

Supporting Information

Hydrosulfonylation of Alkenes with Sulfonyl Chlorides under Visible Light Activation

Sandrine M. Hell⁺, Claudio F. Meyer⁺, Antonio Misale, Jeroen B. I. Sap, Kirsten E. Christensen, Michael C. Willis, Andrés A. Trabanco, and Véronique Gouverneur^{*}

anie_202004070_sm_miscellaneous_information.pdf

Table of contents:

1. General Information	S2
2. Synthesis of starting materials (2z, 2aa, 7d)	S 3
3. Optimization of the reaction conditions	S6
4. Mechanistic investigations	S8
5. Scale-up experiments (3am)	S14
6. General procedures	S18
7. Characterizations	S19
8. Determination of the stereochemistry for compounds 3aa, 3ab, 3ac, 5a, 5b	S54
9. References	S55
10. Spectra	S 56
11. X-ray - Crystallographic Data for 6	S166

1. General Information

All NMR spectra were recorded on Bruker DPX-400 or a Bruker Avance II HD spectrometer with standard pulse sequences operating at 400 and 500 MHz, respectively, using CDCl₃ or DMSO-d₆ as solvents. ¹H and ¹³C NMR spectral data are reported as chemical shifts (δ) in parts per million (ppm) relative to the solvent peak using the Bruker internal referencing procedure (edlock). ¹⁹F NMR spectra are referenced relative to CFCl₃ in CDCl₃. Coupling constants (J) are measured in hertz (Hz). The following abbreviations are used to describe multiplicities s=singlet, d=doublet, t=triplet, q=quartet, m=multiplet, dd=doublet of doublets, dt=doublet of triplets, td=triplet of doublets, br=broad,. NMR spectra were processed in MestreNova. High resolution mass spectra (HRMS, m/z) were recorded on a Bruker MicroTOF spectrometer using positive electrospray ionization (ESI). Melting points of solids were measured on a DSC823^e (Differential Scanning Analysis) Mettler Toledo apparatus. IUPAC names were obtained using the ChemDraw service. Weighing was performed with a 4 decimal place balance. All reactions for the hydrosulfonylation of alkenes were conducted in non-dried glassware with magnetic stirring. All solvents were used as received without further purification. (TMS)₃SiH was purchased from Sigma-Aldrich, TCI and Combi-blocks. Photocatalyst *fac*-Ir(ppy)₃ was purchased from Sigma-Aldrich. Sulfonyl chlorides were purchased from Sigma-Aldrich, Combi-blocks, TCI and Enamine. Flash column chromatography was performed over silica gel C60 (40-60 µm). All commercially available substrates were purchased from commercial suppliers or otherwise synthesized according to literature.¹⁻¹⁴ Reactions were performed in 7 mL vials with two Kessil LEDSs (35W, 450 nm, approximately 4 cm away from the light source). The yields were determined by isolation on SiO₂ gel column chromatography. The scale-up experiment in batch was performed using a Radleys Reactor Ready of 1 or 2 Liters and the temperature controlled using a Julabo A80 unit. The scaleup experiment in continuous flow was performed in a Vapourtec photoreactor (fluoropolymer tube, 1.3 mm i.d., 10 mL). If the purity of the compounds was not satisfying, an analytical sample was further purified by reverse phase HPLC purification. Low temperature single crystal X-ray diffraction data were collected using a (Rigaku) Oxford Diffraction SuperNova A diffractometer. Data were reduced using CrysAlisPro, solved using SuperFlip¹⁵ and refined using CRYSTALS.¹⁶ Full crystallographic data (in CIF format) is available as ESI and has been deposited with the Cambridge Crystallographic Data Centre (CCDC 1973291).

2. Synthesis of starting materials (2y, 2aa, 7d).

Compounds 2a, 2b, 2d, 2e, 2l, 2m, 2n, 2o, 2u, 2y, 7a, 7b, 7d, 7e, 7g, 7h and 7i were synthesized according to literature.¹⁻¹⁴

General procedure 1: Preparation of cycloalkene-1-carboxamides (2y, 2aa)

The desired amine (5.5 mmol, 1.1 equiv) was added to a solution of carboxylic acid (5 mmol, 1.0 equiv), HATU (2.1 g, 5.5 mmol, 1.1 equiv), and *N*,*N*-Diisopropylethylamine (1.75 mL, 10 mmol, 2.0 equiv) in DCM (50 mL). The reaction was stirred for 16 h, after which time the reaction mixture was diluted with DCM (30 mL) and washed with an aqueous solution of HCl (1M, 30 mL) and brine (sat., 30 mL). The organic layer was dried (Na₂SO₄), filtered and concentrated *in vacuo*. The crude product was purified by flash chromatography (silica, EtOAc in Heptane, 0/100 to 40/60). The desired fractions were collected and concentrated *in vacuo* to give the desired amide as a white solid.

