3-C), 116.1 (indole 7-C), 115.3 (indole 5-C), 101.9 (quinoline 5-C), 71.6 (CH(OH)), 66.8 (13-C), 56.6 (CO₂CH₃ or OCH₃), 48.4[§] 52.3 (CO₂CH₃ or OCH₃), (14-C), 30.2 (15-C), 29.7 (11-C), 27.4 (12-C). **HRMS** (ESI): C₂₆H₂₆O₄N₃ [M+H]⁺; calculated: 444.1918, found: 444.1917. $[\alpha]_{20}^{D} = +64$ (c. 0.1, MeOH).

(*R*)-[(*11S*, *13S*)-4-Chloro-1,9-diazatetracyclo[9.2.2.0^{2,10}.0^{3,8}]pentadeca-2(10),3(8),4,6-tetra-en-13-yl](6-methoxyquinolin-4-yl)methanol 10d

Prepared according to General Procedure B using ketone **6** and 10 mol% $Pd(OAc)_2$ (24 h). Flash column chromatography eluting with 1:9 to 1:4 ({50:80:1 CH₂Cl₂:EtOH:NH₄OH}/CH₂Cl₂) gave the *title compound* **10d** (14 mg, 34 µmol, 10%) as a yellow solid. ¹H NMR (500 MHz, CD₃OD, NH and OH not observed): δ 8.65 (1H, d, *J* 4.6, quinoline 2-H), 7.87 (1H, d, *J*

9.3, quinoline 8-H), 7.78-7.73 (2 H, m, quinoline 3-H, indole 6-H), 7.65-7.61 (1H, m, indole 5-H), 7.41 (1H, d, *J* 2.7, quinoline 5-C), 7.32 (1H, dd, *J* 9.3, 2.7, quinoline 7-H), 7.28 (1H, d, *J* 8.3, indole 7-H), 6.01 (1H, app. s, *CH*(OH)), 4.27-4.19 (1H, m, 14-H_A), 3.98 (3 H, s, OCH₃), 3.47-3.43 (1H, m, 11-H), 3.07-3.02 (1H, m, 13-H), 2.66-2.59 (1H, m, 14-H_B), 2.41-2.35 (1H, m, 12-H_A), 2.24-2.16 (1H, m, 15-H_A), 1.68-1.60 (1H, m, 15-H_B), 1.24-1.17 (1H, m, 12-H_B). ¹³**C NMR** (125 MHz, CD₃OD): δ 159.7 (quinoline 6-C), 151.1 (Ar-C_q), 148.2 (quinoline 2-C), 146.4 (Ar-C_q), 144.6 (Ar-C_q), 134.3 (Ar-C_q), 131.3 (quinoline 8-C), 128.4 (Ar-C_q), 127.8 (Ar-C_q), 124.4 (Ar-C_q), 123.6 (quinoline 7-C), 122.7 (Ar-C_q), 119.4 (quinoline 3-C), 117.0 (indole 6-C), 117.0 (indole 7-C), 110.2 (indole 5-C), 29.7 (11-C), 27.7 (12-C). **HRMS** (ESI): C₂₄H₂₃O₂N₃³⁵CI [M+H]⁺; calculated: 420.1473, found: 420.1471. C₂₄H₂₃O₂N₃³⁷CI [M+H]⁺; calculated: 422.1443, found: 422.1443. [*a*]^{*D*}_{*D*} = +80 (c. 0.1, MeOH).

(*R*)-(6-Methoxyquinolin-4-yl)[(*11S*, *13S*)-5-methyl-1,9-diazatetracyclo[9.2.2.0^{2,10}.0^{3,8}] pentadeca-2(10),3(8),4,6-tetraen-13-yl]methanol 10e

Prepared according to General Procedure B using ketone **6** and 10 mol% Pd(OAc)₂ (24 h). Flash column chromatography eluting with 1:9 to 1:4 ($\{50:80:1 \ CH_2Cl_2:EtOH:NH_4OH\}/CH_2Cl_2$) gave the *title compound* **10e** (21 mg, 53 µmol, 17%) as a yellow solid. ¹H NMR (500 MHz, CD₃OD): δ 8.65 (1H, d, J 4.6 Hz, quinoline 2-H), 7.87 (1H, d, J 9.3 Hz,

quinolone 8-H), 7.76 (1H, d, J 4.7 Hz, quinoline 3-H), 7.44 (1H, s, indole 4-H), 7.39 (1H, d, J 2.6 Hz, quinoline 5-H), 7.32 (1H, dd, J 9.3, 2.6 Hz, quinoline 7-H), 7.19 (1H, d, J 8.2 Hz, indole 6-H or indole 7-H), 6.85 (1H, dd, J 8.2, 1.1 Hz, indole 6-H or indole 7-H), 6.03 (1H, app. s, CH(OH)), 4.29-4.22 (1H, m, 14-H_A), 4.00 (3H, s, OCH₃), 3.39 (1H, s, 11-H), 3.06 (1H, app. t, J 8.3, 13-H), 2.68 (1H, app. dt, J 4.2, 9.2 Hz, 14-H_B), 2.41 (3H, s, CH₃), 2.36-2.32 (1H, m, 12-H_A), 2.21-2.14 (1H, m, 15-H_A), 1.70-1.61 (1H, m, 15-H_B), 1.13 (1H, t, J 11.1 Hz, 12-H_B). ¹³**C NMR** (125 MHz, CD₃OD): δ 159.7 (quinoline 6-C), 151.1 (quinoline 4-C), 148.2 (quinoline 2-C), 144.6 (Ar-C_q), 142.4 (Ar-C_q), 134.0 (Ar-C_q), 131.3 (quinoline 8-C), 129.6 (Ar-C_q), 127.8 (Ar-C_q), 123.9 (Ar-C_q), 123.7 (quinolone 7-C), 122.7 (indole 6-C or indole 7-C), 122.3 (Ar-C_q), 119.3 (quinoline 3-C), 116.4 (indole 4-C), 112.5 (indole 6-C or indole 7-C), 101.9 (quinoline 5-C), 71.5 (CH(OH)), 67.2 (13-C), 56.5 (OCH₃), 48.5[§] (14-C), 30.4 (15-C), 29.5 (11-C), 27.4 (12-C), 21.7 (CH₃). **HRMS** (ESI): C₂₅H₂₆O₂N₃ [M+H]⁺; calculated: 400.2020, found: 400.2019. [α]^{*p*}₂₀ = +70 (c. 0.1, MeOH).

§ Inferred from HSQC analysis.

(*1R*, *11S*, *13S*)-5-Carboxy-13-[(*R*)-hydroxy(6-methoxyquinolin-4-yl)methyl]-1,9diazatetracyclo[9.2.2.0^{2,10}.0^{3,8}]pentadeca-2(10),3(8),4,6-tetraen-1-ium trifluoroacetate 10f

Prepared according to General Procedure B using ketone 6 and 10 mol% Pd(OAc)₂ (24 h). Purification by mass-directed preparative HPLC (MeCN in H₂O + 0.1% TFA) gave the *title compound* 10f (15 mg, 28 μmol, 9%) as a colourless solid.
¹H NMR (500 MHz, CD₃OD, CO₂H, NH⁺ and OH not

observed): δ 8.91 (1H, d, J 5.3, quinoline 2-H), 8.19 (1H, d, J 5.3, quinoline 3-H), 8.17 (1H, s, 4-H), 8.05 (1H, d, J9.3, quinoline 8-H), 7.87 (1H, d, J8.5, 6-H), 7.84 (1H, d, J8.5, 7-H), 7.68 (1H, d, J2.2, quinoline 5-H), 7.62 (1H, dd, J 9.3, 2.2, quinoline 7-H), 6.63 (1H, app. s, CH(OH)), 4.88-4.81 (1H, m, 14-H_A), 4.08 (3H, s, OCH₃), 3.84-3.80 (1H, m, 11-H), 3.75 (1H, dd, J 10.0, 6.8, 13-H), 3.36-3.28 (1H, m, 14-H_B), 2.71-2.63 (1H, m, 12-H_A), 2.60-2.45 (1H, m, 15-H_A) 2.04-1.95 (1H, m, 15-H_B), 1.52-1.43 (1H, m, 12-H_B). ¹³C NMR (125 MHz, CD₃OD, CF₃CO_{2⁻} not observed): δ 170.4 (CO₂H), 162.9 (dd, J 34.6, CF₃CO₂⁻), 161.7 (quinoline 6-C), 154.6 (Ar- C_q), 144.2 (quinolone 2-C), (Ar-C_a), 143.7 (Ar-C_a), 138.5 134.9 (Ar-C_a), 128.5 $(Ar-C_{\alpha})$, 127.4 (quinolone 7-C), 126.8 (quinoline 8-C), 125.4 (Ar-C_q), 123.4 (6-C), 121.6 (Ar-C_q), 120.5 (quinoline 3-C), 118.3 (Ar-C_q), 116.5 (7-C), 116.1 (4-C), 102.3 (quinoline 5-C), 69.5 (13-C), 68.0 (CH(OH)), 57.3 (OCH₃), 51.5 (14-C), 29.0 (11-C), 26.9 (15-C), 24.8 (12-C). HRMS (ESI): $C_{25}H_{24}N_{3}O_{4}$ [M+H]⁺; calculated: 430.1761, found: 430.1759. $[\alpha]_{20}^{D} = -4.0$ (c. 0.1, MeOH).

(*R*)-(6-Methoxyquinolin-4-yl)[(*11S*, *13S*)-5-(trifluoromethyl)-1,9-diazatetracyclo [9.2.2.0^{2,10}.0^{3,8}]pentadeca-2(10),3(8),4,6-tetraen-13-yl]methanol 10h

Prepared according to General Procedure B using ketone **6** and 30 mol% $Pd(OAc)_2$ (72 h). Flash column chromatography eluting with 1:9 to 1:4 ({50:80:1 CH₂Cl₂:EtOH:NH₄OH}/CH₂Cl₂) gave the *title compound* **10h** (34 mg, 75 µmol, 23%) as a yellow solid. ¹H NMR (500 MHz, CD₃OD, NH and OH not observed): δ 8.64 (1H, d, *J* 4.7, quinoline 2-H), 8.00 (1H, s,

indole 4-H), 7.85 (1H, d, *J* 9.2, quinoline 8-H), 7.76 (1H, d, *J* 4.7, quinoline 3-H), 7.45 (1H, d, *J* 8.5, indole 7-H), 7.37 (1H, d, *J* 2.6, quinoline 5-H), 7.33-7.25 (2H, m, indole 6-H, quinoline 7-H), 6.02 (1H, app. s, *CH*(OH)), 4.29-4.22 (1H, m, 14-H_A), 3.96 (3H, s, OCH₃), 3.44 (1H, app. s, 11-H), 3.06-3.00 (1H, m, 13-H), 2.67 (1H, app. td, *J* 11.1, 3.7, 14-H_B), 2.40-2.34 (1H, m, 12-H_A), 2.23-2.16 (1H, m, 15-H_A), 1.70-1.63 (1H, m, 15-H_B), 1.17-1.10 (1H, m, 12-H_B). ¹³**C** NMR (125 MHz, CD₃OD): δ 159.7 (quinoline 6-C), 151.1 (Ar-C_q), 148.1 (quinoline 2-C), 145.2 (Ar-C_q), 144.5 (Ar-C_q), 136.9 (Ar-C_q), 131.3 (quinoline 8-C), 127.2 (q, *J*_{CF} 270.4, CF₃), 128.7 (Ar-C_q), 127.7 (Ar-C_q), 123.8 (quinoline 7-C), 122.8 (q, *J*_{CF} 4.3, indole 5-C), 121.6 (Ar-C_q), 101.8 (quinoline 5-C), 71.7 (CH(OH)), 67.1 (13-C), 56.5 (OCH₃), 48.3 (14-C), 30.5 (15-C), 29.7 (11-C), 27.3 (12-C). HRMS (ESI): C₂₅H₂₃O₂N₃F [M+H]⁺; calculated: 454.1737, found: 454.1733. [*α*]^{*D*}₂₀ = +94 (c. 0.1, MeOH).

(*1R*, *11S*, *13S*)-13-[(*R*)-hydroxy(6-methoxyquinolin-4-yl)methyl]-5-nitro-1,9-diazatetracyclo[9.2.2.0^{2,10}.0^{3,8}]pentadeca-2(10),3(8),4,6-tetraen-1-ium trifluoroacetate 10i

Prepared according to General Procedure B using ketone **6** and 30 mol% Pd(OAc)₂ (72 h). Flash column chromatography eluting with 1:9 to 1:4 ($\{50:80:1 \text{ CH}_2\text{Cl}_2:\text{EtOH}:NH_4\text{OH}\}/CH_2\text{Cl}_2$) followed by mass-directed preparative HPLC (MeCN in H₂O + 0.1% TFA) gave the *title compound* **10i** (5 mg, 8 µmol, 3%) as

a yellow solid. ¹H NMR (500 MHz, CD₃OD, NH⁺, NH and OH not observed): δ 8.90 (1H, d, J 5.3, quinoline 2-H), 8.83 (1H, d, J 2.2, indole 4-H), 8.17 (1H, d, J 5.3, quinoline 3-H), 8.09 (1H, dd, J 9.0, 2.2, indole 6-H), 8.04 (1H, d, J 9.3, quinoline 8-H), 7.71 (1H, d, J 2.4, quinoline 5-H), 7.61 (1H, dd, J 9.3, 2.4, quinoline 7-H), 7.58 (1H, d, J 9.0, indole 7-H), 6.63 (1H, app. s, CH(OH)), 4.85-4.79 (1H, m, 14-H_A), 4.10 (3H, s, OCH₃), 3.84-3.80 (1H, m, 11-H), 3.76-3.71 (1H, m, 13-H), 2.71-2.64 (1H, m, 12-H_A), 2.54-2.47 (1H, m, 15-H_A), 2.05-1.96 (1H, m, 15-H_B), 1.50-1.43 (1H, m, 12-H_B). ¹³C NMR (125 MHz, CD₃OD, CF₃CO₂⁻ not observed): δ 163.0 (q, J_{CF} 30.9, CF₃CO₂⁻), 161.6 (quinoline 6-C), 144.6 (Ar-C_q), 144.3 (Ar-C_q), 144.0 (quinoline 2-C), 143.1 (Ar-C_q), 138.7 138.5 (Ar- C_{a}), 128.4 (Ar- C_{a}), 140.5 (Ar-C_a), (Ar-C_a), 127.3 (quinoline 7-C), 126.9 (quinolone 8-C), 120.4 (quinoline 3-C), 118.2 (Ar-Cq), 118.2 (indole 6-C), 114.2 (indole 4-C), 113.8 (indole 7-C), 102.43 (quinoline 5-C), 69.5 (13-C), 68.1 (CH(OH)), 57.4 (OCH₃), 51.2 (14-C), 29.1 (11-C), 27.1 (15-C), 24.9 (12-C). HRMS (ESI): C₂₄H₂₃O₄N₄ [M+H]⁺; calculated: 431.1714, found: 431.1709. $[\alpha]_{20}^{D} = +52$ (c. 0.1, MeOH).

(*R*)-[(*11S*, *13S*)-5-Methoxy-1,9-diazatetracyclo[9.2.2.0^{2,10}.0^{3,8}]pentadeca-2(10),3(8),4,6-tetraen-13-yl](6-methoxyquinolin-4-yl)methanol 10j

Prepared according to General Procedure B using ketone **6** and 30 mol% $Pd(OAc)_2$ (72 h). Flash column chromatography eluting with 1:9 to 1:3 ({50:80:1 CH₂Cl₂:EtOH:NH₄OH}/CH₂Cl₂) gave the *title compound* **10**j (8 mg, 20 µmol, 6%) as a yellow solid. ¹H NMR (600 MHz, CD₃OD, NH and OH not observed): δ 8.64 (1H, d, *J* 4.7, quinoline 2-H), 7.87 (1H, d, *J* 9.2,

quinoline 8-H), 7.76 (1H, d, *J* 4.7, quinoline 3-H), 7.41 (1H, d, *J* 2.6, quinoline 5-H), 7.32 (1H, dd, *J* 9.2, 2.6, quinoline 7-H), 7.21-7.16 (2H, m, indole 4-H and indole 7-H), 6.66 (1H, dd, *J* 8.8, 2.4, indole 6-H), 6.01 (1H, app. s, *CH*(OH)), 4.26-4.20 (1H, m, 14-H_A), 4.01 (3H, s, OCH₃), 3.82 (3H, s, OCH₃), 3.38-3.34 (1H, m, 11-H), 3.09-3.02 (1H, m, 13-H), 2.68-2.62 (1H, m, 14-H_B), 2.37-2.31 (1H, m, 12-H_A), 2.19-2.13 (1H, m, 15-H_A), 1.66-1.60 (1H, m, 15-H_B), 1.16-1.10 (1H, m, 12-H_B). ¹³**C NMR** (150 MHz, CD₃OD): δ 159.6 (quinoline 6-C), 155.6 (indole 5-C), 151.3 (Ar-C_q), 148.2 (quinoline 2-C), 144.6 (Ar-C_q), 143.2 (Ar-C_q), 131.3 (Ar-C_q), 130.8 (quinoline 8-C), 127.9 (Ar-C_q), 127.8 (Ar-C_q), 123.7 (quinoline 7-C), 122.5 (Ar-C_q), 119.3 (quinoline 3-C), 113.3 (indole 4-C or indole 7-C), 110.9 (indole 6-C), 102.0 (quinoline 5-C), 99.1 (indole 4-C or indole 7-C), 71.8 (CH(OH)), 67.0 (13-C), 56.7 (OCH₃), 56.2 (OCH₃), 48.5[§] (14-C), 30.5 (15-C), 29.6 (11-C), 27.6 (12-C). **HRMS** (ESI): C₂₅H₂₆O₃N₃ [M+H]⁺; calculated: 416.1969, found: 416.1972. [*α*]^{*D*}_{*D*}

§ Inferred from HSQC analysis.

(*R*)-(6-methoxyquinolin-4-yl)[(*11S*, *13S*)-5-(trifluoromethoxy)-1,9diazatetracyclo[9.2.2.0^{2,10}.0^{3,8}]pentadeca-2(10),3(8),4,6-tetraen-13-yl]methanol 10k

Prepared according to General Procedure B using ketone **6** and 10 mol% Pd(OAc)₂ (24 h). Flash column chromatography eluting with 5-20% {50:80:1 CH₂Cl₂:EtOH:NH₄OH} in CH₂Cl₂ gave the *title compound* **10k** (98 mg, 0.21 mmol, 65%) as a pale brown solid. ¹H NMR (400 MHz, CD₃OD, NH and OH not observed): δ 8.56 (1H, d,

J 4.7, quinoline 2-H), 7.73 (1H, d, J 9.2, quinoline 8-H), 7.69 (1H, d, J 4.7, quinoline 3-H), 7.53 (1H, d, J 1.1, indole 4-H), 7.30-7.26 (2H, m, quinoline 5-H and indole 7-H), 7.13 (1H, dd, J 9.2, 2.7, quinoline 7-H), 6.85 (1H, ddd, J 8.8, 2.3, 0.8, indole 6-H), 5.94 (1H, s, app. s, CH(OH)), 4.16 (1H, ddd, J 12.7, 8.8, 4.1, 14-H_A), 3.88 (3H, s, OCH₃), 3.33-3.27 (1H, m, 11-H), 3.01-2.94 (1H, m, 13-H), 2.59-2.50 (1H, m, 14-H_B), 2.27 (1H, ddd, J 12.0, 6.6, 2.0, m, 12-H_A), 2.12-2.03 (1H, m, 15-H_A), 1.58-1.47 (1H, m, 15-H_B), 1.11-1.02 (1H, m, 12-H_B). ¹³C NMR (175 MHz, CD₃OD): δ 159.5 (quinolone 6-C), 151.1 (Ar-Cq), 148.0 (quinoline 2-C), 145.3 (Ar-Cq), 144.5 (Ar-Cq), 144.4 (Ar-C_q), 133.8 $(Ar-C_q),$ 131.2 (quinoline 8-C), 128.5 $(Ar-C_{\alpha})$, 127.6 $(Ar-C_{\alpha})$. 123.6 (quinolone 7-C), 122.3 (Ar- C_{α}), 122.2 (q, J_{CF} 253.5, CF₃), 119.2 (quinoline 3-C), 114.5 (indole 6-C), 113.4 (indole 7-C), 109.0 (indole 4-C), 101.7 (quinoline 5-C), 71.7 (CH(OH)), 66.8 (13-C), 56.5 (OCH₃), 48.4 (14-C), 30.4 (15-C), 29.6 (11-C), 27.4 (12-C). HRMS (ESI): $C_{25}H_{23}O_{3}N_{3}F_{3}$ [M+H]⁺; calculated: 470.1686, found: 470.1680. [α]^{*D*}₂₀ = +33 (c. 0.1, MeOH).

