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Appendix S1a: Diversification analyses implemented by RPANDA

We used RPANDA v1.4 (Morlon et al., 2016) to fit birth-death models for all the three

time-calibrated rosid trees (9k-, 20k- and 100k-tip; Morlon, 2014; Morlon et al., 2016), as well as

their 17 order-level clades (recognized by APG IV [2016]). We tested 9 likelihood-based time-

dependent diversification models:

1) Pure birth model, no extinction rate (mu, µ = 0), and constant speciation rate (lambda,

λ; hereafter bcst.d0)

# t is time

# y is a vector of initial values feeding to the functions of λ and µ

f.lamb = function(t, y){y[1]}

f.mu = function(t, y){0}

2) Birth-death model with constant speciation and extinction (here as bcst.dcst)

f.lamb = function(t, y){y[1]}

f.mu = function(t, y){y[1]}

3) Pure birth model with exponential variation in speciation rate (here as bvar.d0)

f.lamb = function(t, y){y[1] * exp(y[2] * t)}

f.mu = function(t, y){0}

4) Pure birth model with linear variation in speciation rate (here as bvar.l.d0)

f.lamb = function(t, y){y[1] + y[2] * t}

f.mu = function(t, y){0}

5) Birth-death model with exponential variation in speciation rate and constant



extinction (here as bvar.dcst)

f.lamb = function(t, y){y[1] * exp(y[2] * t)}

f.mu = function(t, y){y[1]}

6) Birth-death model with linear variation in speciation rate and constant extinction

(here as bvar.l.dcst)

f.lamb = function(t, y){y[1] + y[2] * t}

f.mu = function(t, y){y[1]}

7) Birth-death model with a constant speciation rate and exponential variation in

extinction (here as bcst.dvar)

f.lamb = function(t, y){y[1]}

f.mu = function(t,y){y[1] * exp(y[2] * t)}

8) Birth-death model with a constant speciation rate and linear variation in extinction

(here as bcst.dvar.l)

f.lamb = function(t, y){y[1]}

f.mu = function(t,y){y[1] + y[2] * t}

9) Birth-death model with exponential variation in speciation and extinction (here as

bvar.dvar)

f.lamb = function(t, y){y[1] * exp(y[2] * t)}

f.mu = function(t,y){y[1] * exp(y[2] * t)}

These nine birth-death models were calculated using the function “fit_bd” (Morlon et al.,

2016). We compared AIC values (Akaike Information Criterion; Akaike, 1974) and calculated

Akaike weights (Wagenmakers and Farrell, 2004) to quantify relative model support and choose



the best model. Then we report the best model, speciation rate (λ), AICc and AW under the best

model estimated for 9k-, 20k, and 100k-tip trees and each of 17 rosid orders from these trees

using RPANDA with nine birth-death models mentioned above. Then the λ is used to compare

among different clades/trees and other diversification metrics across (see Appendix S2b).



Appendix S1b: Diversification analyses implemented by BAMM

We also performed diversification analyses in BAMM (Bayesian Analysis of

Macroevolutionary Mixtures; v2.5.0; Rabosky, 2014) to evaluate speciation rates, examining

both tip rates (speciation rates at the present) and tree-wide speciation rates (that is, speciation

rates across all tree timeframes including the present), as well as rate-through-time plots. BAMM

is able to account for non-random and incomplete sampling, allowing the user to assign tips to

clades (e.g., genera in our case) and indicate the total proportion (i.e., sampling fraction) of the

clade sampled within the phylogeny (see Rabosky, 2014; BAMM project website: http://bamm-

project.org/advanced.html#incompsampling). The initial values are set to 1.0 and 0.0,

respectively, for speciation rate and extinction rate at assumed constant rate diversification

within BAMM, however, these defaults at the tip of the tree can be adjusted by sampling

fraction (f) mentioned above as speciation rate = f and extinction rate = 1-f (FitzJohn et al., 2009;

Rabosky, 2014).

To examine common alternative practices for accounting for unsampled species in

BAMM, we explored the impact of using global sampling probabilities (comprising one

parameter of missing species for the entire tree) and species-specific sampling probabilities

(comprising missing species parameters for arbitrarily defined clades, often named taxa) on

diversification rates implemented in BAMM. For this method, it would require excessive

computational resources for BAMM to reach MCMC convergence for the entire 20k-tip and

100k-tip trees. To deal with potential convergence issues, we compared the diversification result

from independent analyses of 17 subtrees representing recognized orders recovered in 9k-, 20k-,

and 100k-tip rosid trees. We calculated subtree diversification analyses in the same manner for

all the 17 rosid orders to render the diversification results comparable. In most cases, four

http://bamm-project.org/advanced.html#incompsampling).
http://bamm-project.org/advanced.html#incompsampling).


independent MCMC chains of 20,000,000 generations were run for each analysis. The initial rate

values and rate shift priors were estimated using the R package “BAMMtools” v2.1.6 (Rabosky,

2014) with the “setBAMMpriors” function. For larger rosid subclades, the number of generations

in MCMC chains, the number of expected shifts, and rate priors were manually adjusted to

ensure MCMC convergence. Parameter effective sample sizes (>200 for both the number of

shifts and log likelihoods) and convergence among chains were assessed in the R package “coda”

v0.19-1 (Plummer et al., 2006). After removing 10% of the trees as burn-in, we explored the

BAMM output using BAMMtools to summarize tip and tree-wide speciation rates. We

accounted for recent criticism of BAMM (May and Moore, 2016; Moore et al., 2016; Meyer and

Wiens, 2017; Meyer et al., 2018), by comparing BAMM rates with those estimated using

RPANDA (Morlon et al., 2016) and DR (Jetz et al., 2012) and using the most updated version of

BAMM and BAMMtools (Rabosky et al., 2017), considering the author’s response notes

(Rabosky, 2018a,b).
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