N-methyl-N-phenylcyclobut-1-ene-1-carboxamide (2z)

General procedure 1 was followed to obtain **2z** (605 mg, 3.2 mmol, 64%) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.40 - 7.28 (m, 3H), 7.21 - 7.17 (m, 2H), 5.66 (s, 1H), 3.27 (s, 3H), 2.24 - 2.08 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 162.8, 143.8, 143.3, 141.4, 129.5, 128.0, 127.9, 37.8, 31.0, 26.8; HRMS (ESI-TOF) calculated for C₁₂H₁₄ON [M+H]⁺: 188.1075; found 188.1075; m.p.: 63 - 67 °C; IR (neat) 2981, 2360, 1625, 1593, 1574, 1493, 1417, 1379, 1305, 1256, 1169, 1108, 1072, 1032, 1010, 951, 910, 878, 862, 842, 777, 740, 705, 682. N-phenylcyclobut-1-ene-1-carboxamide (2aa)

General procedure 1 was followed to obtain 2aa (424 mg, 2.5 mmol, 49%) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.61 - 7.54 (m, 2H), 7.46 (br s, 1H), 7.35 - 7.28 (m, 2H), 7.14 -7.07 (m, 1H), 6.73 (s, 1H), 2.79 (dd, J = 3.1, 2.9 Hz, 2H), 2.51 - 2.47 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 160.7, 141.9, 141.8, 137.7, 129.1, 124.4, 120.0, 28.8, 26.2; HRMS (ESI-TOF) calculated for C₁₁H₁₂ON [M+H]⁺: 174.0913; found 174.0911; m.p.: 139 - 143 °C; IR (neat) 2981, 1650, 1599, 1579, 1531, 1440, 1384, 1339, 1323, 1253, 1156, 1117, 1076, 1030, 957, 749, 687, 617.

But-3-en-1-yl 4-cyanobenzoate (7d)

4-Cyanobenzoyl chloride (2.0 g, 12.1 mmol, 1.0 equiv) was added to a stirred solution of 3-buten-1-ol (870 mg, 12.1 mmol, 1.0 equiv) and triethylamine (2.5 mL, 18.1 mmol, 1.5 equiv) in DCM (25 mL) at 0 °C. The reaction mixture was warmed to room temperature and stirred for 72 hours., quenched by dropwise addition of a saturated aqueous solution of NH₄Cl and extracted with DCM. The organic layer was separated, dried (Na₂SO₄), filtered and concentrated *in vacuo*. The crude product was purified by flash column chromatography (silica, EtOAc in Heptane, 0/100 to 25/75). The desired fractions were collected and concentrated in vacuo to yield but-3-en-1-yl 4cyanobenzoate **7d** (1.86 g, 9.2 mmol, 77%) as a colourless oil.

¹**H** NMR (400 MHz, CDCl₃) δ 8.15 - 8.10 (m, 2H), 7.76 - 7.71 (m, 2H), 5.92 - 5.78 (m, 1H), 5.21 - 5.08 (m, 2H), 4.43 - 4.37 (m, 2H), 2.57 - 2.49 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 165.0, 134.3, 133.8, 132.3, 130.2, 118.1, 117.8, 116.5, 64.8, 33.2; **HRMS** (ESI-TOF) calculated for

C₁₂H₁₂NO₂ [M+H]⁺: 202.0863; found 202.0865; **IR** (neat) 2232, 1720, 1407, 1269, 1177, 1105, 1019, 920, 862, 766, 691, 642.

3. Optimization of the reaction conditions

Table S1: Optimization of the reaction conditions for the hydrosulfonylation of N-phenylacrylamide^[a]

[a] Reaction condition: **1a** (0.25 mmol), **2a** (0.1 mmol), photocatalyst (0.5 mol%), (TMS)₃SiH (0.2 mmol), solvent (0.6 mL) under blue light ($\lambda = 450$ nm) irradiation for 1 hour. The yield was determined by ¹⁹F NMR using *a*,*a*,i-trifluorotoluene as internal standard. [b] THF was used as solvent and H-atom donor [c] Yields of isolated product. [d] 1.5 equiv. of H-donor was used. [e] 2.5 equiv. of H-donor was used. [f] 1.5 equiv. of **1a** [g] In the dark. [h] In absence of photocatalyst, the reaction was yielding an inconsistent complex mixture of products; [i] Reaction performed under nitrogen atmosphere and in degassed solvent. *fac*-Ir(ppy)₃: tris[2-phenylpyridinato-C²,N]iridium(III); [Ir(ppy)₂(dtbby)₂)PF₆]: [4,4'-Bis(1,1-dimethylethyl)-2,2'-bipyridine-N1,N1']bis[2-(2-pyridinyl-N)phenyl-C]iridium(III) hexafluorophosphate; Ir[dCF₃(ppy)₂](dtbbpy)PF₆: [4,4'-Bis(1,1-dimethylethyl)-2,2'-bipyridine-N1,N1']bis[3,5-difluoro-2-[5-(trifluoromethyl)-2-pyridinyl-N]phenyl-C]Iridium(III) hexafluorophosphate.

NOTE:

- The amount of sulfonyl chloride can be reduced (< 2.5 equivalents) depending on the substitution pattern of the sulfone as well as the olefin used. The substrate scope described in the paper has been performed using 2.5 equivalents of sulfonyl chloride in order to promote higher yields for all substrates.
- The temperature of the reaction mixture could reach 35 °C depending on the distance of the vial to the kessil lights. Fluctuation of the temperature (from room temperature using a fan to 60 degrees in flow) didn't impact the outcome of the reaction.
- Desulfonylation has never been observed under our reaction conditions.