(*R*)-[(*11S*, *13S*)-5-Fluoro-1,9-diazatetracyclo[9.2.2.0^{2,10}.0^{3,8}]pentadeca-2(10),3(8),4,6-tetraen-13-yl](6-methoxyquinolin-4-yl)methanol 10l

Prepared according to General Procedure B using ketone **6** and 20 mol% Pd(OAc)₂ (48 h). Flash column chromatography eluting with 1:9 to 1:4 ($\{50:80:1 \ CH_2Cl_2:EtOH:NH_4OH\}/CH_2Cl_2$) gave the *title compound* **10I** as a yellow solid (61 mg, 151 µmol, 47%). ¹H NMR (500 MHz, CD₃OD, NH and OH not observed): δ 8.65 (1H, d, *J* 4.7, quinoline 2-H), 7.86 (1H, d, *J* 9.2,

quinoline 8-H), 7.76 (1H, d, *J* 4.7, quinoline 3-H), 7.39 (1H, d, *J* 2.6, quinoline 5-H), 7.32 (1H, dd, *J* 2.6, 9.2, quinoline 7-H), 7.29 (1H, dd, *J* 9.9, 2.5, indole 4-H), 7.25 (1H, dd, *J* 8.9, 4.4, indole 7-H), 6.76 (1H, app. td, *J* 9.2, 2.5, indole 6-H), 6.00 (1H, app. s, *CH*(OH)), 4.26-4.19 (1H, m, 14-H_A), 3.99 (3H, s, OCH₃), 3.40-3.37 (1H, m, 11-H), 3.06-3.00 (1H, m, H-13), 2.64 (1H, app. td, *J* 11.5, 4.1, 14-H_B), 2.37-2.32 (1H, m, 12-H_A), 2.21-2.13 (1H, m, 15-H_A), 1.67-1.59 (1H, m, 15-H_B), 1.15 (1H, t, *J* 11.1, 12-H_B). ¹³**C** NMR (125 MHz, CD₃OD): δ 159.7 (quinoline 6-C), 159.5 (d, *J*_{CF} 232.6, indole 5-C), 151.2 (Ar-C_q), 148.2 (quinoline 2-C), 144.8 (Ar-C_q), 144.6 (Ar-C_q), 132.2 (Ar-C_q), 131.3 (quinoline 8-C), 127.8 (Ar-C_q), 123.7 (quinoline 7-C), 122.4 (Ar-C_q), 122.3 (Ar-C_q), 119.3 (quinoline 3-C), 113.4 (d, *J*_{CF} 9.9, indole 7-C), 108.8 (d, *J*_{CF} 26.5, indole 6-C), 101.9 (quinolone 5-C), 29.7 (11-C), 27.6 (12-C). HRMS (ESI): C₂₄H₂₃O₂N₃F [M+H]⁺; calculated: 404.1769, found: 404.1769. [*a*]^{*D*}₂₀

§ Inferred from HSQC analysis.

(*R*)-[(*11S*, *13S*)-5-Chloro-1,9-diazatetracyclo[9.2.2.0^{2,10}.0^{3,8}]pentadeca-2(10),3(8),4,6-tetraen-13-yl](6-methoxyquinolin-4-yl)methanol 10m

Prepared according to General Procedure B using ketone **6** and 10 mol% Pd(OAc)₂ (24 h). Flash column chromatography eluting with 1:9 to 1:4 ($\{50:80:1 \ CH_2Cl_2:EtOH:NH_4OH\}/CH_2Cl_2$) gave the *title compound* **10m** (80 mg, 191 µmol, 59%) as a yellow solid. ¹H NMR (500 MHz, CD₃OD): δ 8.64 (1H, d, J 4.6, quinoline 2-H), 7.85 (1H, d, J 9.3, quinoline 8-H),

7.75 (1H, d, *J* 4.6, quinoline 3-H), 7.61 (1H, d, *J* 2.0, indole 4-H), 7.37 (1H, d, *J* 2.6, quinoline 5-H), 7.30 (1H, dd, *J* 9.3, 2.6, quinoline 7-H), 7.26 (1H, d, *J* 8.5, indole 7-H), 6.96 (1H, dd, *J* 8.5, 2.0, indole 6-H), 5.99 (1H, app. s, C*H*OH), 4.25-4.18 (1H, m 14-H_A), 3.99 (3H, s, OCH₃), 3.39 (1H, app. s, 11-H), 3.03-2.98 (1H, m, 13-H), 2.63 (1H, td, *J* 11.1, 3.7 Hz 14-H_B), 2.37-2.31 (1H, m, 12-H_A), 2.19-2.15 (1H, m CH2 15-H_A), 1.67-1.59 (1H, m, 15-H_B), 1.16-1.09 (1H, m, 12-H_B). ¹³C NMR (125 MHz, CD₃OD): 159.7 (quinoline 6-C), 151.2 (Ar-Cq), 148.1 (quinoline 2-C), 144.6 (Ar-Cq), 144.5 (Ar-Cq), 133.9 (Ar-Cq), 131.3 (quinoline 8-C), 127.8 (Ar-Cq), 127.7 (Ar-Cq), 126.3 (Ar-Cq), 123.7 (quinoline 7-C), 123.2 (Ar-Cq), 121.0 (indole 6-C or indole 7-C), 119.3 (quinolone 3-C), 116.2 (indole 4-C), 113.9 (indole 6-C or indole 7-C), 101.8 (quinoline 5-C), 71.7 (CH(OH)), 66.9 (13-C), 56.5 (OCH₃), 47.1[§] (C-14), 30.5 (15-C), 29.6 (11-C), 27.5 (12-C). HRMS (ESI): C₂₄H₂₃O₂N₃Cl³⁵ [M+H]⁺; calculated: 420.1473, found: 420.1475. [*a*]^{*D*}₂₀ = -19 (c. 0.1, MeOH).

[§] Inferred from HSQC analysis.

(*R*)-[(*11S*, *13S*)-5-Bromo-1,9-diazatetracyclo[9.2.2.0^{2,10}.0^{3,8}]pentadeca-2(10),3(8),4,6-tetraen-13-yl](6-methoxyquinolin-4-yl)methanol 10n

Prepared according to General Procedure B using ketone **6** and 20 mol% Pd(OAc)₂ (48 h). Flash column chromatography eluting with 1:9 to 1:4 ($\{50:80:1 \ CH_2Cl_2:EtOH:NH_4OH\}/CH_2Cl_2$) the *title compound* **10n** (22 mg, 48 µmol, 15%) as a yellow solid. ¹H NMR (600 MHz, CD₃OD, NH and OH not observed): δ 8.64 (1H, d, *J* 4.7, quinoline 2-H), 7.86 (1H, d, *J* 9.2,

quinoline 8-H), 7.77 (1H, d, *J* 1.8, indole 4-H), 7.75 (1H, d, *J* 4.7, quinoline 3-H), 7.38 (1H, d, *J* 2.6, quinoline 5-H), 7.32 (1H, dd, *J* 9.2, 2.7, quinoline 7-H), 7.22 (1H, d, *J* 8.5, indole 7-H), 7.09 (1H, dd, *J* 8.5, 1.8, indole 6-H), 5.99 (1H, app. s, *CH*(OH)), 4.25-4.19 (1H, m, 14-H_A), 4.00 (3H, s, OCH₃), 3.41-3.38 (1H, m, 11-H), 3.05-2.99 (1H, m, 13-H), 2.68-2.61 (1H, m, 14-H_B), 2.37-2.32 (1H, m, 12-H_A), 2.21-2.15 (1H, m, 15-H_A), 1.68-1.61 (1H, m, 15-H_B), 1.17-1.10 (1H, m, 12-H_B).¹³**C NMR** (150 MHz, CD₃OD): δ 159.7 (quinoline 6-C), 151.1 (Ar-C_q), 148.2 (quinoline 2-C), 144.6 (Ar-C_q), 144.5 (Ar-C_q), 134.3 (Ar-C_q), 131.3 (quinoline 8-C), 127.8 (Ar-C_q), 127.5 (Ar-C_q), 123.9 (Ar-C_q), 123.7 (quinoline 7-C), 123.7 (indole 6-C), 119.3 (indole 4-C), 119.3 (quinoline 3-C), 114.3 (indole 7-C), 113.9 (Ar-C_q), 101.9 (quinoline 5-C), 71.7 (CH(OH)), 67.1 (13-C), 56.6 (OCH₃), 48.3 (14-C), 30.5 (15-C), 29.7 (11-C), 27.5 (12-C). **HRMS** (ESI): C₂₄H₂₃O₂N₃⁷⁹Br [M+H]⁺; calculated: 466.0948, found: 466.0945. [*α*]^{*D*}_{*D*} = +164 (c. 0.1, MeOH).

(*R*)-(6-Methoxyquinolin-4-yl)[(*11S*, *13S*)-6-methyl-1,9-diazatetracyclo[9.2.2.0^{2,10}.0^{3,8}] pentadeca-2(10),3(8),4,6-tetraen-13-yl]methanol 10o

Prepared according to General Procedure B using ketone **6** and 20 mol% Pd(OAc)₂ (48 h). Flash column chromatography eluting with 1:9 to 1:4 ({50:80:1 CH₂Cl₂:EtOH:NH₄OH}/CH₂Cl₂) gave the *title compound* **10o** (5 mg, 12 μ mol, 4%) as a yellow solid. ¹H NMR (500 MHz, CD₃OD, NH and OH not observed): δ 8.65 (1H, d, *J* 4.7, quinoline 2-H),

7.87 (1H, d, J 9.2, quinoline 8-H), 7.76 (1H, d, J 4.7, quinoline 3-H), 7.51 (1H, d, J 8.0, indole 4-H), 7.39 (1H, d, J 2.4, quinoline 5-H), 7.33 (1H, dd, J 9.2, 2.4, quinoline 7-H), 7.11 (1H, s, indole 7-H), 6.87 (1H, d, J 8.0, indole 5-H), 6.02 (1H, app. s, CH(OH)), 4.27-4.21 (1H, m, 14-H_A), 3.99 (3H, s, OCH₃), 3.40-3.36 (1H, m, 11-H), 3.08-3.02 (1H, m, 13-H), 2.70-2.62 (1H, m, 14-H_B), 2.39 (3H, s, CH₃) 2.37-2.31 (1H, m, 12-H_A), 2.21-2.13 (1H, m, 15-H_A), 1.68-1.60 (1H, m, 15-H_B), 1.16-1.09 (1H, m, 12-H_B). ¹³**C** NMR (125 MHz, CD₃OD): δ 159.7 (quinoline 6-C), 151.2 (Ar-C_q), 148.1 (quinolone 2-C), 144.5 (Ar-C_q), 141.5 (Ar-C_q), 136.0 (Ar-C_q), 131.2 (quinoline 8-C), 130.7 (Ar-C_q), 127.8 (Ar-C_q), 123.7 (quinoline 7-C), 122.1 (indole 5-C), 120.2 (Ar-C_q) 120.1 (Ar-C_q), 119.3 (quinoline 3-C), 116.4 (indole 4-C), 112.7 (indole 7-C), 101.9 (quinoline 5-C), 71.6 (CH(OH)), 67.0 (13-C), 56.6 (OCH₃), 46.3 (14-C), 30.5 (15-C), 29.5 (11-C), 27.6 (12-C), 21.8 (CH₃). HRMS (ESI): C₂₅H₂₆O₂N₃ [M+H]⁺; calculated: 400.2020, found: 400.2019. [α]^p₂₀ = -31 (c. 0.1, MeOH).

(*1R*, *11S*, *13S*)-6-Carboxy-13-[(*R*)-hydroxy(6-methoxyquinolin-4-yl)methyl]-1,9-diazatetracyclo[9.2.2.0^{2,10}.0^{3,8}]pentadeca-2(10),3(8),4,6-tetraen-1-ium trifluoroacetate 10p

•CF₃CO₂⁻ Prepared according to General Procedure B using ketone 6 and 20 mol% Pd(OAc)₂ (48 h). Purification by mass-directed preparative HPLC (MeCN in H₂O + 0.1% TFA; Rt = 7.2 min) gave the *title compound* **10p** (25 mg, 46 μmol, 14%) as a yellow solid. ¹H NMR (500 MHz, CD₃OD, CO₂H, NH⁺, NH

and OH not observed): δ 8.87 (1H, d, *J* 5.3, quinoline 2-H), 8.24 (1H, d, *J* 1.4, indole 7-H), 8.14 (1H, d, *J* 9.3, quinoline 8-H), 7.89 (1H, d, *J* 5.3, quinoline 3-H), 7.78 (1H, dd, *J* 8.5, 1.4, indole 5-H), 7.72 (1H, dd, *J* 9.3, 2.5, quinoline 7-H), 7.48 (1H, d, *J* 2.5, quinoline 5-H), 7.33 (1H, d, *J* 8.5, indole 4-H), 5.62 (1H, d, *J* 5.4, *CH*(OH)), 4.60 (1H, app. dt, *J* 8.6, 5.9, 13-H), 4.03-3.94 (1H, m, 14-H_A), 3.88-3.82 (1H, m, 11-H), 3.81 (3H, s, OCH₃), 3.19-3.12 (1H, m, 14-H_B), 2.31-2.23 (2 H, m, 12-H_A and 15-H_A), 2.14-2.05 (1H, m, 12-H_B), 1.93-1.81 (1H, m, 15-H_B). ¹³**C** NMR (125 MHz, CD₃OD, *C*F₃CO₂⁻ not observed): δ 170.5 (CO₂H), 162.6 (q, *J*_{CF} 35.6, CF₃CO₂⁻), 161.3 (quinoline 6-C), 153.5 (Ar-C_q), 144.2 (quinoline 2-C), 143.2 (Ar-C_q), 138.8 (Ar-C_q), 135.1 (Ar-C_q), 129.1 (Ar-C_q), 127.3 (quinoline 7-C), 126.8 (quinoline 8-C), 125.2 (Ar-C_q), 123.4 (Ar-C_q), 123.1 (indole 5-C), 121.9 (quinoline 3-C), 116.8 (Ar-C_q), 115.9 (indole 7-C), 113.9 (indole 4-C), 103.3 (quinoline 5-C), 69.9 (CH(OH)), 67.6 (13-C), 57.1 (14-C), 56.6 (OCH₃), 30.1 (12-C), 28.7 (11-C), 25.2 (15-C). HRMS (ESI): C₂₅H₂₄O₄N₃ [M+H]⁺; calculated: 430.1761, found: 430.1759. [α]^{*D*}₂₀ = +71 (c. 0.1, MeOH).

(*R*)-(6-Methoxyquinolin-4-yl)[(*11S*, *13S*)-6-(trifluoromethyl)-1,9-diazatetracyclo [9.2.2.0^{2,10}.0^{3,8}]pentadeca-2(10),3(8),4,6-tetraen-13-yl]methanol 10r

Prepared according to General Procedure B using ketone **6** and 10 mol% Pd(OAc)₂ (24 h). Flash column chromatography eluting with 1:9 to 1:4 ({ $50:80:1 \text{ CH}_2\text{Cl}_2:\text{EtOH}:NH_4\text{OH}$ }/CH₂Cl₂) gave the *title compound* **10r** (101 mg, 0.22 mmol, 70%) as a yellow solid. ¹H NMR (500 MHz, CD₃OD, NH and OH not observed): δ 8.65 (1H, d,

J4.7, quinoline 2-H), 7.87 (1H, d, J9.2, quinoline 8-H), 7.78-7.74 (2 H, m, quinoline 3-H indole 5-H), 7.63 (1H, s, indole 7-H), 7.40 (1H, d, J2.6, quinoline 5-H), 7.32 (1H, dd, J9.2, 2.6, quinoline 7-H), 7.28 (1H, d, J7.6, indole 4-H), 6.01 (1H, app. s, C*H*(OH)), 4.27-4.21 (1H, m, 14-H_A), 3.98 (3H, s, OCH₃), 3.47-3.43 (1H, m, 11-H), 3.07-3.02 (1H, m, 13-H), 2.67-2.60 (1H, m, 14-H_B), 2.41-2.35 (1H, m, 12-H_A), 2.24-2.17 (1H, m, 15-H_A), 1.68-1.61 (1H, m, 15-H_B), 1.22-1.15 (1H, m, 12-H_B). ¹³**C NMR** (125 MHz, CD₃OD): δ 159.7 (quinoline 6-C), 151.1 (Ar-C_q), 148.2 (quinoline 2-C), 146.4 (Ar-C_q), 144.6 (Ar-C_q), 134.3 (Ar-C_q), 131.3 (quinoline 8-C), 128.3 (Ar-C_q), 127.8 (Ar-C_q), 126.5 (q, *J*_{CF} 271.5, CF₃), 124.4 (Ar-C_q), 123.7 (quinoline 7-C), 122.8 (q, *J*_{CF} 31.7, indole 6-C), 117.0 (q, *J*_{CF} 2.2, indole 5-C), 117.0 (indole 4-C), 110.2 (q, *J*_{CF} 5.2, indole 7-C), 101.9 (quinolone 5-C), 71.7 (CH(OH)), 66.8 (13-C), 56.6 (OCH₃), 48.4 (14-C), 30.3 (15-C), 29.7 (11-C), 27.6 (12-C). **HRMS** (ESI): C₂₅H₂₃O₂N₃F₃ [M+H]⁺; calculated: 454.1737, found: 454.1735. [*α*]^{*D*}₂₀ = +20 (c. 0.1, MeOH).