4. Mechanistic investigations4.1. Radical-trapping experiment with TEMPO

4-fluorobenzenesulfonyl chloride (243 mg, 1.3 mmol, 2.5 equiv) was added to a stirred suspension of *N*-phenylacrylamide (74 mg, 0.5 mmol, 1.0 equiv), *fac*-Ir(ppy)₃ (1.70 mg, 0.0025 mmol, 0.5 mol%), MeCN (3.0 mL), (TMS)₃SiH (309 μ L, 1.0 mmol, 2.0 equiv) and (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) (313 mg, 2.0 mmol, 4.0 equiv). The reaction mixture was stirred under blue LED irradiation for 1 hour. LCMS analysis of the crude reaction mixture showed that no product was formed (starting material remaining).

4.2. Reduction of sulfonyl chloride to sulfinic acid 4a

4-fluorobenzenesulfonyl chloride (19.4 mg, 0.1 mmol, 1.0 equiv) was added to a stirred suspension of *fac*-Ir(ppy)₃ (0.34 mg, 0.005 mmol, 0.5 mol%), (TMS)₃SiH (31 uL, 0.1 mmol, 1.0 equiv), MeCN (0.6 mL) and α , α , α -trifluorotoluene (12.3 uL, 0.1 mmol, 1.0 equiv; used as internal standard). The vial was stirred under blue LED irradiation with two Kessil LEDSs (35W, 450 nm, approximately 4 cm away from the light source) at 30 °C for 30 minutes. The crude reaction mixture was analysed by quantitative ¹⁹F NMR (using α , α , α -trifluorotoluene as internal standard).

PhCF₃

Figure S1: Quantitative ¹⁹F NMR of the reaction mixture before and after irradiation with blue LEDs.

4.3 Photoredox-catalyzed hydrosulfonylation of alkenes using sulfinic acid 4a

4-fluorobenzenesulfinic acid (200 mg, 1.3 mmol, 2.5 equiv) was added to a stirred suspension of *N*-phenylacrylamide (74 mg, 0.5 mmol, 1.0 equiv), *fac*-Ir(ppy)₃ (1.70 mg, 0.0025 mmol, 0.5 mol%), MeCN (3.0 mL) and (TMS)₃SiH (309 μ L, 1.0 mmol, 2.0 equiv). The reaction mixture was stirred under blue LED irradiation for 1 hour. The solution was concentrated *in vacuo* and purified by flash column chromaography (silica, EtOAc in Heptane, 0/100 to 100/0) to afford **3a** in 23% yield (35 mg, 0.11 mmol).

4.4. Michael addition of sulfinic acids to electron-deficient alkenes

4-fluorobenzenesulfinic acid (200 mg, 1.3 mmol, 2.5 equiv) was added to a stirred suspension of *N*-phenylacrylamide (74 mg, 0.5 mmol, 1.0 equiv) in MeCN (3.0 mL). The reaction mixture was stirred under blue LED irradiation for 1 hour. The solution was concentrated *in vacuo* and purified by flash column chromaography (silica, EtOAc in Heptane, 0/100 to 100/0) to afford **3a** in 58% yield (89 mg, 0.29 mmol).

4-fluorobenzenesulfinic acid (200 mg, 1.3 mmol, 2.5 equiv) was added to a stirred suspension of phenyl cyclobut-1-ene-1-carboxylate (87 mg, 0.5 mmol, 1.0 equiv) in MeCN (3.0 mL). The reaction mixture was stirred under blue LED irradiation for 1 hour. LCMS analysis of the crude reaction mixture showed no conversion towards the desired product **3ac**.

Previous reports showed that sulfinic acids can undergo Michael addition to electron-deficient alkenes.¹⁷ Nevertheless, as shown above, the efficiency of this addition is dependent on the alkene. An ionic pathway would involve the formation of an enolate intermediate. Based on deuteration experiments (see section 4.4. below), the cascade cyclization affording cyclobutylspirooxindoles **5** as well as the chlorosulfonylation (see Scheme 3 in the manuscript), the reaction most likely proceeds *via* a radical pathway.

4.5. Deuteration experiment

4-fluorobenzenesulfonyl chloride (243 mg, 1.3 mmol, 2.5 equiv) was added to a stirred suspension of *N*-phenylacrylamide (74 mg, 0.5 mmol, 1.0 equiv), *fac*-Ir(ppy)₃ (1.70 mg, 0.0025 mmol, 0.5 mol%), MeOD- d_4 (3.0 mL) and (TMS)₃SiH (309 µL, 1.0 mmol, 2.0 equiv). The reaction mixture was stirred under blue LED irradiation for 1 hour. The solution was concentrated *in vacuo* and purified by flash column chromaography (silica, EtOAc in Heptane, 0/100 to 100/0) to afford [H]**3a** in 47% yield (72 mg, 0.23 mmol).

4.6. Isolation of Chlorotris(trimethylsilyl)silane (9)

4-fluorobenzenesulfonyl chloride (243 mg, 1.3 mmol, 2.5 equiv) was added to a stirred suspension of *N*-phenylacrylamide (74 mg, 0.5 mmol, 1.0 equiv), *fac*-Ir(ppy)₃ (1.70 mg, 0.0025 mmol, 0.5 mol%), MeCN (3.0 mL) and (TMS)₃SiH (309 μ L, 1.0 mmol, 2.0 equiv). The reaction mixture was stirred under blue LED irradiation for 1 hour. The solvent was removed *in vacuo* and the residue was purified by column chromatography (silica, EtOAc in heptane 0/100 to 20/80) to yield **9** (98 mg, 0.34 mmol, 69%) as a colourless oil. ¹H NMR (400 MHz, CDCl₃) δ 0.23 (s, 27H); ¹³C NMR (101 MHz, CDCl₃) δ -0.6. Spectroscopic data were in accordance with a commercial sample.

4.7 Stern-Volmer fluorescence quenching study

A Stern-Volmer fluorescence quenching study of fac-Ir(ppy)₃ was performed with different concentrations of reaction components in MeCN under an argon atmosphere.

A solution of *fac*-Ir(ppy)₃ (0.01 mM) was treated with 0.2-1.0 mM of either sulfonyl chloride **1a**, alkene **2a**, (TMS)₃SiH or *N*,*N*-dimethylsulfamoyl chloride in MeCN. The samples were irradiated at 370 nm and luminescence was measured over a range of 450 - 700 nm ($\lambda_{max} = 532$ nm). I₀/I was plotted against the different concentrations of the quenchers (Figure S2).

c[mM]	4-F-PhSO ₂ Cl	(TMS)₃SiH	2a	Me ₂ NSO ₂ Cl	TEMPO
0.0	1.000	1.000	1.000	1.000	1.000
0.2	1.508	1.068	1.087	0.941	0.993
0.4	1.905	1.055	1.004	0.910	1.086
0.6	2.402	1.064	1.039	0.910	1.166
0.8	2.842	1.104	1.054	1.060	1.166
1.0	3.318	1.080	1.106	1.068	0.986

Figure S2: Stern-Volmer fluorescence quenching experiment

Note: (TMS)₃SiH and *fac*-Ir(ppy)₃ are poorly insoluble in MeCN and sonication was necessary to solubilise all of the reagents.

5. Scale-up experiments

The scale-up experiments (in batch and in continuous flow) have been performed on the synthesis of compound **3am**.

5.1 Scale-up experiment in batch

Scheme S1: Multigram synthesis of **3am** in batch.

A stock solution of cyclobut-1-ene-1-carboxylic acid 2y in MeCN (185 mL, 0.276 M, 50.97 mmol, 1.0 equiv)^{*} was added to a 500 mL round bottom flask. To that solution was added 4-

fluorobenzenesulfonyl chloride (24.8 g, 127.4 mmol, 2.5 equiv) and *fac*-Ir(ppy)₃ (167.6 mg, 0.25 mmol, 0.5 mol%). This suspension was transfered to the Radley 1L reactor, followed by the addition of (TMS)Si₃H (31.4 mL, 101.9 mmol, 2.0 equiv) and MeCN (115 mL). The reactor was irradiated with two Kessil H150-Blue LED lights (34 W, 5 cm distance, see picture above) for 16 h at 30 °C. The reaction mixture was collected from the outlet and concentrated *in vacuo*. The crude was purified by flash column chromatography (silica, sample dry-loading with Celite[®], EtOAc in Heptane with 1% acetic acid, 0/100 to 100/0). The desired fractions were collected and concentrated *in vacuo* to give the desired hydrosulfonylated product **3am** as mixture of diastereoisomers (89/11, *cis/trans*) and as an off-white solid (10.7 g, 41.5 mmol, 81%). Trituration with Et₂O afforded exclusively the *cis*-diastereoisomer as a white solid (9.1 g, 35.3 mmol, 69%).

* The approximate concentration of the solution was calculated using quantitative ¹H NMR. To a sample of the solution containing **2y** in MeCN (20 μ L) was added CH₂Br₂ (7.0 μ L, 0.1 mmol) and CDCl₃ (ca. 0.5 mL). The concentration of the **2y** stock solution was determined by ¹H NMR spectroscopy to be 0.276 M (n = 3).

5.2 Scale-up experiment in continuous flow

3am, 72% (d.r.: 89/11)

2y (1.0 equiv)

Scheme S2: Multigram synthesis of 3am in continuous flow.

Figure S4: Scale-up experiment in continuous flow performed in a Vapourtec photoreactor

A stock solution of cyclobut-1-ene-1-carboxylic acid 2y in MeCN (185 mL, 0.276M, 50.97 mmol, 1.0 equiv)* was added to a 500 mL round bottom flask. To that solution was added 4fluorobenzenesulfonyl chloride (24.8 g, 127.4 mmol, 2.5 equiv), fac-Ir(ppy)₃ (167.6 mg, 0.25 mmol, 0.5 mol%), (TMS)Si₃H (31.4 mL, 101.9 mmol, 2.0 equiv), MeCN (100 mL) and DMF (170 mL). The solution was pumped through a Vapourtec photoreactor (fluoropolymer tube, 1.3 mm i.d., 10 mL) and the liquid flowrate was set at 2.5 mL/min (4 min residence time). The reactor was irradiated with 54 blue LEDs (410 nm, total power 24 W) at 30 °C (internal temperature of the photoreactor: 35 °C). The reaction mixture collected from the outlet was concentrated in vacuo.

The crude was purified by flash column chromatography (silica, EtOAc in Heptane with 1% acetic acid, 0/100 to 100/0). The desired fractions were collected and concentrated *in vacuo* to give the desired hydrosulfonylated product **3am** as a mixture of diastereoisomers (89/11, *cis/trans*) as an off-white solid (9.5 g, 36.8 mmol, 72%). Trituration with Et₂O afforded exclusively the *cis*-diastereoisomer as white solid (7.3 g, 28.3 mmol, 56%).