(*R*)-[(*11S*, *13S*)-6-Chloro-1,9-diazatetracyclo[9.2.2.0^{2,10}.0^{3,8}]pentadeca-2(10),3(8),4,6-tetraen-13-yl](6-methoxyquinolin-4-yl)methanol 10s

Prepared according to General Procedure B using ketone **6** and 20 mol% Pd(OAc)₂ (48 h). Flash column chromatography eluting with 1:9 to 1:4 ({50:80:1 CH₂Cl₂:EtOH:NH₄OH}/CH₂Cl₂) gave the *title compound* **10s** (28 mg, 66 μ mol, 20%) as a yellow solid. ¹H NMR (500 MHz, CD₃OD): δ 8.64 (1H, d, J 4.7, quinoline 2-H),

7.87 (1H, d, *J* 9.2, quinoline 8-H), 7.75 (1H, d, *J* 4.7, quinoline 3-H), 7.57 (1H, d, *J* 8.5, indole 4-H), 7.39 (1H, d, *J* 2.5, quinoline 5-H), 7.33-7.29 (2H, m, indole 7-H and quinoline 7-H), 7.00 (1H, dd, *J* 8.5, 1.8, indole 5-H), 5.99 (1H, s, *CH*(OH)), 4.21 (1H, ddd, *J* 12.7, 8.8, 4.1, 14-H_A), 3.97 (3H, s, OCH3), 3.41-3.38 (1H, m, 11-H), 3.05-2.99 (1H, m, 13-H), 2.61 (1H, td, *J* 11.1, 4.2, 14-H_B), 2.37-2.31 (1H, m, 12-H_A), 2.20-2.15 (1H, m, 15-H_A), 1.62 (1H, td, *J* 11.1, 3.4, 15-H_B), 1.19-1.13 (1H, m, 12-H_B). ¹³**C NMR** (150 MHz, CD₃OD): δ 159.7 (quinoline 6-C), 151.1 (Ar-Cq), 148.2 (quinolone 2-C), 144.6 (Ar-Cq), 143.7 (Ar-Cq), 135.9 (Ar-Cq), 131.3 (quinoline 8-C), 128.1 (Ar-Cq), 127.8 (Ar-Cq), 126.7 (Ar-Cq), 123.6 (quinoline 7-C), 121.0 (Ar-Cq), 120.9 (indole 5-C), 119.4 (quinoline 3-C), 117.6 (indole 4-C), 112.6 (indole 7-C), 102,0 (quinoline 5-H), 71.7 (CH(OH)), 66.9 (13-C), 56.6 (OCH₃), 48.5[§] (14-C) 30.5 (15-C), 29.6 (11-C), 27.7 (12-C). **HRMS** (ESI): C₂₄H₂₃O₂N₃³⁵CI [M+H]⁺; calculated: 420.1473, found: 420.1472. C₂₄H₂₃O₂N₃³⁷CI [M+H]⁺; calculated: 422.1444, found: 422.1443. [*a*]^{*D*}₂₀ = +56 (c. 0.1, MeOH).

[§] Inferred from HSQC analysis.

(S)-[(*11S*, *13S*)-6-Bromo-1,9-diazatetracyclo[9.2.2.0^{2,10}.0^{3,8}]pentadeca-2(10),3(8),4,6-tetraen-13-yl](6-methoxyquinolin-4-yl)methanol 10t

Prepared according to General Procedure B using ketone **6** and 30 mol% Pd(OAc)₂ (72 h). Flash column chromatography eluting with 1:9 to 1:4 ({ $50:80:1 \text{ CH}_2\text{Cl}_2:\text{EtOH}:NH_4\text{OH}$ }/CH₂Cl₂) gave the *title compound* **10t** (26 mg, 55 µmol, 27%) as a yellow solid. ¹H NMR (600 MHz, CD₃OD, NH and OH not observed): δ 8.64 (1H, d,

J 4.6, quinoline 2-H), 7.86 (1H, dd, J9.2, quinoline 8-H), 7.75 (1H, d, J4.6, quinoline 3-H), 7.52 (1H, d, J8.4, indole 4-H), 7.48 (1H, d, J1.7, indole 7-H) 7.39 (1H, d, J2.3, quinoline 5-H), 7.33-7.29 (1H, m, quinoline 7-H), 7.12 (1H, dd, J8.4, 1.7, indole 5-H), 6.01 (1H, app. s, CH(OH)), 4.27-4.18 (1H, m, 14-H_A), 3.97 (3H, s, OCH₃), 3.41-3.38 (1 H, m, 11-H), 3.10-2.97 (1H, m, 13-H), 2.68-2.58 (1H, m, 14-H_B), 2.38-2.31 (1H, m, 12-H_A), 2.21-2.14 (1H, m, 15-H_A), 1.67-1.58 (1H, m, 15-H_B), 1.19-1.12 (1H, m, 12-H_B). ¹³**C NMR** (125 MHz, CD₃OD): δ 159.7 (quinoline 6-C), 151.1 (Ar-C_q), 148.2 (quinoline 2-C), 144.6 (Ar-C_q), 143.7 (Ar-C_q), 136.3 (Ar-C_q), 131.3 (quinoline 8-C), 127.8 (Ar-C_q), 123.6 (quinoline 7-C), 123.5 (indole 5-C), 121.3 (Ar-C_q), 121.1 (Ar-C_q), 119.4 (quinoline 3-C), 118.0 (indole 4-C), 115.6 (indole 7-C), 114.0 (Ar-C_q), 102.0 (quinoline 5-C), 71.7 (CH(OH)), 66.9 (13-C), 56.6 (OCH₃), 48.6 (14-C) 30.4 (15-C), 29.6 (11-C), 27.7 (12-C). **HRMS** (ESI): C₂₄H₂₃O₂N₃⁸¹Br [M+H]⁺; calculated: 466.0948, found: 466.0950. [α]^D₂₀ = +22 (c. 0.1, MeOH).
(*R*)-[(*11S*, *13S*)-7-Methoxy-1,9-diazatetracyclo[9.2.2.0^{2,10}.0^{3,8}]pentadeca-2(10),3(8),4,6-tetraen-13-yl](6-methoxyquinolin-4-yl)methanol 10u

Prepared according to General Procedure B using ketone **6** and 30 mol% Pd(OAc)₂ (72 h). Flash column chromatography eluting with 5-20% { $50:80:1 \text{ CH}_2\text{Cl}_2:\text{EtOH}:NH_4\text{OH}$ } in CH₂Cl₂ gave the *title compound* **10u** (45 mg, 0.11 mmol, 33%) as a colourless solid. ¹H NMR (500 MHz, CD₃OD, NH and OH not observed): δ 8.66 (1H, d,

J 4.7, quinoline 2-H), 7.88 (1H, d, J 9.2, quinoline 8-H), 7.77 (1H, d, J 4.7, quinoline 3-H), 7.37 (1H, d, J 2.5, quinoline 5-H), 7.34 (1H, dd, J 9.2, 2.5, quinoline 7-H), 7.25 (1H, d, J 8.0, 6-H), 6.99 (1H, app. t, J7.9, 5-H), 6.62 (1H, d, J7.8, 4-H), 6.07 (1H, s, CH(OH)), 4.44-4.30 (1H, m, 14-H_A), 3.98 (3H, s, OCH₃), 3.92 (3H, s, OCH₃), 3.51-3.46 (1H, m, 11-H), 3.23-3.14 (1H, m, 13-H), 2.84-2.74 (1H, m, 14-H_B), 2.41 (1H, dd, J 10.8, 6.5, 12-H_A), 2.28-2.18 (1H, m, 15-H_A), 1.75-1.65 (1H, m, 15-H_B), 1.25-1.16 (1H, m, 12-H_B). ¹³**C NMR** (125 MHz, CD₃OD, 3 × Ar-C_q not observed): δ 159.8 (quinolone 6-C), 148.2 (2 peaks, quinoline 2-C and Ar-C_q), 144.6 (Ar-C_q), 141.3 (Ar-C_q), 131.4 (quinoline 8-C), 127.7 (Ar-C_q), 125.4 (Ar-C_q), 123.7 (quinoline 7-C), 121.4 (5-C), 119.4 (quinoline 3-C), 109.7 (6-C), 102.1 (4-C), 101.8 (quinoline 5-C), 70.9 (CH(OH)), 67.7 (13-C), 56.6 (OCH₃), 55.8 (OCH₃), 51.5 (14-C), 29.7 (11-C), 29.3 (15-C), 27.0 (12-C). **HRMS** (ESI): C₂₅H₂₆N₃O₃ [M+H]⁺; calculated: 416.1969, found: 416.1970. [α]^{*p*}₂₀ = -52 (c. 0.1, MeOH).

(11*S*,13*S*)-7-Fluoro-13-[(1*R*)-1-(6-methoxyquinolin-4-yl)ethyl]-1,9-diazatetracyclo [9.2.2.0^{2,10}.0^{3,8}]pentadeca-3,5,7-triene 10x

Prepared according to General Procedure B using 30 mol% Pd(OAc)₂ (72 h). Flash column chromatography eluting with 10-25% {50:80:1 CH₂Cl₂:EtOH:NH₄OH} in CH₂Cl₂ gave the *title compound* **10x** (24 mg, 59 μ mol, 18%) as brown solid. ¹H NMR (500 MHz, CD₃OD, NH and OH not observed): δ 8.62 (1H, d, *J* 4.6, quinoline 2-H), 7.84 (1H, d, *J* 9.2,

quinolone 8-H), 7.74 (1H, d, *J* 4.6, quinoline 3-H), 7.41 (1H, d, *J* 8.1, indole 4-H), 7.37 (1H, d, *J* 2.4, quinoline 5-H), 7.28 (1H, dd, *J* 9.2, 2.4, quinoline 7-H), 6.99-6.89 (1H, m, indole 5-H), 6.73 (1H, dd, *J* 11.5, 8.1, indole 6-H), 5.99 (1H, s, *CH*(OH)), 4.25-4.18 (1H, m, 14-H_A), 3.96 (3H, s, OCH₃), 3.41 (1H, s, 11-H), 3.08-2.99 (1H, m, 13-H), 2.66-2.58 (1H, m, 14-H_B), 2.39-2.31 (1H, m, 12-H_A), 2.20-2.13 (1H, m, 15-H_A), 1.66-1.57 (1H, m, 15-H_B), 1.17-1.11 (1H, m, 12-H_B). ¹³**C NMR** (126 MHz, CD₃OD): δ 159.6 (quinoline 6-C), 151.4 (d, *J*_{CF} 241.9, indole 7-C) 151.2 (Ar-Cq), 148.1 (quinolone 2-C), 144.5 (Ar-Cq), 143.8 (Ar-Cq), 131.2 (quinoline 8-C), 128.8 (Ar-Cq), 127.8 (Ar-Cq), 126.1 (Ar-Cq), 123.6 (quinoline 7-C), 123.2, (Ar-Cq) 120.6 (d, *J*_{CF} 6.6, indole 5-C), 101.8 (quinolone 3-C), 112.7 (d, *J*_{CF} 3.1, indole 4-C), 105.8 (d, *J*_{CF} 16.7, indole 6-C), 101.8 (quinolone 5-C), 71.6 (*C*H(OH)), 66.8 (13-C), 56.6 (OCH₃), 48.4 (14-C), 30.4 (15-C), 29.6 (11-C), 27.6 (12-C). **HRMS** (ESI): C₂₄H₂₃O₂N₃F [M+H]⁺; calculated: 404.1769, found: 404.1769 [*α*]_D²⁰ = -8 (c. 0.1, MeOH).

(11*S*,13*S*)-7-chloro-13-[(1*R*)-1-(6-methoxyquinolin-4-yl)ethyl]-1,9-diazatetracyclo [9.2.2.0^{2,10}.0^{3,8}]pentadeca-3,5,7-triene 10y

Prepared according to General Procedure B using 10 mol% Pd(OAc)₂ (24 h). Flash column chromatography eluting with 10-25% {50:80:1 CH₂Cl₂:EtOH:NH₄OH} in CH₂Cl₂ gave the *title compound* **10y** (71 mg, 169 μ mol, 53%) as yellow solid. ¹H NMR (500 MHz, CD₃OD, NH and OH

not observed): δ 8.58 (1H, d, *J* 4.6, quinoline 2-H), 7.80 (1H, d, *J* 9.2, quinoline 8-H), 7.76 (1H, d, *J* 4.6, quinoline 3-H), 7.30 (1H, d, *J* 2.3, quinoline 5-H), 7.29-7.26 (1H, m, indole 4-H), 7.24 (1H, dd, *J* 9.2, 2.3, quinoline 7-H), 6.98-6.95 (2H, m, indole 5-H and indole 6-H), 6.37 (1H, app. s, *CH*(OH)), 4.51 (1H, app. s, 14-Ha), 3.95 (3H, s, OCH₃), 3.63-3.56 (1H, m, 11-H)⁺⁺⁺, 3.40 (1H, s, 13-H), 2.95 (1H, app. s, 14-H_B), 2.54-2.45 (1H, m, 12-H_A), 2.35-2.26 (1H, m, 15-H_A), 1.82-1.68 (1H, m, 15-H_B), 1.35 (1H, app. t, *J* 11.2, 12-H_B). ¹³**C** NMR (126 MHz, CD₃OD, 1 × Ar-C_q not observed): δ 159.8 (quinoline 6-C), 149.1 (Ar-C_q), 148.0 (quinoline 2-C), 144.3 (Ar-C_q), 142.9 (Ar-C_q), 136.3 (Ar-C_q), 131.3 (quinoline 8-C), 127.6 (Ar-C_q), 123.7 (quinoline 7-C), 122.9 (indole 6-C), 122.7 (Ar-C_q), 121.4 (indole 5-C), 119.9 (quinoline 3-C), 118.6 (Ar-C_q), 112.1 (indole 4-C), 101.4 (quinoline 5-C), 69.5 (13-C), 68.9 (*C*H(OH)), 56.7 (OCH₃), 51.6 (14-C), 28.8 (11-C), 27.8 (15-C), 26.5 (12-C). HRMS (ESI): C₂₄H₂₃O₂N₃³⁵CI [M+H]⁺; calculated: 420.1473, found: 420.1471; C₂₄H₂₃O₂N₃³⁷CI [M+H]⁺; calculated: 422.1443, found: 422.1442. [*α*]_D² = +42 (c. 0.1, MeOH).

(*1R*, *11S*, *13S*)-13-[(*R*)-Hydroxy(6-methoxyquinolin-4-yl)methyl]-7-methoxy-5methoxycarbonyl)-1,9-diazatetracyclo[9.2.2.0^{2,10}.0^{3,8}]pentadeca-2(10),3(8),4,6-tetraen-1-ium trifluoroacetate 10z

Prepared according to General Procedure B using ketone **6**, MgSO₄ (1.5 eq.) and 30 mol% Pd(OAc)₂ (72 h). Flash column chromatography eluting with 5-20% {50:80:1 CH₂Cl₂:EtOH:NH₄OH} in CH₂Cl₂, followed by further purification using mass-directed HPLC (MeCN in H₂O + 0.1%

TFA) gave the *title compound* **10z** (3 mg, 4.7 µmol, 1%) as an orange oil. ¹H NMR (500 MHz, CD₃OD, NH and OH not observed): δ 8.90 (1H, d, *J* 5.5, quinoline 2-H), 8.23 (1H, d, *J* 1.3, indole 4-H or 6-H), 8.21 (1H, d, *J* 5.5, quinoline 3-H), 8.04 (1H, d, *J* 9.3, quinoline 8-H), 7.71 (1H, d, *J* 2.6, quinoline 5-H), 7.63 (1H, dd, *J* 9.3, 2.6, quinoline 7-H), 7.34 (1H, d, *J* 1.3, indole 4-H or 6-H), 6.66 (1H, s, C*H*(OH)), 4.78 (1H, ddd, *J* 11.8, 9.3, 4.3, 14-Ha), 4.08 (3H, s, OCH₃), 3.98 (3H, s, OCH₃), 3.92 (3H, s, OCH₃), 3.78-3.75 (1H, m, 11-H), 3.72-3.67 (1H, m, 13-H), 3.36-3.29 (1H, 14-H_B)[§], 2.61 (1H, ddd, *J* 12.2, 6.6, 2.2, 12-Ha), 2.50-2.43 (1H, m, 15-Ha), 2.02-1.93 (1H, m, 15-H_B), 1.45-1.37 (1H, m, 12-H_B). ¹³**C** NMR (125 MHz, CD₃OD, $CF_3CO_2^-$ and 2 × Ar-Cq not observed): 169.2 (CO₂Me), 162.0 (quinoline 6-C), 148.0 (Ar-Cq), 143.5 (quinoline 2-C), 141.4 (Ar-Cq), 128.7 (Ar-Cq), 128.5 (Ar-Cq), 128.2 (quinoline 7-C), 126.0 (quinoline 8-C), 125.2 (Ar-Cq), 120.5 (quinolone 3-C), 119.5 (Ar-Cq), 119.2 (Ar-Cq), 113.5 (indole 4-C or 6-C), 103.7 (indole 4-C or 6-C), 102.5 (quinoline 5-C), 69.8 (13-C), 68.0 (CH(OH)), 57.6 (OCH₃), 56.2 (OCH₃), 52.6 (OCH₃), 51.2 (14-C), 28.8 (11-C), 27.0 (12-C), 24.7 (15-C). HRMS (ESI): C₂₇H₂₈O₅N₃ [M+H]⁺; calculated: 474.2024, found: 474.2020.

[§] Inferred from HSQC analysis.

(*R*)-(6-Methoxyquinolin-4-yl)[(*11S*, *13S*)-1,6,9-triazatetracyclo[9.2.2.0^{2,10}.0^{3,8}]pentadeca-2(10),3(8),4,6-tetraen-13-yl]methanol 10v

Prepared according to General Procedure B using ketone **6** and 10 mol% Pd(OAc)₂ (24 h). Flash column chromatography eluting with 1:9 to 1:4 ($\{50:80:1 \ CH_2Cl_2:EtOH:NH_4OH\}/CH_2Cl_2$) gave the *title compound* **10v** as a yellow solid (81 mg, 209 µmol, 65%). ¹H NMR (600 MHz, CD₃OD, NH and OH not observed): δ 8.65 (1H, d, *J* 4.7, quinoline 2-H), 8.59 (1H, s,

indole 7-H), 8.04 (1H, d, J 5.7, indole 5-H), 7.87 (1H, d, J 9.2, quinoline 8-H), 7.76 (1H, d, J 4.7, quinoline 3-H), 7.63 (1H, d, J 5.7, indole 4-H), 7.41 (1H, d, J 2.6, quinoline 5-H), 7.32 (1H, dd, J 9.2, 2.6, quinoline 7-H), 5.99 (1H, app. s, CH(OH)), 4.26-4.20 (1H, m, 14-H_A), 3.98 (3H, s, OCH₃), 3.49 (1H, s, 11-H), 3.05-3.00 (1H, m, 13-H), 2.65-2.59 (1H, m, 14-H_B), 2.44-2.39 (1H, m, 12-H_A), 2.26-2.20 (1H, m, 15-H_A), 1.68-1.61 (1H, m, 15-H_B), 1.27-1.20 (1H, m, 12-H_B). ¹³**C NMR** (150 MHz, CD₃OD): δ 159.7 (quinoline 6-C), 151.0 (Ar-C_q), 149.9 (Ar-C_q), 148.2 (quinoline 2-C), 144.6 (Ar-C_q), 138.1 (indole 5-C), 134.4 (indole 7-C), 132.5 (Ar-C_q), 131.3 (quinoline 8-C), 127.9 (Ar-C_q), 127.8 (Ar-C_q), 126.8 (Ar-C_q), 123.6 (quinoline 7-C), 119.4 (quinoline 3-C), 111.9 (indole 4-C), 102.0 (quinoline 5-C), 71.7 (CH(OH)), 66.7 (13-C), 56.6 (O-CH₃), 48.3 (14-C), 30.1 (15-C), 29.9 (11-C), 27.6 (12-C). **HRMS** (ESI): C₂₃H₂₃O₂N₄ [M+H]⁺; calculated: 387.1816, found: 387.1816. [α]²₂₀ = +58 (c. 0.1, MeOH).