6. General procedures

General procedure A: Hydrosulfonylation of electron-deficient alkenes

To a 7 mL vial equipped with a magnetic stir bar, was added alkene (0.50 mmol, 1.0 equiv), *fac*-Ir(ppy)₃ (1.70 mg, 0.0025 mmol, 0.5 mol%), MeCN (3.0 mL), (TMS)₃SiH (309 uL, 1.0 mmol, 2.0 equiv) and sulfonyl chloride (1.25 mmol, 2.5 equiv) under air. The vial was equipped with a Teflon septum and stirred under blue LED irradiation with two Kessil LEDs (35W, 450 nm, approximately 4 cm away from the reaction mixture) for 1 hour. The solvent was removed *in vacuo* and the residue was purified by column chromatography (silica, EtOAc in heptane 0/100 to 100/0) to yield the desired product(s).

General procedure B: Hydrosulfonylation of alkynes

To a 7 mL vial equipped with a magnetic stir bar, was added alkyne (0.50 mmol, 1.0 equiv), *fac*-Ir(ppy)₃ (1.70 mg, 0.0025 mmol, 0.5 mol%), MeCN (3.0 mL), (TMS)₃SiH (309 uL, 1.0 mmol, 2.0 equiv) and sulfonyl chloride (1.25 mmol, 2.5 equiv) under air. The vial was equipped with a Teflon septum and stirred under blue LED irradiation with two Kessil LEDs (35W, 450 nm, approximately 4 cm away from the reaction mixture) for 16 hours. The solvent was removed *in vacuo* and the residue was purified by column chromatography (silica, EtOAc in heptane 0/100 to 100/0) to yield the desired product(s).

General procedure C: Hydrosulfonylation of unactivated alkenes

To a 7 mL vial equipped with a magnetic stir bar, was added alkene (0.50 mmol, 1.0 equiv), *fac*-Ir(ppy)₃ (1.70 mg, 0.0025 mmol, 0.5 mol%), 4-mercaptophenol (13 mg, 0.1 mmol, 0.2 equiv), MeCN (3.0 mL), (TMS)₃SiH (309 uL, 1.0 mmol, 2.0 equiv) and sulfonyl chloride (1.25 mmol, 2.5 equiv) under air. The vial was equipped with a Teflon septum and stirred under blue LED irradiation with two Kessil LEDs (35W, 450 nm, approximately 4 cm away from the reaction mixture) for 16 hours. The solvent was removed *in vacuo* and the residue was purified by column chromatography (silica, EtOAc in heptane 0/100 to 100/0) to yield the desired product(s).

7. Characterizations

3-((4-fluorophenyl)sulfonyl)-N-phenylpropanamide (3a)

General procedure A was followed to obtain **3a** (126 mg, 0.41 mmol, 82%) as a white solid. ¹H NMR (500 MHz, CDCl₃) δ 8.12 (s, 1H), 7.99 - 7.94 (m, 2H), 7.47 - 7.43 (m, 2H), 7.31 - 7.27 (m, 2H), 7.26 - 7.21 (m, 2H), 7.13 - 7.09 (m, 1H), 3.58 (t, *J* = 8.1 Hz, 2H), 2.95 (t, *J* = 8.1 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 167.1, 166.5 (d, *J*_{C-F} = 257.8 Hz), 137.65, 134.8 (d, *J*_{C-F} = 3.2 Hz), 131.1 (d, *J*_{C-F} = 9.7 Hz), 129.1, 124.7, 120.1, 117.0 (d, *J*_{C-F} = 22.6 Hz), 52.2, 29.8; ¹⁹F NMR (471 MHz, CDCl₃) δ -102.5 (m, 1F); HRMS (ESI-TOF) calculated for C₁₅H₁₅FO₃N³²S [M+H]⁺: 308.0751; found 308.0759; m.p.: 143 - 144 °C; IR (neat): 2981, 1689, 1661, 1594, 1527, 1493, 1445, 1399, 1312, 1292, 1256, 1226, 1180, 1157, 1139, 1084, 1055, 1015, 966, 951, 904, 839, 821, 794, 774, 752, 727, 693, 670, 651.

3-((4-methoxyphenyl)sulfonyl)-N-phenylpropanamide (3b)

General procedure A was followed to obtain **3b** (137 mg, 0.43 mmol, 86%) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 8.45 (s, 1H), 7.85 - 7.80 (m, 2H), 7.45 - 7.39 (m, 2H), 7.25 - 7.18 (m, 2H), 7.06 - 7.00 (m, 1H), 6.97 - 6.92 (m, 2H), 3.78 (s, 3H), 3.53 (t, *J* = 7.9 Hz, 1H), 2.89 (t, *J* = 7.8 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 167.5, 164.1, 137.9, 130.3, 129.9, 128.9, 124.4, 120.0, 114.7, 55.7, 52.2, 30.1; HRMS (ESI-TOF) calculated for C₁₆H₁₈NO₄³²S [M+H]⁺: 320.0951; found 320.0956; m.p.: 111 - 113 °C; IR (neat) 2981, 1690, 1595, 1545, 1496, 1445, 1425, 1315, 1292, 1264, 1172, 1138, 1087, 1051, 1027, 952, 835, 804, 804, 760, 728, 697, 653. *N*-phenyl-3-((4-(trifluoromethyl)phenyl)sulfonyl)propenamide (3c)

General procedure A was followed to obtain 3c (164 mg, 0.46 mmol, 92%) as a white solid. ¹H NMR (500 MHz, DMSO- d_6) δ 10.02 (s, 1H), 8.15 (d, J = 8.1 Hz, 2H), 8.02 (d, J = 8.2 Hz, 2H), 7.45 (d, J = 7.2 Hz, 2H), 7.26 (t, J = 8.3 Hz, 2H), 7.02 (t, J = 7.4 Hz, 1H), 3.73 (t, J = 7.3 Hz, 2H), 2.71 (t, J = 7.3 Hz, 2H); ¹³C NMR (126 MHz, DMSO- d_6) δ 167.0, 142.5, 138.8, 133.5 (q, $J_{C-F} = 32.4$ Hz), 129.0, 128.7, 126.6 (q, $J_{C-F} = 3.8$ Hz), 123.3, 123.3 (q, $J_{C-F} = 273.0$ Hz), 119.0, 50.5, 29.4; ¹⁹F NMR (471 MHz, DMSO- d_6) δ -61.8 (s, 3F); HRMS (ESI-TOF) calculated for C₁₆H₁₅F₃NO₃³²S [M+H]⁺: 358.0718; found 358.0728; m.p.: 112 - 114 °C; IR (neat) 2981, 2889, 1656, 1531, 1498, 1319, 1271, 1258, 1169, 1147, 1109, 1062, 1018, 849, 792, 776, 735, 696.

3-((4-nitrophenyl)sulfonyl)-N-phenylpropanamide (3d)

General procedure A was followed to obtain 3d (150 mg, 0.45 mmol, 90%) as a white solid. ¹H NMR (400 MHz, DMSO- d_6) δ 10.01 (s, 1H), 8.45 - 8.39 (m, 2H), 8.22 - 8.16 (m, 2H), 7.48 -7.42 (m, 2H), 7.28 - 7.22 (m, 2H), 7.04 - 6.98 (m, 1H), 3.76 (t, J = 7.3 Hz, 2H), 2.72 (t, J = 7.3 Hz, 2H); ¹³C NMR (101 MHz, DMSO- d_6) δ 167.0, 150.5, 143.9, 138.7, 129.8, 128.7, 124.6, 123.3, 119.0, 50.6, 29.3; HRMS (ESI-TOF) calculated for C₁₅H₁₃N₂O₅³²S [M-H]⁻: 333.0551; found 333.0548; m.p.: 185 - 188 °C; IR (neat) 2981, 2889, 1692, 1543, 1527, 1495, 1442, 1383, 1353, 1303, 1250, 1142, 1083, 1011, 957, 854, 815, 773, 759, 737, 704, 693, 655, 606. 3-((4-cyanophenyl)sulfonyl)-N-phenylpropanamide (3e)

General procedure A was followed to obtain 3e (131 mg, 0.42 mmol, 83%) as a white solid. ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.01 (s, 1H), 8.16 - 8.07 (m, 4H), 7.48 - 7.44 (m, 2H), 7.31 -7.24 (m, 2H), 7.07 - 7.00 (m, 1H), 3.72 (t, *J* = 7.3 Hz, 2H), 2.69 (t, *J* = 7.4 Hz, 2H); ¹³C NMR (101 MHz, DMSO-*d*₆) δ 167.0, 142.6, 138.8, 133.5, 128.7, 128.7, 123.3, 119.0, 117.5, 116.3, 50.4, 29.3; HRMS (ESI-TOF) calculated for C₁₆H₁₃N₂O₃³²S [M-H]⁻: 313.0652; found 313.0648; m.p.: 157 - 159 °C; IR (neat) 2981, 2889, 1693, 1600, 1538, 1496, 1439, 1394, 1356, 1315, 1249, 1177, 1149, 1132, 1083, 1024, 985, 968, 954, 845, 818, 788, 761, 747, 721, 691, 655.

3-((5-bromothiophen-2-yl)sulfonyl)-N-phenylpropanamide (3f)

General procedure A was followed to obtain **3f** (159 mg, 0.43 mmol, 85%) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.67 (s, 1H), 7.47 (d, *J* = 4.0 Hz, 1H), 7.43 (d, *J* = 7.7 Hz, 2H), 7.30 (t, *J* = 7.9 Hz, 2H), 7.15 - 7.08 (m, 2H), 3.65 (t, *J* = 7.7 Hz, 2H), 2.90 (t, *J* = 7.8 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 166.7, 140.3, 137.5, 134.9, 131.4, 129.2, 124.9, 123.0, 120.1, 53.4, 30.4; HRMS (ESI-TOF) calculated for C₁₃H₁₃NO₃⁷⁹Br³²S₂ [M+H]⁺: 375.9515; found 375.9497; m.p.: 139 - 142 °C; IR (neat) 2981, 2889, 1674, 1600, 1535, 1497, 1474, 1462, 1442, 1396, 1318, 1253, 1198, 1149, 1129, 1078, 1019, 989, 967, 955, 808, 778, 751, 709, 688, 665.