(*1R*, *11S*, *13S*)-13-[(*R*)-Hydroxy(6-methoxyquinolin-4-yl)methyl]-1,7,9-triazatetracyclo [9.2.2.0^{2,10}.0^{3,8}]pentadeca-2(10),3(8),4,6-tetraen-1-ium trifluoroacetate 10w

Prepared according to General Procedure B using ketone 6 and 30 mol% Pd(OAc)₂ (72 h). Flash column chromatography eluting with 1:9 to 1:4 ({50:80:1 CH₂Cl₂:EtOH:NH₄OH}/CH₂Cl₂) followed by mass-directed preparative HPLC (MeCN in H₂O + 0.1% TFA; Rt = 10.2 min) gave the *title compound* 10w (21 mg, 43 μmol,

13%) as a colourless solid. ¹H NMR (500 MHz, CD₃OD, NH⁺, NH and OH not observed): δ 8.94 (1H, d, *J* 5.5, quinoline 2-H), 8.28-8.23 (3 H, m, indole 4-H, indole 6-H, quinoline 3-H), 8.08 (1H, d, *J* 9.3, quinoline 8-H), 7.74 (1H, d, *J* 2.3, quinoline 5-H), 7.67 (1H, dd, *J* 9.3, 2.3, quinoline 7-H), 7.28 (1H, dd, *J* 7.9, 5.0, indole 5-H), 6.67 (1H, app. s, *CH*(OH)), 4.85-4.78 (1H, m, 14-H_A), 4.08 (3H, s, OCH₃), 3.82 (1H, s, 11-H), 3.79-3.73 (1H, m, 13-H), 3.29-3.26 (1H, m, 14-H_B), 2.68-2.64 (1H, m, 12-H_A), 2.55-2.47 (1H, m, 15-H_A), 2.04-1.94 (1H, m, 15-H_B), 1.52-1.45 (1H, m, 12-H_B). ¹³C NMR (125 MHz, CD₃OD, *C*F₃CO_{2⁻} not observed): δ 162.8 (q, *J*_{CF} 36.7, CF₃CO_{2⁻}). 161.9 (quinoline 6-C), 156.0 (Ar-C_q), 146.5 (Ar-C_q), 143.6 (indole 6-C), 143.4 (quinoline 2-C), 141.6 (Ar-C_q), 137.4 (Ar-C_q), 128.7 (Ar-C_q), 128.1 (quinoline 7-C), 126.6 (indole 4-C), 125.9 (quinoline 8-C), 120.7 (quinoline 3-C), 118.4 (indole 5-C), 116.8 (Ar-C_q), 112.4 (Ar-C_q), 102.5 (quinoline 5-C), 69.2 (13-C), 67.9 (CH(OH)), 57.4 (OCH₃), 51.3 (14-C), 28.6 (11-C), 27.0 (15-C), 24.9 (12-C). HRMS (ESI): C₂₃H₂₃O₂N4 [M+H]⁺; calculated: 387.1816, found: 387.1816. [*a*]^{*p*}₂₀ = -37 (c. 0.1, MeOH).

(1R,11S,13S)-4-Chloro-13-[(R)-hydroxy(6-methoxyquinolin-4-yl)methyl]-1,7,9-

triazatetracyclo[9.2.2.0^{2,10}.0^{3,8}]pentadeca-2(10),3(8),4,6-tetraen-1-ium trifluoroacetate 10w-a

Prepared according to General Procedure B using ketone **6**, MgSO₄ (1.5 eq.) and 30 mol% Pd(OAc)₂ (72 h). Purification by mass-directed HPLC (MeCN in H₂O + 0.1% TFA) gave the *title compound* **10w-a** (32 mg, 59 μ mol, 19%) as a pale brown solid. ¹H NMR (700 MHz, CD₃OD, NH⁺, NH and OH not observed):

δ 8.96 (1H, d, *J* 5.5, quinoline 2-H), 8.27 (1H, d, *J* 5.5, quinoline 3-H), 8.18 (1H, d, *J* 5.3, indole 6-H), 8.12 (1H, d, *J* 9.2, quinoline 8-H), 7.75-7.70 (2H, m, quinoline 5-H and 7-H), 7.31 (1H, d, *J* 5.3, indole 5-H), 6.78 (1H, app. s, *CH*(OH)), 4.83-4.76 (1H, m, 14-H_A), 4.13 (3H, s, OCH₃), 3.88-3.80 (2H, m, 11-H and 13-H), 3.38-3.33 (1H, m, 14-H_B), 2.73 (1H, ddd, *J* 12.3, 6.2, 1.9, 12-H_A), 2.58-2.50 (1H, m, 15-H_A), 2.04-1.97 (1H, m, 15-H_B), 1.54-1.49 (1H, m, 12-H_B). ¹³**C** NMR (176 MHz, CD₃OD, $CF_3CO_2^-$ not observed): δ 162.4 (q, *J* 36.2, $CF_3CO_2^-$), 161.7 (quinoline 6-C), 147.5 (Ar-C_q), 144.1 (quinoline 3-C), 143.9 (quinoline-2-C), 143.5 (Ar-C_q), 138.0 (Ar-C_q), 135.8 (Ar-C_q), 133.3 (Ar-C_q), 128.7 (Ar-C_q), 127.6 (quinoline 7-C), 126.4 (quinoline 8-C), 120.7 (indole 6-C), 118.5 (indole 5-C), 114.8 (Ar-C_q), 111.9 (Ar-C_q), 102.5 (quinoline 5-C), 70.2 (13-C), 68.0 (*C*H(OH)), 57.2 (OCH₃), 52.8 (14-C), 28.4 (11-C), 26.6 (15-C), 25.4 (12-C). HRMS (ESI): C₂₃H₂₂O₂N₄³⁵CI [M+H]⁺; calculated: 421.1426, found: 421.1423. [*α*]^{*p*}₂₀ = +34 (c. 0.1, MeOH).

(*R*)-(6-Methoxyquinolin-4-yl)[(*11S*, *13S*)-5-methyl-1,7,9-triazatetracyclo[9.2.2.0^{2,10}.0^{3,8}] pentadeca-2(10),3(8),4,6-tetraen-13-yl]methanol 10w-b

Prepared according to General Procedure B using ketone **6** and 30 mol% Pd(OAc)₂ (72 h). Flash column chromatography eluting with 1:9 to 1:4 ($\{50:80:1 \ CH_2Cl_2:EtOH:NH_4OH\}/CH_2Cl_2$) gave the *title compound* **10w-b** (39 mg, 97 µmol, 30%) as a yellow solid. ¹H NMR (500 MHz, CD₃OD, NH and OH not observed): δ 8.65 (1H, d, *J* 4.7, quinoline 2-H), 7.91 (1H, s,

indole 6-H), 7.87 (1H, d, J 9.2, quinoline 8-H), 7.83 (1H, s, indole 4-H), 7.76 (1H, d, J 4.7, quinolone 3-H), 7.41 (1H, d, J 2.7, quinoline 5-H), 7.32 (1H, dd, J 9.2, 2.7, quinoline 7-H), 5.97 (1H, app. s, CH(OH)), 4.24-4.17 (1H, m, 14-Ha), 3.99 (3H, s, OCH₃), 3.46-3.42 (1H, m, 11-H), 3.06-2.99 (1H, m, 13-H), 2.68-2.57 (1H, m, 14-H_B), 2.42 (3H, s, Py-CH₃), 2.40-2.35 (1H, m, 12-Ha), 2.23-2.16 (1H, m, 15-Ha), 1.69-1.62 (1H, m, 15-H_B), 1.27-1.19 (1H, m, 12-H_B). ¹³**C NMR** (125 MHz, CD₃OD): δ 159.7 (quinoline 6-C), 151.1 (Ar-C_q), 148.2 (quinoline 2-C), 145.7 (Ar-C_q), 144.7 (Ar-C_q), 144.6 (Ar-C_q), 141.9 (indole 6-C), 131.3 (quinoline 8-C), 127.8 (Ar-C_q), 126.3 (Ar-C_q), 126.1 (Ar-C_q), 125.5 (indole 4-C), 123.6 (quinoline 7-C), 119.4 (quinoline 3-C), 115.6 (Ar-C_q), 101.9 (quinoline 5-C), 71.7 (CH(OH)), 66.9 (13-C), 56.5 (OCH₃), 48.4 (14-C), 30.5 (15-C), 29.3 (11-C), 27.9 (12-C), 18.6 (Py-CH₃). **HRMS** (ESI): C₂₄H₂₅O₂N₄ [M+H]⁺; calculated: 401.1972, found: 401.1972. [α]^p₂₀ = +46 (c. 0.1, MeOH).

(*R*)-[(*11S*, *13S*)-5-(4-Chlorophenyl)-1,7,9-triazatetracyclo[9.2.2.0^{2,10}.0^{3,8}]pentadeca-2(10),3(8),4,6-tetraen-13-yl](6-methoxyquinolin-4-yl)methanol trifluoroacetate 10w-c

Prepared according to General Procedure B using ketone 6 and 20 mol% Pd(OAc)₂ (48 h). Flash column chromatography eluting with 5-35% {50:80:1 CH₂Cl₂:EtOH:NH₄OH} in CH₂Cl₂ gave 71 mg of partially purified material (63:37 mixture of target product:starting ketone^{‡‡‡} containing 0.10 mmol product, 33% yield). Further purification by mass-directed

HPLC (MeCN in H₂O + 0.1% TFA) gave the *title compound* **10w-c** (18 mg, 29 μmol, 9%) as a colourless solid. ¹H NMR (500 MHz, CD₃OD, NH⁺, NH and OH not observed): δ 8.95 (1H, d, *J* 5.5, quinoline 2-H), 8.52 (1H, d, *J* 2.1, indole 6-H), 8.46 (1H, d, *J* 2.1, indole 4-H), 8.27 (1H, d, *J* 5.5, quinoline 3-H), 8.09 (1H, d, *J* 9.3, quinoline 8-H), 7.76 (1H, d, *J* 2.6, quinoline 5-H), 7.69-7.62 (3H, m, quinoline 7-H and phenyl 2-H or 3-H), 7.51 (2H, d, *J* 8.4, phenyl 2-H or 3-H), 6.69 (1H, app. s, C*H*(OH)), 4.87-4.81 (1H, m, 14-Ha^{§§§}), 4.05 (3H, s, OCH₃), 3.86-3.83 (1H, m, 11-H), 3.81 (1H, dd, *J* 10.5, 6.7, 13-H), 3.39-3.33 (1H, m, 14-Ha^{§§§§}), 2.70 (1H, ddd, *J* 12.3, 6.6, 2.3, 12-Ha), 2.58-2.51 (1H, m, 15-Ha), 2.07-1.98 (1H, m, 15-H_B), 1.57-1.50 (1H, m, 12-H_B). ¹³C NMR (125 MHz, CD₃OD, $CF_3CO_2^-$ not observed): δ 161.9 (quinoline 6-C), 146.5 (Ar-Cq), 143.5 (quinoline 2-C), 142.7 (indole 6-C), 142.5 (Ar-Cq), 138.6 (Ar-Cq), 134.9 (Ar-Cq), 131.1 (Ar-Cq), 130.3 (phenyl 2-C or 3-C), 128.7 (Ar-Cq), 128.0 (quinoline 7-C), 126.0 (quinoline 8-C), 124.3 (indole 4-C), 120.7 (quinoline 3-C), 117.0 (Ar-Cq), 112.2 (Ar-Cq), 102.6 (quinoline 5-C), 69.3 (13-C), 68.0 (CH(OH)), 57.3 (OCH₃), 51.3 (14-C), 28.8 (11-C), 27.1 (15-C), 24.9 (12-C). HRMS (ESI): C₂₉H₂₆O₂N₄³⁵CI [M+H]⁺; calculated: 497.1739, found: 497.1734. [*α*]^{*p*}₂₀ = +189 (c. 0.1, MeOH).

⁺⁺⁺ As judged by analysis of the partially purified reaction product by ¹H NMR spectroscopy at 300 MHz.

^{§§§} Inferred from HSQC analysis.

^{****} Inferred from HSQC analysis.

(*1R*, *11S*, *13S*)-13-[(*R*)-Hydroxy(6-methoxyquinolin-4-yl)methyl]-5-(trifluoromethyl)-1,7,9triazatetracyclo[9.2.2.0^{2,10}.0^{3,8}]pentadeca-2(10),3(8),4,6-tetraen-1-ium trifluoroacetate 10w-d

Prepared according to General Procedure B using ketone 6,
MgSO₄ (1.5 eq.) and 20 mol% Pd(OAc)₂ (48 h). Flash column chromatography eluting with 5-20% {50:80:1
CH₂Cl₂:EtOH:NH₄OH} in CH₂Cl₂ gave 51 mg of partially purified material (61:39 mixture of target product:starting

ketone^{††††} containing 76 μmol product, 24% yield). Further purification by mass-directed HPLC (MeCN in H₂O + 0.1% TFA) gave the *title compound* **10w-d** (18 mg, 32 μ mol, 10%). ¹H NMR (500 MHz, CD₃OD, NH⁺, NH and OH not observed): δ 8.97 (1H, d, J 5.7, quinoline 2-H), 8.56-8.51 (2H, m, indole 4-H and 6-H), 8.31 (1H, d, J 5.7, quinoline 3-H), 8.10 (1H, d, J 9.3, quinolone 8-H), 7.76 (1H, d, J 2.5, quinoline 5-H), 7.69 (1H, dd, J 9.3, 2.5, quinoline 7-H), 6.73 (1H, app. s, CH(OH)), 4.84-4.79 (1H, m, 14-H_A), 3.87-3.83 (1H, m, 11-H), 3.78 (1H, dd, J10.4, 6.8, 13-H), 3.37-3.35 (1H, m, 14-H_B), 2.67 (1H, ddd, J 12.4, 6.7, 2.2, 12-H_A), 2.57-2.47 (1H, m, 15-H_A), 2.07-1.96 (2H, m, 15-H_B), 1.53-1.44 (1H, m, 12-H_B). ¹³C NMR (125 MHz, CD₃OD): δ 163.1 (q, J 35.8, CF₃CO₂⁻), 162.1 (quinoline 6-C), 156.6 (Ar-C_q), 148.5 (Ar-C_q), 144.3 (Ar-C_q), 143.1 (quinoline 2-C), 140.7 (q, J 3.7, indole 6-C), 136.9 (Ar-C_q), 128.8 (Ar-C_q), 128.5 (quinoline 7-C), 126.0 (q, J 269.8, ArCF₃), 125.4 (quinoline 8-C), 123.7 (q, J 3.7, indole 4-C), 121.5 (q, J 32.4, indole 5-C), 120.7 (quinoline 3-C), 118.0 (q, J 291.3, CF₃CO₂⁻), 117.4 (Ar-C_q), 111.1 $(Ar-C_{a}),$ 102.5 (quinoline 5-C), 69.2 (13-C), 68.0 (CH(OH)), 57.4 (OCH₃), 50.9 (14-C), 28.8 (11-C), 27.0 (15-C), 24.7 (12-C). HRMS (ESI): C24H22O2N4F3 [M+H]+; calculated: 455.1689, found: 455.1685. $[\alpha]_{20}^{D} = +17$ (c. 0.1, MeOH).

⁺⁺⁺⁺ As judged by analysis of the partially purified reaction product by ¹H NMR spectroscopy at 300 MHz.

(*1R*, *11S*, *13S*)-13-[(*R*)-Hydroxy(6-methoxyquinolin-4-yl)methyl]-5-nitro-1,7,9triazatetracyclo[9.2.2.0^{2,10}.0^{3,8}]pentadeca-2(10),3(8),4,6-tetraen-1-ium trifluoroacetate 10w-e

Prepared according to General Procedure B using ketone **6**, MgSO₄ (1.5 eq.) and 30 mol% Pd(OAc)₂ (72 h). Purification by mass-directed HPLC (MeCN in H₂O + 0.1% TFA) gave the *title compound* **10w-e** (18 mg, 33 μ mol, 10%). ¹H NMR (700 MHz, CD₃OD, NH⁺, NH and OH not observed): δ 9.14 (1H, d, *J* 2.5,

indole 6-H), 9.06 (1H, d, *J* 2.5, indole 4-H), 8.96 (1H, d, *J* 5.6, quinoline 2-H), 8.28 (1H, d, *J* 5.6, quinoline 3-H), 8.10 (1H, d, *J* 9.3, quinoline 8-H), 7.78 (1H, d, *J* 2.6, quinoline 5-H), 7.70 (1H, dd, *J* 9.3, 2.5, quinoline 7-H), 6.69-6.62 (1H, m, CH(OH)), 4.81-4.75 (1H, m, 14-H_A), 4.11 (3H, s, OCH₃), 3.86-3.82 (1H, m, 11-H), 3.78-3.73 (1H, m, 13-H), 3.30-3.24 (1H, m, 14-H_B), 2.69 (1H, ddd, *J* 12.4, 6.6, 2.3, 12-H_A), 2.55-2.49 (1H, m, 15-H_A), 2.05-1.98 (1H, m, 15-H_B), 1.56-1.49 (1H, m, 12-H_B). ¹³**C NMR** (175 MHz, CD₃OD, CF₃CO₂⁻ not observed): δ 162.0 (2 peaks, 2 × Ar-C_q), 149.1 (Ar-C_q), 146.2 (Ar-C_q), 143.3 (quinoline 2-C), 141.3 (Ar-C_q), 139.9 (indole 6-C), 137.1 (Ar-C_q), 128.8 (2 peaks, 2 × Ar-C_q), 128.3 (quinoline 7-C), 125.6 (quinoline 8-C), 122.0 (indole 4-C), 120.7 (quinoline 3-C), 117.7 (CF₃CO₂⁻), 111.4 (Ar-C_q), 102.7 (quinoline 5-C), 68.9 (13-C), 68.4 (CH(OH)), 57.5 (OCH₃), 50.8 (14-C), 29.0 (11-C), 27.3 (15-C), 25.2 (12-C). **HRMS** (ESI): C₂₃H₂₂O₄N₅ [M+H]⁺; calculated: 432.1666, found: 432.1661. [α]^{*p*}₂₀ = +59 (c. 0.1, MeOH).

(*1R*, *11S*, *13S*)-5-Fluoro-13-[(*R*)-hydroxy(6-methoxyquinolin-4-yl)methyl]-1,7,9-triazatetracyclo[9.2.2.0^{2,10}.0^{3,8}]pentadeca-2(10),3(8),4,6-tetraen-1-ium trifluoroacetate 10w-f

Prepared according to General Procedure B using ketone **6** and 30 mol% Pd(OAc)₂ (72 h). Flash column chromatography eluting with 1:9 to 1:4 ({ $50:80:1 \text{ CH}_2\text{Cl}_2:\text{EtOH:NH}_4\text{OH}$ }/CH₂Cl₂) followed by mass-directed preparative HPLC (MeCN in H₂O + 0.1% TFA; Rt = 6 min) gave the *title compound* **10w-f** (23 mg, 44 µmol, 14%)

as a yellow solid. ¹**H NMR** (500 MHz, CD₃OD, NH⁺, NH and OH not observed): δ 8.90 (1H, d, *J* 5.4, quinoline 2-H), 8.18 (1H, d, *J* 9.1, indole 6-H), 8.16 (1H, d, *J* 9.3, quinoline 8-H), 7.93 (1H, d, *J* 5.4, quinoline 3-H), 7.76 (1H, dd, *J* 9.3, 2.4, quinoline 7-H), 7.59 (1H, d, *J* 2.4, quinoline 5-H), 7.56 (1H, dd, *J* 9.1, 2.4, indole 4-H), 5.87 (1H, d, *J* 4.1, C*H*(OH)), 4.53-4.46 (1H, m, 13-H), 3.99-3.95 (1H, m, 14-H_A), 3.94 (3H, s, OCH₃), 3.82-3.77 (1H, m, 11-H), 3.20-3.13 (1H, m, 14-H_B), 2.27-2.18 (1H, m, 15-H_A), 2.14-2.03 (2H, m, 12-H_A and 12-H_B), 1.91-1.84 (1H, m, 15-H_B). ¹³**C NMR** (125 MHz, CD₃OD): δ 162.72 (q, *J*_{CF} 38.6, CF₃CO₂⁻) 161.6 (quinoline 6-C), 157.4 (d, *J*_{CF} 242.1, indole 5-C), 155.0 (Ar-Cq), 144.1 (Ar-Cq), 143.7 (Ar-Cq), 143.4 (quinoline 2-C), 137.9 (Ar-Cq), 131.8 (d, *J*_{CF} 30.0, indole 6-C), 120.1 (q, *J*_{CF} 265.6, *C*F₃CO₂⁻), 113.3 (Ar-Cq), 112.11 (d, *J*_{CF} 23.1, indole 4-C), 103.3 (quinoline 5-C), 69.4 (CH(OH)), 66.9 (13-C), 56.9 (OCH₃), 56.7 (14-C), 29.7 (12-C), 28.7 (11-C), 25.1 (15-C). **HRMS** (ESI): C₂₃H₂₂O₂N₄F [M+H]⁺; calculated: 405.1721, found: 405.1723. [α]^{*D*}₂₀ = +83 (c. 0.1, MeOH).

(*R*)-[(*11S*, *13S*)-5-Chloro-1,7,9-triazatetracyclo[9.2.2.0^{2,10}.0^{3,8}]pentadeca-2(10),3(8),4,6-tetraen-13-yl](6-methoxyquinolin-4-yl)methanol 10w-g

Prepared according to General Procedure B using ketone **6** and 20 mol% Pd(OAc)₂ (72 h). Flash column chromatography eluting with 5-20% { $50:80:1 \text{ CH}_2\text{Cl}_2:\text{EtOH}:NH_4\text{OH}$ } in CH₂Cl₂ gave the *title compound* **10w-g** (71 mg, 0.17 mmol, 53%). ¹H NMR (400 MHz, CD₃OD, NH and OH not observed): $\delta 8.59$ (1H, d, J 4.7, quinoline 2-H), 7.97-7.92 (2H, m,

indole 4-H and 6-H), 7.76 (1H, d, J 9.2, quinoline 8-H), 7.70 (1H, d, J 4.7, quinoline 3-H), 7.33 (1H, d, J 2.7, quinoline 5-H), 7.18 (1H, dd, J 9.2, 2.6, quinoline 7-H), 5.92 (1H, s, CH(OH)), 4.15 (1H, ddd, J 12.8, 8.7, 4.1, 14-H_A), 3.91 (3H, s, OCH₃), 3.41-3.37 (1H, m, 11-H), 3.01-2.96 (1H, m, 13-H), 2.60-2.52 (1H, m, 14-H_B), 2.33 (1H, ddd, J 12.3, 6.7, 2.1, 12-H_A), 2.19-2.10 (1H, m, 15-H_A), 1.64-1.55 (1H, m, 15-H_B), 1.27-1.16 (1H, m, 12-H_B). ¹³**C NMR** (175 MHz, CD₃OD): δ 159.6 (quinolone 6-C), 150.8 (Ar-C_q), 148.1 (quinoline 2-C), 146.9 (Ar-C_q), 145.5 (Ar-C_q), 144.5 (Ar-C_q), 139.7 (indole 6-C), 131.2 (quinoline 8-C), 127.8 (Ar-C_q), 126.1 (Ar-C_q), 125.0 (Ar-C_q), 124.3 (indole 4-C), 123.4 (quinoline 7-C), 119.4 (quinoline 3-C), 116.1 $(Ar-C_{\alpha})$, 101.9 (quinolone 5-C), 71.6 (CH(OH)), 66.8 (13-C), 56.5 (OCH₃), 48.2 (14-C), 30.4 (15-C), 29.4 (11-C), 27.8 (12-C). **HRMS** (ESI): C₂₃H₂₂O₂N₄³⁵CI [M+H]⁺; calculated: 421.1426, found: 421.1423. $[\alpha]_{20}^{D} = +74$ (c. 0.1, MeOH).

(1R,11S,13S)-5-Bromo-13-[(R)-hydroxy(6-methoxyquinolin-4-yl)methyl]-1,7,9triazatetracyclo[9.2.2.0^{2,10}.0^{3,8}]pentadeca-2(10),3(8),4,6-tetraen-1-ium trifluoroacetate 10w-h

 Prepared according to General Procedure B using ketone 6, MgSO₄ (1.5 eq.) and 30 mol% Pd(OAc)₂ (72 h). Flash column chromatography eluting with 5-20% {50:80:1 CH₂Cl₂:EtOH:NH₄OH} in CH₂Cl₂ gave 43 mg of partially purified material (56:54 mixture of target product:starting ketone^{‡‡‡‡}

containing 56 µmol product, 17% yield). Further purification by mass-directed HPLC (MeCN in H₂O + 0.1% TFA) gave the *title compound* **10w-h** (19 mg, 33 μmol, 10%). ¹H NMR (700 MHz, CD₃OD, NH⁺, NH and OH not observed): δ 8.97 (1H, d, *J* 5.7, quinoline 2-H), 8.36 (1H, d, *J* 2.2, indole 4-H), 8.32 (1H, d, J 5.7, quinoline 3-H), 8.27 (1H, d, J 2.2, indole 6-H), 8.11 (1H, d, J 9.3, quinoline 8-H), 7.77 (1H, d, J 2.5, quinoline 5-H), 7.71 (1H, dd, J 9.3, 2.5, quinoline 7-H), 6.71 (1H, s, CH(OH)), 4.79 (1H, ddd, J11.8, 9.3, 4.3, 14-H_A), 4.09 (3H, s, OCH₃), 3.82-3.78 (1H, m, 11-H), 3.79-3.73 (1H, m, 13-H), 3.33-3.30 (1H, m, 14-H_B), 2.65 (1H, ddd, *J* 12.3, 6.7, 2.4, 12-H_A), 2.53-2.47 (1H, m, 15-H_A), 2.02-1.96 (1H, m, 15-H_B), 1.50-1.44 (1H, m, 12-H_B). ¹³C NMR (175 MHz, CD₃OD): δ 162.3 (quinolone 6-C), 162.2 (q, J 36.7, CF₃CO₂⁻), 157.6 (Ar-C_a), 145.6 (Ar- C_{a}), 144.5 (indole 6-C), 143.2 (Ar-C_q), 142.5 (quinoline 2-C), 135.9 (Ar-C_q), 129.03 (quinoline 7-C), 129.0 (Ar-C_q), 128.3 (indole 4-C), 124.7 (quinoline 8-C), 120.8 (quinoline 3-C), 117.6 (q, J 289.3, CF₃CO₂⁻), 115.9 (Ar-C_q), 114.0 (Ar-C_q), 113.3 (Ar-C_q), 102.7 (quinoline 5-C), 69.1 (13-C), 67.9 (CH(OH)), 57.5 (OCH₃), 51.2 (14-C), 28.7 (11-C), 26.9 (15-C), 24.7 (12-C). HRMS (ESI): C₂₃H₂₂O₂N₄⁷⁹Br [M+H]⁺; calculated: 465.0921, found: 465.0918; C₂₃H₂₂O₂N₄⁸¹Br [M+H]⁺; calculated: 467.0900, found: 467.0898. $[\alpha]_{20}^{D} = +59$ (c. 0.1, MeOH).

⁺⁺⁺⁺ As judged by analysis of the partially purified reaction product by ¹H NMR spectroscopy at 300 MHz.

(*R*)-[(*11S*, *13S*)-5-lodo-1,7,9-triazatetracyclo[9.2.2.0^{2,10}.0^{3,8}]pentadeca-2(10),3(8),4,6-tetraen-13-yl](6-methoxyquinolin-4-yl)methanol 10w-i

Prepared according to General Procedure B using ketone **6**, MgSO₄ (1.5 eq.) and 30 mol% Pd(OAc)₂ (72 h). Flash column chromatography eluting with 5-20% {50:80:1 CH₂Cl₂:EtOH:NH₄OH} in CH₂Cl₂ gave the *title compound* **10w-i** (9 mg, 18 μ mol, 5%). ¹H NMR (700 MHz, CD₃OD, NH and OH not observed): δ 9.14 (1H, d, J2.5, indole 6-H), 9.06 (1H, d, J2.5,

indole 4-H), 8.96 (1H, d, *J* 5.6, quinoline 2-H), 8.28 (1H, d, *J* 5.6, quinoline 3-H), 8.10 (1H, d, *J* 9.3, quinoline 8-H), 7.78 (1H, d, *J* 2.6, quinoline 5-H), 7.70 (1H, dd, *J* 9.3, 2.5, quinoline 7-H), 6.65 (1H, br. s, CH(OH)), 4.80-4.74 (1H, m, 14-H_A), 4.11 (3H, s, OCH₃), 3.86-3.81 (1H, m, 11-H), 3.79-3.73 (1H, m, 13-H), 3.30-3.26 (1H, m, 14-H_B), 2.69 (1H, ddd, *J* 12.4, 6.6, 2.3, 12-H_A), 2.58-2.47 (1H, m, 15-H_A), 2.04-1.98 (1H, m, 15-H_B), 1.56-1.47 (1H, m, 12-H_B). ¹³**C NMR** (175 MHz, CD₃OD, 1 × Ar-C_q not observed): δ 162.0 (quinoline 6-C), 149.1 (Ar-C_q), 146.2 (Ar-C_q), 143.3 (quinoline 2-C), 141.3 (Ar-C_q), 139.9 (indole 6-H), 137.1 (Ar-C_q), 128.8 (Ar-C_q), 128.3 (2 peaks, quinoline 7-C and Ar-C_q), 125.6 (quinoline 8-C), 122.0 (indole 4-C), 120.7 (quinoline 3-C), 111.4 (Ar-C_q), 102.7(quinoline 5-C), 68.9 (13-C), 68.4 (CH(OH)), 57.5 (OCH₃), 50.8 (14-C), 29.0 (11-C), 27.3 (15-C), 25.2 (12-C). **HRMS** (ESI): C₂₃H₂₂O₂N₄I [M+H]⁺; calculated: 513.0782, found: 513.0779. [α]^{*p*}₂₀ = +179 (c. 0.1, MeOH).

(*R*)-[(*11S*, *13S*)-5-Bromo-6-methyl-1,7,9-triazatetracyclo[9.2.2.0^{2,10}.0^{3,8}]pentadeca-2(10),3(8),4,6-tetraen-13-yl](6-methoxyquinolin-4-yl)methanol 10w-j

Method A: Prepared according to General Procedure B using ketone **6** and 20 mol% Pd(OAc)₂ (48 h). Flash column chromatography eluting with 5-35% {50:80:1 CH₂Cl₂:EtOH:NH₄OH} in CH₂Cl₂ gave the *title compound* **10w-j** (29 mg, 60 μmol, 19%). **Method B:** Prepared according to General Procedure B using ketone **6**, MgSO₄ (1.5 eq.) and 20 mol%

Pd(OAc)₂ (48 h). Flash column chromatography eluting with 5-20% {50:80:1 CH₂Cl₂:EtOH:NH₄OH} in CH₂Cl₂ gave the *title compound* **10w-j** (59 mg, 122 µmol, 38%). This material was subjected to mass-directed HPLC to give the title compound (51 mg, 86 µmol, 27%) as the TFA salt, which was a yellow oil. ¹H NMR (700 MHz, CD₃OD, free base form, NH and OH not observed): δ 8.65 (1H, d, J 4.6, quinoline 2-H), 8.14 (1H, s, indole 4-H), 7.87 (1H, d, J 9.3, quinoline 8-H), 7.75 (1H, d, J 4.6, quinoline 3-H), 7.40 (1H, s, quinoline 5-H), 7.32 (1H, d, J 9.3, quinoline 7-H), 5.96 (1H, s, CH(OH)), 4.22-4.17 (1H, m, 14-H_A), 3.99 (3H, s, OCH₃), 3.47-3.42 (1H, m, 11-H), 3.05-3.00 (1H, m, 13-H), 2.66-2.59 (4H, m, includes 14-H_B and at δ 2.62: 3H, s, ArCH₃), 2.37 (1H, dd, J 12.1, 6.5, 12-H_A), 2.22-2.17 (1H, m, 15-H_A), 1.70-1.63 (1H, m, 15-H_B), 1.26-1.20 (1H, m, 12-H_B). ¹³C NMR (175 MHz, CD₃OD, free base form): δ 159.7 (quinoline 6-C), 151.0 (Ar-C_q), 148.2 (quinoline 2-C), 148.1 (Ar-C_q), 145.8 (Ar-C_q), 145.4 (Ar-C_q), 144.7 (Ar-C_q), 131.6 (quinoline 8-C), 128.7 (indole 4-C), 127.8 (Ar-C_q), 125.8 (Ar-C_q), 123.6 (quinoline 7-C), 119.4 (quinoline 3-C), 115.3 (Ar-C_q), 113.6 (Ar-C_q), 102.0 (quinoline 5-C), 71.7 (CH(OH)), 66.9 (13-C), 56.5 (OCH₃), 48.2 (14-C), 30.5 (15-C), 29.4 (11-C), 27.8 (12-C), 24.7 (ArCH₃). **HRMS** (ESI): C₂₄H₂₄O₂N₄⁷⁹Br [M+H]⁺; calculated: 479.1077, C₂₄H₂₄O₂N₄⁸¹Br [M+H]⁺; found: 479.1074; calculated: 481.1057, found: 481.1053. $[\alpha]_{20}^{D} = +78$ (c. 0.1, MeOH).

¹H NMR (500 MHz, CD₃OD, TFA salt form, NH⁺, NH and OH not observed): δ 8.93 (1H, d, *J* 5.7, quinoline 2-H), 8.31 (1H, s, indole 4-H), 8.27 (1H, d, *J* 5.7, quinoline 3-H), 8.07 (1H, d, *J* 9.3, quinoline 8-H), 7.72 (1H, d, *J* 2.6, quinoline 5-H), 7.68 (1H, dd, *J* 9.3, 2.6, quinoline 7-H), 6.65 (1H, s, CH(OH)), 4.75 (1H, ddd,

J 11.8, 9.3, 4.3, 14-H_A), 4.06 (3H, s, OCH₃), 3.78-3.66 (2H, m, 11-H and 13-H), 3.32-3.22 (14-H_B)[§], 2.64-2.58 (4H, m, includes 12-H_A, and at δ 2.62: 3H, s, ArCH₃), 2.49-2.42 (1H, m, 15-H_A), 2.00-1.89 (1H, m, 15-H_B), 1.47-1.38 (1H, m, 12-H_B). ¹³**C NMR** (175 MHz, CD₃OD, TFA salt form, one Ar-C_q not observed): δ 160.9 (q, *J* 36.5, CF₃CO₂⁻), 160.8 (quinoline 6-C), 155.9 (Ar-C_q), 149.8 (Ar-C_q), 144.2 (Ar-C_q), 141.2 (quinoline 2-C), 140.6 (Ar-C_q), 134.8 (Ar-C_q), 128.1 (indole 4-C),

127.5 (quinoline 7-C), 123.5 (quinoline 8-C), 119.4 (quinoline 3-C), 116.3 (q, J 290, $CF_3CO_2^{-}$), 114.2 (Ar-C_q), 113.5 (Ar-C_q), 110.2 (Ar-C_q), 101.3 (quinoline 5-C), 67.8 (13-C), 66.5 (CH(OH)), 56.1 (OCH₃), 49.8 (14-C), 27.3 (11-C), 25.6 (15-C), 23.7 (ArCH₃), 23.3 (12-C).

(*1R*, *11S*, *13S*)-13-[(*R*)-Hydroxy(6-methoxyquinolin-4-yl)methyl]-6-methyl-1,7,9-triazatetracyclo[9.2.2.0^{2,10}.0^{3,8}]pentadeca-2(10),3(8),4,6-tetraen-1-ium trifluoroacetate 10w-k

Prepared according to General Procedure B using ketone 6 and 30 mol% Pd(OAc)₂ (72h). Flash column chromatography eluting with 1:9 to 1:4 ({50:80:1 CH₂Cl₂:EtOH:NH₄OH}/CH₂Cl₂), followed by mass-directed preparative HPLC (MeCN in H₂O + 0.1% TFA; Rt = 8.4 min) gave the *title compound* **10w-k** (5 mg,

10 μmol, 3%) as a yellow solid. ¹H NMR (700 MHz, CD₃OD, NH⁺, NH and OH not observed): δ 8.84 (1H, d, *J* 5.2, quinoline 2-H), 8.09 (1H, d, *J* 8.2, quinoline 8-H), 8.05 (1H, d, *J* 5.2, quinoline 3-H), 8.02 (1H, d, *J* 8.8, indole 4-H), 7.60-7.56 (2H, m, quinoline 5-H and indole 5-H), 7.17 (1H, d, *J* 8.2, quinoline 7-H), 6.46 (1H, app. s, C*H*(OH)), 4.80-4.74 (1H, m, 14-H_A), 4.03 (3H, s, OCH₃), 3.80-3.77 (1H, m, 11-H), 3.72-3.67 (1H, m, 13-H), 3.27-3.20 (1H, m, 14-H_B), 2.69-2.61 (1H, m, 12-H_A), 2.59 (3H, s, Py-CH₃), 2.51-2.45 (1H, m, 15-H_A), 1.98-1.92 (1H, m, 15-H_B), 1.52-1.47 (1H, m, 12-H_B). ¹³C NMR (125 MHz, CD₃OD, *C*F₃CO₂⁻ not observed): δ 162.7 (q, *J*_{CF} 35.5, CF₃CO₂⁻), 161.1 (quinoline 6-C), 145.6 (quinoline 2-C), 140.7 (Ar-C_q), 128.5 (Ar-C_q), 128.1 (indole 4-C), 126.8 (quinoline 8-C), 126.0 (indole 6-C), 120.4 (quinoline 3-C), 118.8 (Ar-C_q), 118.4 (quinoline 7-C), 117.2 (Ar-C_q), 116.8 (Ar-C_q), 110.0 (Ar-C_q), 102.3 (quinoline 5-C), 69.5 (11-C), 68.3 (CH(OH)), 57.0 (OCH₃), 51.5 (14-C), 28.6 (11-C), 27.3 (15-C), 25.3 (12-C), 23.6 (Py-CH₃). HRMS (ESI): C₂₄H₂₅O₂N4 [M+H]⁺; calculated: 401.1972, found: 401.1972. [*a*]^{*P*}₂₀ = -48 (c. 0.1, MeOH).