N-phenyl-3-(pyridin-3-ylsulfonyl)propenamide (3g)

General procedure A was followed to obtain **3f** (107 mg, 0.37 mmol, 74%) as a white solid. ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.04 (s, 1H), 9.06 (dd, *J* = 2.4, 0.9 Hz, 1H), 8.90 (dd, *J* = 4.9, 1.6 Hz, 1H), 8.32 (ddd, *J* = 8.0, 2.4, 1.6 Hz, 1H), 7.69 (ddd, *J* = 8.2, 4.8, 0.8 Hz, 1H), 7.50 - 7.45 (m, 2H), 7.31 - 7.24 (m, 2H), 7.06 - 6.99 (m, 1H), 3.73 (t, *J* = 7.4 Hz, 2H), 2.73 (t, *J* = 7.4 Hz, 2H); ¹³C NMR (101 MHz, DMSO-*d*₆) δ 167.1, 154.4, 148.5, 138.8, 136.2, 135.1, 128.7, 124.4, 123.3, 119.1, 50.9, 29.4; HRMS (ESI-TOF) calculated for C₁₄H₁₅N₂O₃³²S [M+H]⁺: 291.0798; found 291.0804; m.p.: 181 - 183 °C; **IR** (neat) 2981, 2889, 1687, 1599, 1546, 1489, 1444, 1383, 1301, 1255, 1155, 1103, 1083, 956, 828, 809, 776, 753, 701, 688, 623.

3-((5-acetamidothiazol-2-yl)sulfonyl)-N-phenylpropanamide (3h)

General procedure A was followed to obtain **3h** (134 mg, 0.38 mmol, 76%) as a white solid. ¹H NMR (500 MHz, DMSO-*d*₆) δ 12.78 (s, 1H), 10.04 (s, 1H), 8.08 (s, 1H), 7.51 - 7.47 (m, 2H), 7.30 - 7.25 (m, 2H), 7.05 - 7.00 (m, 1H), 3.69 (t, *J* = 7.3 Hz, 2H), 2.76 (t, *J* = 7.3 Hz, 2H), 2.19 (s, 3H); ¹³C NMR (126 MHz, DMSO-*d*₆) δ 169.8, 167.2, 163.7, 145.7, 138.8, 128.7, 126.8, 123.3, 119.1, 52.7, 30.0, 22.4; HRMS (ESI-TOF) calculated for C₁₄H₁₄N₃O₄³²S₂ [M-H]⁻: 352.0431; found 352.0434; **m.p.**: 238 - 240 °C; **IR** (neat) 2981, 2889, 1687, 1675, 1552, 1498, 1443, 1381, 1316, 1300, 1277, 1255, 1229, 1178, 1142, 1126, 1958, 1025, 1004, 956, 797, 772, 753, 706, 691, 671. 3-(cyclopropylsulfonyl)-N-phenylpropanamide (3i)

General procedure A was followed to obtain 3i (99 mg, 0.39 mmol, 78%) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 8.12 (s, 1H), 7.53 - 7.48 (m, 2H), 7.34 - 7.27 (m, 2H), 7.13 - 7.07 (m, 1H), 3.52 (t, *J* = 7.4 Hz, 2H), 2.95 (t, *J* = 7.5 Hz, 2H), 2.47 (tt, *J* = 7.9, 4.8 Hz, 1H), 1.30 - 1.21 (m, 2H), 1.12 - 1.02 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 167.6, 137.8, 129.2, 124.7, 120.1, 49.5, 30.1, 29.5, 5.1; HRMS (ESI-TOF) calculated for C₁₂H₁₆NO₃³²S [M+H]⁺: 254.0845; found 254.0849; m.p.: 128 - 130 °C; IR (neat) 2981, 2889, 1689, 1596, 1541, 1500, 1488, 1442, 1422, 1383, 1307, 1269, 1252, 1186, 1128, 1084, 1072, 1040, 956, 887, 829, 752, 739, 698, 681.

3-(isopropylsulfonyl)-N-phenylpropanamide (3j)

General procedure A was followed to obtain 3j (108 mg, 0.43 mmol, 85%) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 8.31 (s, 1H), 7.51 (d, J = 7.4 Hz, 2H), 7.32 - 7.26 (m, 2H), 7.12 -7.06 (m, 1H) 3.40 (t, J = 7.8 Hz, 2H), 3.18 (hept, J = 6.8 Hz, 1H), 2.97 (t, J = 7.8 Hz, 2H), 1.42 (d, J = 6.9 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 167.8, 137.9, 129.1, 124.6, 120.1, 54.1, 44.8, 28.4, 15.4; HRMS (ESI-TOF) calculated for C₁₂H₁₈NO₃³²S [M+H]⁺: 256.1002; found 256.1013; m.p.: 120 - 122 °C; IR (neat) 2981, 1672, 1602, 1547, 1499, 1462, 1440, 1422, 1383, 1307, 1253, 1154, 1139, 1125, 1081, 1060, 953, 908, 878, 804, 753, 726, 694, 664. 3-(methylsulfonyl)-N-phenylpropanamide (3k)

General procedure A was followed to obtain 3k (90 mg, 0.40 mmol, 79%) as a white solid. ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.11 (s, 1H), 7.60 - 7.55 (m, 2H), 7.34 - 7.27 (m, 2H), 7.07 -7.02 (m, 1H), 3.43 (t, *J* = 7.6 Hz, 2H), 3.02 (s, 3H), 2.81 (t, *J* = 7.6 Hz, 2H); ¹³C NMR (101 MHz, DMSO-*d*₆) δ 167.9, 139.0, 128.7, 123.3, 119.1, 49.5, 40.5, 28.4; HRMS (ESI-TOF) calculated for C₁₀H₁₄NO₃³²S [M+H]⁺: 228.0689; found 228.0693; m.p.: 120 - 122 °C; IR (neat) 2981, 2889, 1671, 1598, 1543, 1503, 1491, 1448, 1431, 1382, 1296, 1269, 1249, 1190, 1130, 1081, 1026, 995, 057, 918, 813, 753, 700, 676.