(1R,11S,13S)-6-Chloro-13-[(R)-hydroxy(6-methoxyquinolin-4-yl)methyl]-1,7,9triazatetracyclo[9.2.2.0^{2,10}.0^{3,8}]pentadeca-2(10),3(8),4,6-tetraen-1-ium trifluoroacetate 10w-l

Prepared according to General Procedure B using ketone 6 and 20 mol% Pd(OAc)₂ (48 h). Flash column chromatography eluting with 15-35% {50:80:1 CH₂Cl₂:EtOH:NH₄OH} in CH₂Cl₂ gave the *title compound* **10w-I** (56 mg, 0.13 mmol, 41%, ~90% purity^{§§§§}). Further purification of this material by mass-directed

HPLC (MeCN in H₂O + 0.1% TFA) gave the *title compound* **10w-I** (25 mg, 47 μmol, 15%) as the TFA salt. ¹H NMR (700 MHz, CD₃OD, NH⁺, NH and OH not observed): δ 8.96 (1H, d, *J* 5.6, quinoline 2-H), 8.27 (1H, d, *J* 5.6, quinoline 3-H), 8.18 (1H, d, *J* 5.3, indole 4-H), 8.12 (1H, d, *J* 9.1, quinoline 8-H), 7.75-7.69 (2H, m, quinoline 5-H and 7-H), 7.31 (1H, d, *J* 5.3, indole 5-H), 6.78 (1H, s, CH(OH)), 4.82-4.76 (1H, m, 14-H_A), 4.13 (3H, s, OCH₃), 3.87-3.79 (2H, m, 11-H and 13H), 3.39-3.33 (1H, m, 14-H_B), 2.73 (1H, ddd, *J* 12.7, 6.3, 2.6, 12-H_A), 2.57-2.50 (1H, m, 15-H_A), 2.04-1.97 (1H, m, 15-H_B), 1.56-1.46 (1H, m, 12-H_B). ¹³C NMR (175 MHz, CD₃OD, CF₃CO_{2⁻} and 1 × Ar-C_q not observed): δ 161.9 (quinoline 6-C), 147.5 (Ar-C_q), 144.2 (indole 4-C), 143.4 (2 peaks, quinoline 2-C and Ar-C_q), 137.2 (Ar-C_q), 133.3 (Ar-C_q), 128.8 (Ar-C_q), 128.1 (quinoline 7-C), 125.8 (2 peaks, quinoline 8-C)), 120.7 (quinoline 3-C), 118.6 (indole 5-C), 114.8 (Ar-C_q), 111.8 (Ar-C_q), 102.6 (quinoline 5-C), 70.2 (13-C), 67.9 (CH(OH)), 57.3 (OCH₃), 53.0 (14-C), 28.4 (11-C), 26.4 (15-C), 25.2 (12-C). HRMS (ESI): C₂₃H₂₂O₂N₄³⁵CI [M+H]⁺; calculated: 421.1426, found: 421.1422. [*α*]^{*p*}₂₀ = -25 (c. 0.1, MeOH).

¹²⁶

SSSS As judged by analysis of the product by ¹H NMR spectroscopy at 300 MHz.

6.3.2.5 Preparation of compounds to investigate the minimum necessary pharmacophore

6.3.2.5.1 Preparation of compound S-1

(*R*)-[(13*S*)-5-Bromo-6-methyl-1,9-diazatetracyclo[9.2.2.0^{2,10}.0^{3,8}]pentadeca-2(10),3,5,7-tetraen-13-yl](6-methoxyquinolin-4-yl)methyl S-1

•_{CF₃CO₂- Prepared according to General Procedure B using ketone **6** and 20 mol% Pd(OAc)₂ (48 h). Flash column chromatography eluting with 20% {50:80:1 CH₂Cl₂:EtOH:NH₄OH} in CH₂Cl₂ followed by mass-directed preparative HPLC (MeCN in H₂O + 0.1% TFA; Rt = 15.0 min) gave the *title compound* **S-1**}

(36 mg, 75 μmol, 23%) as a yellow solid. ¹H NMR (700 MHz, CD₃OD, NH⁺, NH and OH not observed) δ 8.89 (d, *J* 5.4, 1H, quinoline 2-H), 8.16 (d, *J* 5.4, 1H, quinoline 3-H), 8.05 (d, *J* 9.3, 1H, quinoline 8-H), 8.00 (s, 1H, indole 4-H), 7.66 (d, *J* 2.3, 1H, quinoline 5-H), 7.61 (dd, *J* 9.3, 2.3, 1H, quinoline 7-H), 7.36 (s, 1H, indole 7-H), 6.60 (s, 1H, app. s, C*H*(OH)), 4.82-4.77 (m, 1H, 14-H_A), 4.09 (s, 3H, OCH₃), 3.75 (s, 1H, app. s, 11-H), 3.70-3.65 (m, 1H, 13-H), 3.30-3.27 (m, 1H, 14-H_B), 2.64-2.60 (m, 1H, 12-H_A), 2.50-2.43 (m, 4H, CH₃ and 15-H_A), 2.00-1.93 (m, 1H, 15-H_B), 1.44-1.39 (m, 1H, 12-H_B). ¹³C NMR (176 MHz, CD₃OD, *C*F₃CO_{2⁻} not observed) δ 162.9 (q, *J*_{CF} 35.8, CF₃CO_{2⁻}), 161.6 (quinoline 6-C), 154.4 (Ar-Cq), 144.3 (quinoline 2-C), 141.0 (Ar-Cq), 138.7 (Ar-Cq), 135.2 (Ar-Cq), 132.3 (Ar-Cq), 128.4 (Ar-Cq), 127.4 (quinoline 7-C), 127.0 (quinoline 8-C), 120.4 (indole 4-C or quinoline 3-C), 120.3 (indole 4-C or quinoline 3-C), 118.5 (Ar-Cq), 118.3 (Ar-Cq), 117.1 (Ar-Cq), 114.9 (indole 7-C), 24.8 (12-C), 23.6 (*C*H₃). HRMS (ESI); C₂₅H₂₄O₂N₃⁷⁹Br [M+H]⁺; calculated: 478.1125, found: 478.1122; C₂₅H₂₄O₂N₃⁸¹Br [M+H]⁺; calculated: 480.1104, found: 478.1100. [*α*]_{2⁰}²⁰ -10 (c. 0.1, MeOH).

6.3.2.5.2 Preparation of compound S-2

4-[(*R*)-[(*1S*,2*S*,4*S*,5*R*)-5-Ethenyl-1-azabicyclo[2.2.2]octan-2-yl](methoxy)methyl]-6methoxyquinoline S-22

To a stirred solution of quinine (2.0 g, 6.2 mmol, 1.0 eq.) in anhydrous DMF (20 mL) was added portionwise NaH (60% dispersion in mineral oil, 618 mg, 15.5 mmol, 2.5 eq.) at rt. The reaction mixture was stirred for 1 h, then MeI (430 μ I, 6.9 mmol, 1.1 eq.) was added dropwise. The reaction mixture was stirred for 17 h, then quenched with sat. aq. brine solution (20 mL). The resulting

solution was extracted with EtOAc (3 × 50 mL), then the combined organics were dried over MgSO₄, filtered, and concentrated in vacuo. Flash column chromatography eluting with 9:1 EtOAc-MeOH gave the title product as an off-white solid (1.11 g, 3.3 mmol, 53%). ¹H NMR (500 MHz, CD₃OD): δ 8.65 (1H, d, J 4.6, quinoline 2-H), 7.94 (1H, d, J 9.8, quinoline 8-H), 7.54 (1H, d, J 4.6, quinoline 3-H), 7.44-7.38 (2H, m, quinoline 5-H and 7-H), 5.70 (1H, ddd, J 17.1, 10.4, 7.5, CHCH=CH₂), 5.10 (1H, d, J 3.0, CH(OCH₃)), 4.93 (1H, dt, J 17.2, 1.5, CHCH=CH_{cis}H_{trans}), 4.88-4.83 (1H, m, CHCH=CHcisHtrans), 3.95 (3H, s, OCH₃), 3.52-3.45 (1H, m, 6-H_A), 3.31 (OCH₃), 3.13-3.04 (2H, m, 2-H and 7-H_A), 2.78-2.69 (1H, m, 6-H_B), 2.64 (1H, ddd, J 13.6, 5.0, 2.6, 7-H_B), 2.36-2.29 (1H, m, 5-H), 1.87-1.74 (3H, m, 3-HA, 4-H, and 8-HA), 1.62-1.54 (1H, m, 8-HB), 1.51-1.44 (1H, m, **3-Н**в). ¹³C NMR (125 MHz, CD₃OD): δ 159.9 (quinoline 6-C), 148.2 (quinoline 2-C), 146.4 (Ar-C_q), 145.1 (Ar-C_q), 142.5 (CH=CH₂), 131.6 (quinoline 8-C), 128.9 (Ar-C_q), 123.6 (quinoline 7-C), 120.3 (quinoline 3-C), 115.1 (CH=CH₂), 102.3 (quinoline 5-C), 83.2 (CH(OCH₃)), 61.0 (2-C), 57.5 (7-C or OCH₃), 57.4 (7-C or OCH₃), 56.5 (OCH₃), 44.2 (6-C), 40.8 (5-C), 29.1 (4-C), 28.1 (8-C), 22.3 (3-C). HRMS (ESI): C₂₁H₂₇O₂N₂ [M+H]⁺; calculated: 339.2067, found: 339.2067. $[\alpha]_{20}^{D} = -209$ (c. 0.1, MeOH).

(1S,4S,6S)-6-[(R)-Methoxy(6-methoxyquinolin-4-yl)methyl]-1-azabicyclo[2.2.2]octan-3one S-24

General procedure A, Part I, was followed using compound **S-22** (1.10 g, 3.25 mmol, 1.0 eq.) to give **S-23** (1.3 g^{*****}) as a pale yellow solid which was carried forward to the next step without further purification. General Procedure A, Part II, was followed using compound **S-23** (1.3 g, assume 3.25 mmol). Flash column chromatography eluting with 5-35% { $50:80:1 \text{ CH}_2\text{Cl}_2:\text{EtOH:NH}_4\text{OH}_{(sat.)}$

aq.)} in CH₂Cl₂ gave the *title product* **S-24** (568 mg, 1.74 mmol, 54%) as a yellow solid. ¹H NMR (500 MHz, CD₃OD, not observed): δ 8.62 (1H, d, J 4.6, quinoline 2-H), 7.89 (1H, d, J 9.2, quinoline 8-H), 7.50 (1H, d, J 4.6, quinoline 3-H), 7.41 (1H, d, J 2.7, quinoline 5-H), 7.34 (1H, dd, J 9.3, 2.7, quinoline 7-H), 5.14 (1H, d, J 4.1, CH(OCH₃)), 3.92 (3H, s, OCH₃), 3.61-3.53 (1H, m, 7-H_A), 3.29 (3H, s, OCH₃), 3.22-3.10 (2H, m, 2-H_A and 6-H), 2.84-2.58 (2H, m, 2-H_B and 7-H_B), 2.31-2.23 (2H, m, 4-H and 5-H_A), 2.12-2.02 (1H, m, 8-H_A), 1.89-1.71 (1H, m, 8-H_B), 1.69-1.57 (1H, m, 5-H_B). ¹³C NMR (125 MHz, CD₃OD, 3-C not observed): δ 159.7 (quinoline 6-C), 148.2 (quinoline 2-C), 146.5 (Ar-C_q), 145.0 (Ar-C_q), 131.5 (quinoline 8-C), 128.9 (Ar-C_q), 123.6 (quinoline 7-C), 120.2 (quinoline 3-C), 102.5 (quinoline 5-C), 82.9 (CH(OCH₃)), 65.3 (2-C), 61.1 (6-C), 57.5 (OCH₃), 56.4 (OCH₃), 43.4 (7-C), 41.6 (4-C), 26.8 (5-C), 25.7 (8-C). HRMS (ESI): C₁₉H₂₃O₃N₂ [M+H]⁺; calculated: 327.1703, found: 327.1700. [α]^D₂₀ = -125 (c. 0.1, MeOH).

Maximum theoretical yield = 1.22 g.

(*1R*, *11S*, *13S*)-5-Bromo-13-[(*R*)-methoxy(6-methoxyquinolin-4-yl)methyl]-6-methyl-1,7,9triazatetracyclo[9.2.2.0^{2,10}.0^{3,8}]pentadeca-2(10),3(8),4,6-tetraen-1-ium trifluoroacetate S-2

Prepared according to General Procedure B using ketone **S-24** and 30 mol% Pd(OAc)₂ (72h). Flash column chromatography eluting with 1:19 to 1:4 ($\{50:80:1$ CH₂Cl₂:EtOH:NH₄OH $\}$ /CH₂Cl₂), followed by mass-directed preparative HPLC (MeCN in H₂O + 0.1% TFA; Rt = 14 min)

gave the *title compound* **S-2** (20 mg, 40 μmol, 13%) as a yellow solid. ¹H NMR (700 MHz, CD₃OD, NH and NH⁺ not observed) δ 8.93 (1H, d, J 5.4, quinoline 2-H), 8.41 (1H, indole 4-H), 8.08 (1H, d, J 9.2, quinoline 8-H), 8.06 (1H, d, J 5.4, quinoline 3-H), 7.71 (1H, d, 2.3, quinoline 5-H), 7.67 (1H, dd, J 9.2, 2.3, quinoline 7-H), 6.30 (1H, app. s, CH(OCH₃)), 4.54-4.46 (1H, m, 14-H_A), 4.10 (3H, s, OCH₃), 3.77 (1H, app. s, 11-H), 3.72-3.68 (1H, m, 13-H), 3.62 (3H, s, OCH₃), 3.30-3.24 (1H, m, 14-H_B), 2.66 (3H, s, CH₃), 2.65-2.61 (1H, m, 12-H_A), 2.48-2.42 (1H, m, 15-H_A), 2.37-2.33 (1H, m, 15-H_B), 1.98 (1H, d, J11.7, 12-H_B). ¹³C NMR (176 MHz, CD₃OD, CF₃CO₂⁻ not observed) δ 162.5 (q, J_{CF} 35.6, CF₃CO₂⁻), 161.9 (quinoline 6-C), 151.1 (Ar-C_q), 145.7 (Ar-C_q), 144.1 (quinoline 2-C), 141.9 (Ar-C_a), 138.6 (Ar-C_a), 129.6 (indole 4-C), 127.8 (guinoline 7-C), 126.7 (guinoline 8-C), 120.4 (quinoline 3-C), 116.9 $(Ar-C_q),$ 114.8 (Ar-C_q), (Ar-C_q), 111.7 109.1 $(Ar-C_q)$, 102.6 (quinoline 5-C), 93.6 (Ar-Cq), 78.16 (CH(OCH₃)), 68.7 (13-C), 58.1 (OCH₃), 57.5 (OCH₃), 51.1, (14-C), 28.6 (11-C), 27.1 (15-C), 25.5 (12-C), 25.1 (CH₃). HRMS (ESI): C₂₅H₂₆O₂N₄⁷⁹Br [M+H]⁺; calculated: 493.1234, found: 493.1229; C₂₅H₂₆O₂N₄⁸¹Br [M+H]⁺; calculated: 495.1213, found: 495.1208. $[\alpha]_{20}^{D}$ -10 (c. 0.1, MeOH).

6.3.2.5.3 Preparation of compounds S-3 and S-4

(1S,2S,4S)-5-Ethylidene-2-[(R)-hydroxy(quinolin-4-yl)methyl]-1-azabicyclo[2.2.2]octan-1-ium chloride S-25

General procedure A, Part I, was followed using cinchonidine (6.0 g, 20.4 mmol) to give the title product **S-25** (8.1 g⁺⁺⁺⁺⁺) as a pale yellow solid which was carried forward to the next step without further purification.¹H NMR (700 MHz, CD₃OD, 2:1 mixture of Z/E alkenes, NH⁺

and OH not observed) δ 9.28 (1H, app. s, quinoline 2-H), 8.91 (0.66H, d, J 8.0, major quinoline 8-H), 8.88 (0.33H, d, J 8.0, minor quinoline 8-H), 8.42 (1H, app. s, quinoline 3-H), 8.36 (1H, d, J 8.0, quinoline 5-H), 8.24 (1H, app. s, quinoline 6-H), 8.13-8.06 (1H, m, quinoline 7-H), 6.62 (1H, d, J 5.4, CH(OH)), 5.50 (0.66H, d, J 5.6, major C=CHCH₃), 5.44 (0.33H, d, J 4.9, minor C=CHCH₃), 4.40 (1H, app. s, quinuclidine 7-H_A), 4.28-3.99 (2H, m, quinuclidine 6-H_A and quinuclidine 6-H_B), 3.82 (0.66H, app. s, major quinuclidine 2-H), 3.76 (0.33H, app. s, minor quinuclidine 2-H), 3.43 (1H, d, J 9.3, quinuclidine 7-H_B), 3.15 (0.66H, s, minor quinuclidine 4-H), 2.70 (0.33H, s, major quinuclidine 4-H), 2.45 (1H, s, quinuclidine 3-H_A), 2.25 (1H, d, J 12.0, quinuclidine 8-H_A), 1.96 (1H, d, J 12.0, quinuclidine 8-H_B), 1.61 (2H, d, J 4.9, minor CH₃), 1.54 (1H, d, J 5.6, major CH₃), 1.48 (1H, app. s, quinuclidine 3-H_B). ¹³C NMR (176 MHz, CD₃OD, 2:1 mixture of Z/E alkenes): δ 160.7 (Ar-C_q), 160.6 (Ar-C_q), 145.6 (quinoline 2-C), 138.9 (Ar-C_q), 138.9 (Ar-C_q), 136.3 (quinoline 6-C), 132.1 (quinoline 7-C), 131.8 $(Ar-C_q),$ 130.9 $(Ar-C_q),$ 127.2 (major 8-C), quinoline 127.2 (minor quinoline 8-C), 126.3 (Ar-C_q), 126.2 (Ar-C_q), 122.5 (minor quinoline 5-C), 122.5 (major quinoline 5-C), 121.3 (minor quinoline 3-C), 121.2 (major quinoline 3-C), 120.9 (C=CHCH₃), 68.4 (minor CH(OH)), 68.4 (major CH(OH)), 62.4 (major quinuclidine 2-C), 62.2 (minor guinuclidine 2-C), 58.4 (minor guinuclidine 6-C), 56.7 (major guinuclidine 6-C), 46.2 (major quinuclidine 7-C), 46.1 (minor quinuclidine 7-C), 32.6 (major quinuclidine 4-C), 25.8 (minor quinuclidine 4-C), 25.5 (minor quinuclidine 8-C), 24.8 (major quinuclidine 8-C), 24.5 (minor guinuclidine 3-C), 24.1 (major guinuclidine 3-C), 13.0 (minor CH₃), 12.8 (major CH₃). HRMS (ESI): calc. for [M+H]⁺ C₁₉H₂₃ON₂: 295.1849 found 295.18039.

(1S,4S,6S)-6-[(R)-Hydroxy(quinolin-4-yl)methyl]-3-(1-hydroxyethyl)-1-azabicyclo[2.2.2]octan-3-ol S-26

To a stirred solution of compound **S-25** (free base form,^{‡‡‡‡} 2.0 g, 6.8 mmol) in ${}^{t}BuOH/H_2O$ (36 mL, 0.2 M) was added was K₂CO₃ (2.9 g, 20.4 mmol, 3.0 eq.) and K₃Fe(CN)₆ (6.7 g, 20.4 mmol, 3.0 eq.) The mixture was stirred for 45 min, then OsO₄ (4.0% in H₂O, 432 µL, 68 µmol, 1.0 mol%) was added. The reaction mixture was stirred for 6 h. Due to the poor conversion

observed, §§§§§ K2OsO4 (75 mg, 0.20 mmol, 4.0 mol%) was added. The reaction mixture was stirred for an additional 3 days. The reaction mixture was guenched by the addition of Na₂S₂O₅ (1.0 g). Sat. aq. NaHCO₃ solution (100 mL) was added and the reaction mixture was extracted with 9:1 CHCl₃/MeOH (4 × 100 mL). The combined organics were dried, filtered, and concentrated in vacuo. Flash column chromatography eluting with 50-100% {50:8:1 CH₂Cl₂:EtOH:NH₄OH} in CH₂Cl₂ gave the title compound S-26 (97 mg, 0.30 mmol, 4%, mixture of 4 diastereomers) as a pale brown oil. ¹H NMR (700 MHz, CD₃OD, characteristic peaks given, see Section 7.0 for the processed NMR): δ 8.78-8.73 (1H, m, Ar-H), 8.17 (1H, d, J 8.4, Ar-H), 7.99 (1H, d, J 8.4, Ar-H), 7.73-7.65 (2H, m, Ar-H), 7.61-7.54 (1H, m, Ar-H), 5.67-5.60 (1H, m, ArCH(OH)), 1.05 (0.33H, d, J 6.4, diastereomer-1, CH₃), 1.01 (0.33H, d, J6.3, diastereomer-2, CH₃), 1.00 (0.17H, d, J6.3, diastereomer-3, CH₃), 0.99 (0.17H, d, J 6.4, diastereomer-4, CH₃). ¹³C NMR (175 MHz, CD₃OD): δ 152.4 (2 peaks), 152.3 (2 peaks), 150.90 (2 peaks), 150.8 (2 peaks), 148.8, 148.7 (2 peaks), 130.6 (3 peaks), 130.0 (2 peaks), 129.9 (2 peaks), 128.1 (2 peaks), 128.0, 127.1 (3 peaks), 124.6 (2 peaks), 124.5, 119.9 (2 peaks), 119.8 (2 peaks), 74.4, 74.2, 74.1, 73.9, 72.7, 72.6, 72.1, 72.3, 72.1, 72.0, 71.5, 71.3, 70.9, 69.8, 65.9, 65.1, 63.5, 63.1, 61.4, 61.1, 60.5, 60.4, 43.8, 43.7 (2 peaks), 43.5, 31.7, 31.3, 30.5, 30.1, 23.7, 23.6, 23.5, 23.4, 22.8, 22.6, 22.2 (2 peaks), 17.6, 17.5, 16.2, 16.0. HRMS (ESI): C₁₉H₂₅O₃N₂ [M+H]⁺; calculated: 329.1860, found: 329.1860.

⁺⁺⁺⁺⁺ Prepared by passing a sample of compound **S-25** through a SiO₂ plug eluting with 1:1 (50:8:1 CH₂Cl₂:EtOH:NH4OH):CH₂Cl₂. ^{§§§§§} As judged by analysis of the crude reaction mixture using LCMS.

(1S,4S,6S)-6-[(R)-Hydroxy(5,6,7,8-tetrahydroquinolin-4-yl)methyl]-1-azabicyclo[2.2.2]octan-3-one S-27

Compound **S-26** (70 mg, 0.21 mmol) was dissolved in TFA (2.0 mL) and PtO₂ (5 mg, 21 μ mol, 10 mol%) was added. The reaction mixture was stirred under an atmosphere of H₂ (5 bar) for 17 h. The reaction mixture was filtered through celite, flushing through with CH₂Cl₂, and concentrated *in vacuo*. The

crude reaction product was diluted in 8:2 AcOH/H₂O (1.0 mL). NaIO₄ (90 mg, 0.42 mmol, 2.0 eg.) was added at 0 °C. The reaction mixture was warmed to rt, then stirred overnight. The reaction mixture was cooled to 0 °C, then quenched with 10 M solution NaOH (~1.5 mL) until it was basic. The reaction mixture was transferred to a separating funnel and extracted with 9:1 CHCl₃/MeOH (5 x 10 mL). The combined organics were dried over Na₂SO₄, filtered, and concentrated *in vacuo*. Flash column chromatography eluting with 40% {50:8:1 CH₂Cl₂:EtOH:NH₄OH} in CH₂Cl₂ gave the title product S-27 (40 mg, 0.14 mmol, 67% over 2 steps) as a colourless amorphous solid. ¹H NMR (500 MHz, CD₃OD, OH not observed, spectrum complicated by deuterium exchange: only 1 of 2 protons at 2-C observed): δ 8.25 (1H, d, J 5.2, pyridine 2-H), 7.39 (1H, d, J 5.2, pyridine 3-H), 5.14 (1H, d, J 4.9, CH(OH)), 3.67-3.60 (1H, m, guinuclidine 7-H_A), 3.30-3.25 (1H, m, 2-H), 3.11-3.04 (1H, m, quinuclidine 6-H), 2.96-2.88 (3H, m, CHAHB and CH2), 2.84-2.73 (2H, m, CHAHB and quinuclidine 7-H_B), 2.46-2.42 (1H, m, quinuclidine 4-H), 2.37 (1H, ddd, J 13.4, 8.0, 2.2, quinuclidine 5-H_A), 2.19-2.12 (1H, m, quinuclidine 8-H_A), 1.97-1.80 (6H, m, includes 5-H_B, 8-H_B and $2 \times CH_2$).¹³C NMR (125 MHz, CD₃OD): complicated by deuterium exchange at 2-C, see Section 7.0 for the processed NMR. HRMS (ESI): C₁₇H₂₃O₂N₂ [M+H]⁺; calculated: 287.1754, found: 287.1751. $[\alpha]_{20}^{D} = -79$ (c. 0.1, MeOH).

(*1R*, *11S*, *13S*)-5-Bromo-13-[(*R*)-hydroxy(5,6,7,8-tetrahydroquinolin-4-yl)methyl]-6-methyl-1,7,9-triazatetracyclo[9.2.2.0^{2,10}.0^{3,8}]pentadeca-2(10),3(8),4,6-tetraen-1-ium trifluoroacetate S-3

Prepared according to General Procedure B using ketone S-27 (39 mg, 0.14 mmol), MgSO₄ (1.5 eq.) and 30 mol% Pd(OAc)₂ (72 h). Flash column chromatography eluting with 5-20% {50:80:1 CH₂Cl₂:EtOH:NH₄OH} in CH₂Cl₂ gave the *title compound* S-3 (7 mg, 12 μmol, 9%) as a brown oil.

¹**H NMR** (500 MHz, CD₃OD, OH not observed): δ 8.52 (1H, d, *J* 6.2, Py 2-H), 8.34 (1H, s, indole 4-H), 8.08 (1H, d, *J* 6.2, Py 3-H), 5.96 (1H, app. s, *CH*(OH)), 4.65 (1H, ddd, *J* 11.7, 9.2, 4.1, 14-H_A), 3.80-3.76 (1H, m, 11-H), 3.59 (1H, dd, *J* 10.3, 6.6, 13-H), 3.21-3.14 (1H, m, 14-H_B), 3.12-2.96 (3H, m, *CH*_AH_B and CH₂), 2.81-2.73 (1H, m, CH_AH_B), 2.68-2.62 (4H, m, includes 12-H_A, and at δ 2.65: 3H, s, CH₃), 2.47-2.39 (1H, m, 15-H_A), 1.99-1.80 (5H, m, 15-H_B and 2 × CH₂), 1.58-1.50 (1H, m, 12-H_B). ¹³**C NMR** (125 MHz, CD₃OD): δ 160.7 (Ar-C_q), 154.1 (Ar-C_q), 151.2 (Ar-C_q), 145.5 (Ar-C_q), 141.8 (Ar-C_q), 139.7 (Py 2-C), 136.1 (Ar-C_q), 129.8 (indole 4-C), 123.2 (Py 3-C), 115.4 (Ar-C_q), 114.9 (Ar-C_q), 111.6 (Ar-C_q), 67.8 (13-C), 67.5 (CH(OH)), 51.7 (14-C), 29.0 (CH₂), 28.5 (11-C), 26.8 (15-C), 25.7 (CH₂), 25.1 (CH₃), 24.7 (12-C), 22.1 (CH₂), 21.3 (CH₂). **HRMS** (ESI): C₂H₂₆ON₄⁷⁹Br [M+H]⁺; calculated: 453.1285, found: 453.1282; C₂H₂₆ON₄⁸¹Br [M+H]⁺; calculated: 453.1285, found: 453.1282; C₂H₂₆ON₄⁸¹Br [M+H]⁺; calculated: 453.1285, found: 453.1282; C₂H₂₆ON₄⁸¹Br [M+H]⁺; calculated: 455.1262.

(1S,4S,6S)-6-[(1R)-1-(Quinolin-4-yl)ethyl]-1-azabicyclo[2.2.2]octan-3-one S-28

General Procedure A, Part II, was followed using compound **S-25** (2.0 g, 6.1 mmol). Flash column chromatography eluting with 5-20% {50:80:1 CH₂Cl₂:EtOH:NH₄OH_(sat. aq.)} in CH₂Cl₂ gave the *title product* **S-28** (791 mg, 2.80 mmol, 41%) as a yellow solid. ¹H NMR (600 MHz, CD₃OD, OH not

observed): δ 8.83 (1H, d, J 4.6, guinoline 2-H), 8.27 (1H, d, J 8.4 guinoline 8-H), 8.06 (1H, d, J 8.7, quinoline 5-H), 7.80-7.76 (1H, m, quinoline 6-H), 7.75 (1H, d, J 4.6, quinoline 3-H), 7.68-7.65 (1H, m, quinoline 7-H), 5.74 (1H, d, J 4.3, CH(OH)), 3.82-3.76 (1H, m, quinuclidine 7-H_A), 3.29-3.21 (3H, m, quinuclidine 6-H, quinuclidine 2-H_A and quinuclidine 2-H_B), 2.84-2.78 (1H, m, quinuclidine 7-H_B), 2.46-2.41 (2H, m, quinuclidine 4-H and quinuclidine 5-H_A), 2.25-2.18 (1H, m, quinuclidine 8-H_A), 1.95-1.88 (1H, m, quinuclidine 8-H_B), 1.80-1.74 (1H, m, quinoline 5-H_B). ¹³C NMR (151 MHz, CD₃OD): δ 220.3 (quinuclidine 3-C), 152.1 (Ar-C_q), 151.0 (quinoline 2-C), 148.8 (Ar-C_q), 130.7 (quinoline 6-C), 130.0 (quinoline 5-C), 128.2 (quinoline 7-C), 127.2 $(Ar-C_{\alpha})$. 124.6 (quinolone 8-C), 119.9 (quinoline 3-C), 71.9 (CH(OH)), 65.5 (quinuclidine 2-C), 61.9 (quinuclidine 6-C), 43.4 (quinuclidine 7-C), 41.8 (quinuclidine 4-C), 26.6 (quinuclidine 5-C), 25.8 (quinuclidine 8-C). HRMS (ESI): calc. for [M+H]⁺ C₁₇H₁₉O₂N₂: 283.1441, found: 283.1440. $[\alpha]_{\rm D}^{20} = -128$ (MeOH).

(1R,11S,13S)-5-Bromo-13-[(R)-hydroxy(quinolin-4-yl)methyl]-6-methyl-1,7,9triazatetracyclo[9.2.2.02,10.03,8]pentadeca-2(10),3,5,7-tetraen-1-ium trifluoroacetate S-4

Prepared according to General Procedure B using ketone **S-28** (100 mg, 0.35 mmol, 1.0 eq.) and 20 mol% Pd(OAc)₂ (24 h). Flash column chromatography eluting with 5-20% {50:80:1 CH₂Cl₂:EtOH:NH₄OH} in CH₂Cl₂ followed by mass-directed

preparative HPLC (MeCN in $H_2O + 0.1\%$ TFA; Rt = 11.4 min) gave the *title compound* **S-4** (18.3 mg, 40.7 μmol, 11%) as a yellow solid. ¹H NMR (700 MHz, CD₃OD, NH⁺, NH, and OH not observed): δ 9.04 (1H, d, J 5.2, quinoline 2-H), 8.49 (1H, d, app. J 8.5, quinoline 8-H), 8.34 (1H, s, indole 4-H), 8.16-8.13 (2H, m, quinoline 3-H and quinoline 5-H), 7.96 (1H, app. t, J7.7, quinoline 6-H), 7.86 (1H, app. t, J7.7, quinoline 7-H), 6.52 (1H, app. s, CH(OH)), 4.84-4.81 (1H, m, 14-H_A) 3.81-3.75 (2H, m, 11-H and 13-H), 3.25 (1H, td, J 11.3, 5.0, 14-H_B), 2.69 (1H, ddd, J 12.3, 6.4, 2.0, 12-H_A), 2.54-2.48 (1H, m, 15-H_A), 2.67 (3H, s, CH₃), 1.97-1.91 (1H, m, 15-H_B), 1.56-1.50 (1H, m, 12-H_B). ¹³C NMR (176 MHz, CD₃OD, CF₃CO₂⁻ not observed): δ 162.5 (q, J_{CF} 35.6, CF₃CO₂⁻), 154.2 (Ar-C_q), 148.7 (quinoline 2-C), 145.5 (Ar- C_a), 144.5 (Ar- C_a), 141.9 (Ar- C_a), 151.1 $(Ar-C_{\alpha}).$ 133.4 (quinolone 6-C), 130.3 (quinoline 7-C), 129.6 (indole 4-C), 126.9 (quinoline 3-C), 126.7 (Ar-C_q), 124.5 (quinoline 8-C), 120.4 (quinoline 5-C), 115.6 (Ar-C_q), 114.8 (Ar-C_q), 111.5 (Ar-C_q), 69.7 (13-C), 68.0 (CH(OH)), 52.1 (14-C), 28.6 (11-C), 26.9 (15-C), 25.2 (12-C), 25.1 (CH₃). **HRMS** (ESI): C₂₃H₂₂ON₄⁷⁹Br [M+H]⁺; calculated: 449.0972, found 449.09675; $C_{23}H_{22}ON_4^{81}Br [M+H]^+$; calculated: 451.0951, found 451.0943. $[\alpha]_D^{20} = +123$ (c. 0.1, MeOH).

6.3.2.5.4 Preparation of compound S-5

(1S,2S,4S)-5-Ethylidene-2-(hydroxymethyl)-1-azabicyclo[2.2.2]octan-1-ium chloride S-29

General procedure A, Part I, was followed using quincorine (1.52 g, 9.1 mmol). Flash column chromatography eluting with 1:4 ({50:80:1 DCM:EtOH:NH4OH}/DCM) gave the *title compound* **S-29** (2.1 g^{******}) as yellow oil. ¹**H NMR** (500 MHz, CD₃OD, 55:45 mixture of Z/E alkenes, NH⁺ and OH not

observed): δ 5.48 (0.55H, d, *J* 6.8, major C=C*H*CH₃), 5.42 (0.45H, d, *J* 6.8, minor C=C*H*CH₃), 4.09-3.91 (2H, m, 2-H_A and 2-H_B), 3.84-3.78 (1H, m C*H*_AH_BOH), 3.77-3.69 (1H, m CH_AH_BOH), 3.67-3.56 (2H, 6-H, 7-H_A), 3.29-3.21 (1H, m, 7-H_B), 3.09 (0.45H, s, minor 4-H), 2.63 (0.55H, s, major 4-H), 2.07-1.95 (2H, m, 5-H_A and 8-H_A), 1.95-1.86 (1H, m, 5-H_B), 1.71 (1.35H, d, *J* 6.8, minor CH₃), 1.61 (1.65H, d, *J* 6.8, major CH₃), 1.58-1.51 (1H, m, 8-H_B). ¹³C NMR (126 MHz, CD₃OD): δ 132.2 (minor 3-C), 131.4 (major 3-C), 120.8 (minor C=CHCH₃), 120.6 (major C=CHCH₃), 61.6 (minor 6-C), 61.4 (major 6-C), 61.6 (minor CH₂OH), 61.2 (major CH₂OH), 56.9 (minor 2-C), 55.1 (major 2-C), 42.8 (minor 7-C), 42.6 (major 7-C), 31.9 (minor 4-C), 28.4 (minor 8-C), 27.5 (major 8-C), 25.4 (minor 5-C), 25.1 (major 4-C), 24.5 (major 5-C), 12.9 (minor CH₃), 12.8 (major CH₃). HRMS (ESI): C₁₀H₁₈ON [M+H]⁺; calculated: 168.1383, found 168.1379.

Maximum theoretical yield = 1.2 g.

(1S,2S,4S)-2-{[(tert-Butyldimethylsilyl)oxy]methyl}-5-ethylidene-1-

azabicyclo[2.2.2]octane S-30

To a stirred solution of compound **S-29** (1.52 g, 9.1 mmol) in CH_2Cl_2 (30 mL, 0.3 M) was added Et_3N (3.8 mL, 27.2 mmol, 3.0 eq.). After the solution was stirred under Ar for 15 min, DMAP (111 mg, 0.9 mmol, 0.1 eq.) and TBDMSCI (4.11 g, 27.2 mmol, 3.0 eq.) were added at 0 °C. The reaction mixture was stirred

for 48 h at rt until the reaction showed complete consumption of the starting material (monitored by LCMS). The reaction mixture was washed with saturated aqueous NaHCO₃ (50 mL) and the resulting solution was extracted with CH₂Cl₂ (4 x 50 mL). The combined organic layers were dried over MgSO₄, filtered and concentrated in vacuo. The crude product was purified by flash column chromatography eluting with 1:9 ({50:80:1 CH₂Cl₂:EtOH:NH₄OH}/ CH₂Cl₂) followed by removal of solvents under reduced pressure to give the *title compound* **S-30** (860 mg, 3.06 mmol, 34%) as yellow oil. ¹H NMR (700 MHz, CD₃OD, 1:1 mixture of Z/E alkenes): δ 5.31-5.19 (1H, m, C=CHCH₃), 3.76-3.68 (2H, m, CH₂OTBDMS), 3.51-3.36 (2H, m, 2-H_A and 2-H_B), 3.22-3.14 (1H, m, 7-H_A), 2.88-2.82 (1H, m, 6-H), 2.81 (0.5H, s, 4-H^a), 2.72-2.63 (1H, m, 7-H_B), 2.32 (0.5H, s, 4-H^b), 1.78-1.66 (2H, m, 5-H_A and 8-H_A), 1.64-1.52 (5H, m, 5-H_B, 8-H_B and C=CHCH₃), 0.92 (9H, s, Si(CH₃)₂C(CH₃)₃), 0.10 (3H, app, d, J 1.3, Si(CH^a₃)₂C(CH₃)₃), 0.08 (3H, app. d, J 1.3, Si(CH^b₃)₂C(CH₃)₃). ¹³C NMR (176 MHz, CD₃OD): δ 141.6 (3-C^a), 140.5 (3-C^b), 115.7 (C^aHCH₃), 115.4 (C^bHCH₃), 66.5 (C^aH₂OTBDMS), 66.4 (C^bH₂OTBDMS), 59.5 (6-C^a), 59.2 (6-C^b), 58.9 (2-C^a), 56.6 (2-C^b), 43.7 (7-C^a), 43.6 (7-C^b), 34.4 (4-C^a), 32.0 (8-C^a), 31.1 (8-C^b), 28.7 (5-C^a), 27.5 (5-C^b), 26.8 $(4-C^{b})$, 26.4 $(Si(CH_{3})_{2}C(C^{a}H_{3})_{3})$, 26.4 $(Si(CH_{3})_{2}C(C^{b}H_{3})_{3})$, 19.2 $(Si(CH_{3})_{2}C^{a}(CH_{3})_{3})$, 19.2 (Si(CH₃)₂ C^{b} (CH₃)₃), 12.8 (C=CH C^{a} H₃), 12.4 $(C=CHC^{b}H_{3}), -5.3$ (Si(CH₃)₂C(CH₃)₃). HRMS (ESI): C₁₆H₃₂ONSi [M+H]⁺; calculated: 282.2248 found 282.2247.

(1S,4S,6S)-6-{[(tert-Butyldimethylsilyl)oxy]methyl}-3-(1-hydroxyethyl)-1azabicyclo[2.2.2]octan-3-ol S-31

Compound **S-30** (860 mg, 3.05 mmol) was added to a two phase system of K_2CO_3 (1.28 g, 9.15 mmol, 3.0 eq.). and $K_3Fe(CN)_6$ (3.01 g, 9.15 mmol, 3.0 eq.) in 1:1 *t*BuOH/H₂O (0.3 M, 10.2 mL). The reaction mixture was stirred for 45 min, then 4% OsO₄ in H₂O (194 µL, 30.6 µmol, 1.0 mol%) was added at rt. After 20 h

s-31 the reaction mixture was quenched with a saturated aqueous solution Na₂S₂O₃ (2 mL) and washed with saturated aqueous NaHCO₃ (50 mL) and the resulting solution was extracted with CH₂Cl₂ (4 x 50 mL). The combined organic layers were dried over MgSO₄, filtered and concentrated *in vacuo*. The obtained crude was purified by flash column chromatography eluting with 1:9 ({50:80:1 CH₂Cl₂:EtOH:NH₄OH}/CH₂Cl₂) followed by removal of solvents under reduced pressure gave the *title compound* **S-31** (655 mg, 2.08 mmol, 68 %) as white solid. ¹H NMR (700 MHz, CD₃OD, characteristic peaks given, see Section 7.0 for the processed NMR): δ 3.92-3.78 (1H, m, CH(OH)CH₃), 3.75-3.67 (2H, m), 3.19-2.98 (2H, m), 2.81-2.42 (3H, m), 2.23-1.98 (1H, m), 1.88-1.47 (2H, m), 1.41-1.18 (2H, m), 1.17-1.10 (3H, m, CH(OH)CH₃), 0.93 (9H, s, Si(CH₃)₂C(CH₃)₃), 0.12-0.04 (6H, m, Si(CH₃)₂C(CH₃)₃). ¹³C NMR (176 MHz, CD₃OD): δ 74.5, 74.4, 74.1, 74.0, 73.8, 72.9, 72.6, 70.8, 70.0, 66.6, 66.5, 66.4, 65.1, 64.5, 62.7, 62.4, 58.3, 58.0, 57.8, 57.7, 42.7, 42.6, 42.4, 31.3, 31.0, 30.1, 29.8, 27.0, 26.9, 26.4, 26.4, 26.3, 26.2, 23.6, 23.5, 22.5, 22.4, 19.2, 17.6, 16.2, 16.0, -5.3. HRMS (ESI): C₁₆H₃₄O₃NSi [M+H]⁺; calculated: 316.2302, found: 316.2301.

(1S,4S,6S)-6-{[(tert-Butyldimethylsilyl)oxy]methyl}-1-azabicyclo[2.2.2]octan-3-one S-32

Compound **S-31** (655 mg, 2.08 mmol) was dissolved in *t*BuOH (7 mL, 0.3 M). A saturated solution of NaIO₄ (578 mg, 2.70 mmol, 1.3 eq.) in H₂O (6.35 mL) was added. The reaction mixture was stirred at rt for 2 h, treated with aqueous NaHCO₃ (50 mL) and extracted with CH₂Cl₂ (4 x 50 mL). The combined organic layers were dried over MgSO₄, filtered and concentrated *in vacuo*. Flash column

chromatography eluting with 1:9 ({50:80:1 CH₂Cl₂:EtOH:NH₄OH}/CH₂Cl₂) gave the *title product* **S-32** (412 mg, 1.53 mmol, 73%) as white solid. ¹H **NMR** (600 MHz, CD₃OD): δ 3.82 (1H, s, CH_AH_BOTBDMS), 3.81 (1H, s, CH_AH_BOTBDMS), 3.38-3.32 (1H, m, 7-H_A), 3.08-2.95 (1H, m, 6-H), 2.84-2.73 (1H, m, 7-H_B), 2.44-2.36 (1H, m, 4-H), 2.11-1.96 (2H, m, 5-H_A and 8-H_A), 1.95-1.80 (2H, m, 5-H_B and 8-H_B), 0.94 (9H, s, Si(CH₃)₂C(CH₃)₃), 0.12 (6H, d, *J* 3.5, Si(CH₃)₂C(CH₃)₃). ¹³C **NMR** (151 MHz, CD₃OD): δ 220.2 (3-C), 66.1 (CH₂OTBDMS), 58.8 (6-C), 42.5 (7-C), 41.6 (4-C), 29.1 (8-C), 26.4 (Si(CH₃)₂C(CH₃)₃), 25.9 (5-C), 19.2 (Si(CH₃)₂C(CH₃)₃), -5.4 (Si(CH₃)₂C(CH₃)₃). **HRMS** (ESI): C₁₄H₂₈O₂NSi [M+H]⁺; calculated: 270.1884, found 270.1884. [α]²⁰_D = -21 (c. 0.1, MeOH).
(1S,4S,6S)-6-(Hydroxymethyl)-1-azabicyclo[2.2.2]octan-3-one S-33

S-33

TBAF (1.0 M in THF, 2.9 mL, 1.3 eq.) was added to compound S-32 (600 mg, 2.23 mmol, 1.0 eq.) in THF (4.5 mL) at 0 °C. The resulting mixture was stirred at rt for
20 h, then a 1:1 sat aq. brine / sat. aq. NaHCO₃ mixture was added (10 mL). The mixture was extracted with CHCl₃ (1 × 20 mL), CHCl₃:MeOH (9:1, 3 × 20 mL), and

CHCl₃:MeOH (8:2, 3 × 20 mL). The combined organics were dried over MgSO₄, filtrated and concentrated *in vacuo*. Flash column chromatography eluting with 5% to 10% {50:80:1 CH₂Cl₂:EtOH:NH₄OH} in CH₂Cl₂, gave the *title compound* **S-33** as white solid (191 mg, 1.23 mmol, 55%). ¹H NMR (600 MHz, CD₃OD, OH, 2-H not observed): δ 3.71 (dd, *J* 11.5, 8.2 Hz, 1H, CH_AH_BOH), 3.61 (dd, *J* 11.5, 6.0 Hz, 1H, CH_AH_BOH), 3.23 (ddd, *J* 14.3, 10.2, 5.5 Hz, 1H, quinuclidine 7-H_A), 3.07-2.98 (m, 1H, quinuclidine 6-H), 2.84-2.74 (m, 1H, quinuclidine 7-H_B), 2.39-2.35 (m, 1H, quinuclidine 4-H) , 2.11-2.03 (m, 1H, quinuclidine 5-H_A), 2.00-1.94 (m, 1H, quinuclidine 8-H_A), 1.94-1.88 (m, 1H, quinuclidine 8-H_B), 1.62 (ddd, *J* 13.5, 7.5, 2.3 Hz, 1H, quinuclidine 5-H_B). ¹³C NMR (151 MHz, CD₃OD): δ 220.5 (quinuclidine 3-C), 98.2 (quinuclidine 2-C), 64.0 (*C*H₂OH), 58.8 (quinuclidine 6-C), 41.5 (quinuclidine 4-C), 41.2 (quinuclidine 7-C), 29.7 (quinuclidine 5-C), 26.0 (quinuclidine 8-C). HRMS (ESI): C₈H₁₄O₂N [M+H]⁺; calculated: 156.1019, found: 156.1016. [α]²⁰_D = -27 (c. 0.1, MeOH).

[(11S,13S)-5-Bromo-6-methyl-1,7,9-triazatetracyclo[9.2.2.02,10.03,8]pentadeca-2(10),3,5,7-tetraen-13-yl]methanol S-5

Prepared according to General Procedure B using ketone **S-33** (100 mg, 0.35 mmol, 1.0 eq.) and 20 mol% Pd(OAc)₂. Flash column chromatography eluting with 5-15% {50:80:1 CH₂Cl₂:EtOH:NH₄OH} in CH₂Cl₂ gave the *title compound* **S-5** (53 mg, 0.17 mmol, 26%) as a yellow solid. ¹H NMR (600 MHz,

CD₃OD, NH and OH not observed): δ 8.16 (1H, s, 4-H), 3.85 (1H, dd, *J* 11.4, 8.1, C*H*_AH_BOH), 3.77 (1H, dd, *J* 11.4, 6.1 Hz, CH_AH_BOH), 3.50-3.44 (1H, m, 14-H_A), 3.42-3.39 (1H, m, 11-H), 2.89-2.82 (1H, m, 13-H), 2.65 (3H, s, CH₃), 2.53-2.44 (1H, m, 14-H_B), 1.96-1.90 (1H, m, 15-H_A), 1.84-1.77 (1H, m, 12-H_A), 1.62-1.55 (1H, m, 15-H_B), 1.55-1.50 (1H, m, 12-H_B). ¹³**C NMR** (151 MHz, CD₃OD): δ 148.0 (Ar-C_q), 145.8 (Ar-C_q), 145.4 (Ar-C_q), 129.2 (4-C), 125.1 (Ar-C_q), 115.6 (Ar-C_q), 113.6 (Ar-C_q), 64.6 (CH₂OH), 64.4 (13-H), 45.7 (14-C), 33.5 (12-C), 30.3 (15-C), 28.9 (11-C), 24.7 (CH₃). **HRMS** (ESI): C₁₄H₁₇ON₃⁷⁹Br [M+H]+; calculated: 322.0549, found: 322.0554; C₁₄H₁₇ON₃⁸¹Br [M+H]+; calculated: 324.0529, found: 324.0527. [α]²⁰ = -36 (c. 0.1, MeOH).

6.3.2.5.5 Preparation of compound S-6

(13*S*)-5-Bromo-13-(6-methoxyquinoline-4-carbonyl)-6-methyl-1,9-diazatetracyclo [9.2.2.0^{2,10}.0^{3,8}]pentadeca-2(10),3,5,7-tetraene S-6

DMSO (22.2 μ L, 313 μ mol, 3 eq.) in THF (800 μ L) was cooled to -78° C. Oxalylchloride (17.9 μ L 0.21 mmol, 2.5 eq.) was added slowly and the mixture was stirred for 0.5 h at -78° C. Compound **10w-j** (Azaquindole-1, 40 mg, 83 μ mol) was dissolved in THF (0.1 M, 800 μ L) and added dropwise. The mixture was stirred for 0.5 h at -78° C, then Et₃N (69.8 μ L,

0.50 mmol, 6.0 eq.) was added dropwise. The mixture was stirred at -78°C for 0.5 h, at 0°C for 0.5 h and at rt for 2 h. Purification by mass-directed preparative HPLC (MeCN in H₂O + 0.1% TFA; Rt = 14 min) followed by column chromatography eluting with 10-50% {50:80:1 CH₂Cl₂:EtOH:NH₄OH} in CH₂Cl₂ gave the *title compound* **S-34** as an orange solid (7.4 mg, 15.5 μ mol, 19%). ¹H NMR (600 MHz, Cl₃CD): δ 8.95 (1H, d, J 4.4, quinoline 2-H), 8.87 (1H, s, NH), 8.04 (1H, d, J 9.2, quinoline 8-H), 7.69 (1H, d, J 4.4, quinoline 3-H), 7.31 (1H, dd, J 9.2, 2.8, quinolone 7-H), 6.55 (1H, s, indole 4-H), 6.30 (1H, d, J 2.9, quinoline 5-H), 4.66 (1H, dd, J 8.4, 4.2, 13-H), 3.60-3.57 (1H, m, 11-H), 3.44-3.38 (1H, m, 14-H_A), 3.24 (3H, s, OCH₃), 2.73-2.67 (1H, m, 14-H_B), 2.66-2.62 (1H, m, 12-H_A), 2.61 (3H, s, CH₃), 2.22-2.17 (1H, m, 12-H_B), 2.09-2.03 (1H, m, 15-H_A), 1.66-1.59 (1H, m, 15-H_B). ¹³C NMR (126 MHz, Cl₃CD): δ 202.2 (C=O), 158.5 (quinoline 6-C), 148.0 (Ar-C_q), 146.8 (quinoline 144.5 2-C), 145.6 $(Ar-C_q),$ (Ar-C_q), 143.6 (Ar-C_q), 142.0 $(Ar-C_q)$, 131.3 (quinolone 8-C), 128.4 (indole 4-C), 125.4 (Ar-C_q), 123.1 (quinoline 7-C), 120.8 (Ar-C_q), 119.5 (quinoline 3-C), 115.2 (Ar-C_q), 113.5 (Ar-C_q), 102.2 (quinoline 5-C), 67.6 (13-C), 54.8 (OCH₃), 51.7 (14-C), 31.0 (12-C), 29.6 (15-C), 28.2 (11-C), 24.9 (CH₃). HRMS (ESI): C₂₄H₂₂O₂N₄⁷⁹Br [M+H]⁺; calculated: 477.0921; found: 477.0907; C₂₄H₂₂O₂N₄⁸¹Br [M+H]⁺; calculated: 479.0900, found: 479.0887. $[\alpha]_{\rm D}^{20}$ +48 (c 0.1, MeCN).

7.0 Processed NMR Spectra

Compounds are listed in order of appearance within the Supporting Information.

f1 (ppm)

· ` _ O	P -	•CF ³ CO ⁵	151.14	/ 145.66 /- 144.08 /- 141.93	✓ 129.64 → 127.84 ✓ 126.70	120.40	~ 114.83 111.70 109.06	— 102.55	93.59	78.14	68.65	~ 58.09 ~ 57.47 ~ 55.46 ~ 51.13 ~ 49.63	→ 30.51 → 28.64 → 27.14 > 25.08	
7 8 8 8 8 N 2 3 12 14 15 10 15 10 S-2														
											1			
/////////////////////////////////////	//////////////////////////////////////	1.000000000000000000000000000000000000	миник 15	ynauuthaluundamat 0 140	уулаумпЧуп/Милий 	W#In/Wuh 120	110	100 f1 (ppr	ми ^н иларуналтий 	Muluumana 1			nandayiya waxaa ku 	w ining with and a set of the set

	98.17	— 64.02 — 58.81	 41.45 41.23 29.65 26.02
2 ©			
		1	
	L		

8.0 References

- L. Kremer, E. Hennes, A. Brause, A. Ursu, L. Robke, H. T. Matsubayashi, Y. Nihongaki, J. Flegel, I. Mejdrová, J. Eickhoff, et al., *Angew. Chem. Int. Ed.* 2019, 58, 16617–16628.
- [2] L. Robke, Y. Futamura, G. Konstantinidis, J. Wilke, H. Aono, Z. Mahmoud, N. Watanabe, Y. W. Wu, H. Osada, L. Laraia, et al., *Chem. Sci.* 2018, *9*, 3014–3022.
- [3] A. S. Rosenthal, C. Tanega, M. Shen, B. T. Mott, J. M. Bougie, D.-T. Nguyen, T. Misteli, D. S. Auld, D. J. Maloney, C. J. Thomas, *An Inhibitor of the Cdc2-like Kinase 4 (Clk4)*, National Center For Biotechnology Information (US), **2010**. https://www.ncbi.nlm.nih.gov/books/NBK56236/
- [4] "AID 2710 Kinase Inhibition Profile Study on Inhibitors of CDC-like Kinase 4 PubChem," can be found under https://pubchem.ncbi.nlm.nih.gov/bioassay/2710.
- [5] M. Muraki, B. Ohkawara, T. Hosoya, H. Onogi, J. Koizumi, T. Koizumi, K. Sumi, J. Yomoda,
 M. V. Murray, H. Kimura, et al., *J. Biol. Chem.* 2004, 279, 24246–24254.
- [6] A. Foucourt, D. Hédou, C. Dubouilh-Benard, A. Girard, T. Taverne, A. S. Casagrande, L. Désiré, B. Leblond, T. Besson, *Molecules* 2014, 19, 15411–15439.
- K. J. French, Y. Zhuang, L. W. Maines, P. Gao, W. Wang, V. Beljanski, J. J. Upson, C. L. Green, S. N. Keller, C. D. Smith, *J. Pharmacol. Exp. Ther.* 2010, 333, 129–39.
- [8] M. E. Schnute, M. D. McReynolds, T. Kasten, M. Yates, G. Jerome, J. W. Rains, T. Hall, J. Chrencik, M. Kraus, C. N. Cronin, et al., *Biochem. J.* 2012, 444, 79–88.
- C. Sadhu, B. Masinovsky, K. Dick, C. G. Sowell, D. E. Staunton, *J. Immunol.* 2003, 170, 2647– 54.
- B. J. Lannutti, S. A. Meadows, S. E. M. Herman, A. Kashishian, B. Steiner, A. J. Johnson, J. C. Byrd, J. W. Tyner, M. M. Loriaux, M. Deininger, et al., *Blood* 2011, *117*, 591–4.
- K. Down, A. Amour, I. R. Baldwin, A. W. J. Cooper, A. M. Deakin, L. M. Felton, S. B. Guntrip,
 C. Hardy, Z. A. Harrison, K. L. Jones, et al., *J. Med. Chem.* 2015, *58*, 7381–7399.
- [12] P. Ertl, S. Roggo, A. Schuffenhauer, J. Chem. Inf. Model. 2008, 48, 68–74.
- [13] I. Colomer, C. J. Empson, P. Craven, Z. Owen, R. G. Doveston, I. Churcher, S. P. Marsden, A. Nelson, *Chem. Commun.* 2016, *52*, 7209–7212.
- [14] M. A. Bray, S. Singh, H. Han, C. T. Davis, B. Borgeson, C. Hartland, M. Kost-Alimova, S. M. Gustafsdottir, C. C. Gibson, A. E. Carpenter, *Nat. Protoc.* 2016, *11*, 1757–1774.
- [15] M. H. Woehrmann, W. M. Bray, J. K. Durbin, S. C. Nisam, A. K. Michael, E. Glassey, J. M. Stuart, R. S. Lokey, *Mol. Biosyst.* **2013**, *9*, 2604–2617.
- [16] A. Pahl, S. Sievers, in *Methods Mol. Biol.*, Humana Press, New York, NY, **2019**, pp. 115–126.
- [17] https://github.com/mpimp-comas/cellpainting. Last visited 18/02/2020.
- [18] L. Laraia, K. Ohsawa, G. Konstantinidis, L. Robke, Y. W. Wu, K. Kumar, H. Waldmann,

Angew. Chem. Int. Ed. 2017, 56, 2145–2150.

- [19] H. Waldmann, L. Laraia, G. Garivet, D. J. Foley, N. Kaiser, S. Müller, S. Zinken, T. Pinkert, J. Wilke, D. Corkery, et al., Angew. Chem. Int. Ed. 2019, DOI 10.1002/anie.201913712.
- [20] L. Robke, L. Laraia, M. A. Carnero Corrales, G. Konstantinidis, M. Muroi, A. Richters, M. Winzker, T. Engbring, S. Tomassi, N. Watanabe, et al., *Angew. Chem. Int. Ed.* 2017, 56, 8153–8157.
- [21] L. Robke, T. Rodrigues, P. Schröder, D. J. Foley, G. J. L. Bernardes, L. Laraia, H. Waldmann, *Tetrahedron* 2018, 74, DOI 10.1016/j.tet.2018.07.021.
- [22] L. Laraia, A. Friese, D. P. Corkery, G. Konstantinidis, N. Erwin, W. Hofer, H. Karatas, L. Klewer, A. Brockmeyer, M. Metz, et al., *Nat. Chem. Biol.* 2019, 15, 710–720.
- [23] F. De Chaumont, S. Dallongeville, N. Chenouard, N. Hervé, S. Pop, T. Provoost, V. Meas-Yedid, P. Pankajakshan, T. Lecomte, Y. Le Montagner, et al., *Nat. Methods* **2012**, *9*, 690– 696.
- [24] D. E. Portlock, D. Naskar, L. West, W. L. Seibel, T. Gu, H. J. Krauss, X. S. Peng, P. M. Dybas,
 E. G. Soyke, S. B. Ashton, et al., *Tetrahedron Lett.* 2003, 44, 5365–5368.
- [25] F. I. Carroll, P. Abraham, K. Gaetano, S. W. Mascarella, R. A. Wohl, J. Lind, K. Petzoldt, J. Chem. Soc. Perkin Trans. 1 1991, 3017–3026.
- [26] C. Chen, D. R. Lieberman, R. D. Larsen, T. R. Verhoeven, P. J. Reider, J. Org. Chem. 1997, 62, 2676–2677.