3-((chloromethyl)sulfonyl)-N-phenylpropanamide (31)

General procedure A was followed to obtain 3I (81 mg, 0.31 mmol, 62%) as a white solid. ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.15 (s, 1H), 7.60 - 7.55 (m, 2H), 7.34 - 7.27 (m, 2H), 7.08 -7.02 (m, 1H), 5.15 (s, 2H), 3.58 (t, *J* = 7.4 Hz, 2H), 2.86 (t, *J* = 7.5 Hz, 2H); ¹³C NMR (101 MHz, DMSO-*d*₆) δ 167.5, 138.9, 128.8, 123.4, 119.1, 55.8, 45.7, 28.2; HRMS (ESI-TOF) calculated for C₁₀H₁₃ClNO₃³²S [M+H]⁺: 262.0299; found 262.0299; m.p.: 141 - 145 °C; IR (neat) 2981, 2889, 1676, 1604, 1544, 1489, 1440, 1392, 1307, 1277, 1250, 1160, 1121, 1081, 1050, 1024, 991, 954, 878, 827, 798, 766, 745, 699, 676. Benzyl 3-((3-oxo-3-(phenylamino)propyl)sulfonyl)azetidine-1-carboxylate (3m)

General procedure A was followed to obtain **3m** (195 mg, 0.49 mmol, 97%) as a white solid. ¹**H** NMR (400 MHz, DMSO- d_6) δ 10.12 (br s, 1H), 7.59 - 7.54 (m, 2H), 7.40 - 7.27 (m, 7H), 7.08 - 7.01 (m, 1H), 5.06 (s, 2H), 4.41- 4.32 (m, 1H), 4.31 - 4.19 (br s, 2H), 4.18 - 4.03 (br s, 2H), 3.47 (t, J = 7.4 Hz, 2H), 2.80 (t, J = 7.4 Hz, 2H) ; ¹³**C** NMR (101 MHz, DMSO- d_6) δ 167.6, 155.6, 138.9, 136.5, 128.8, 128.4, 128.0, 127.7, 123.4, 119.1, 66.1, 49.5 (br s), 49.0 (br s), 48.2, 46.4, 28.3; **HRMS** (ESI-TOF) calculated for C₂₀H₂₃N₂O₅³²S [M+H]⁺: 403.1322; found 403.1327; **m.p.**: 146 - 148 °C; **IR** (neat) 2981, 2889, 1704, 1663, 1601, 1545, 1440, 1408, 1381, 1356, 1316, 1299, 1284, 1254, 1202, 1138, 1115, 1080, 1054, 1026, 998, 968, 951, 820, 758, 739, 696, 673, 629, 608.

N-phenyl-3-((tetrahydrofuran-3-yl)sulfonyl)propanamide (3n)

General procedure A was followed to obtain 3n (115 mg, 0.41 mmol, 81%) as a white solid. ¹H NMR (500 MHz, CDCl₃) δ 7.92 (s, 1H), 7.49 (d, J = 7.3 Hz, 2H), 7.34 - 7.29 (m, 2H), 7.14 -7.09 (m, 1H), 4.25 (dd, J = 10.2, 5.1 Hz, 1H), 4.06 (dd, J = 10.2, 7.9 Hz, 1H), 4.03 - 3.97 (m, 1H), 3.85 - 3.79 (m, 1H), 3.78 - 3.71 (m, 1H), 3.46 - 3.38 (m, 2H), 2.96 (t, J = 7.2 Hz, 2H), 2.45 - 2.36 (m, 1H), 2.35 - 2.28 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 167.5, 137.7, 129.2, 124.8, 120.1, 68.5, 67.2, 61.9, 47.4, 28.7, 27.3; HRMS (ESI-TOF) calculated for C₁₃H₁₈NO₄³²S [M+H]⁺: 284.0951; found 284.0956; m.p.: 125 - 128 °C; IR (neat) 2981, 2888, 1660, 1600, 1541, 1443, 1382, 1302, 1252, 1137, 1075, 968, 924, 742, 717, 691. 3-((((1S)-7,7-dimethyl-2-oxobicyclo[2.2.1]heptan-1-yl)methyl)sulfonyl)-N-

phenylpropanamide (30)

General procedure A was followed to obtain **30** (163 mg, 0.45 mmol, 90%) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 8.40 (s, 1H), 7.56 - 7.51 (m, 2H), 7.31 - 7.25 (m, 2H), 7.11 - 7.05 (m, 1H), 3.61 (ddd, J = 7.8, 6.7, 3.2 Hz, 2H), 3.53 (d, J = 14.9 Hz, 1H), 3.07 - 2.91 (m, 2H), 2.86 (d, J = 14.9 Hz, 1H), 2.45 - 2.32 (m, 2H), 2.11 (t, J = 4.5 Hz, 1H), 2.06 - 1.96 (m, 1H), 1.92 (d, J = 18.5 Hz, 1H), 1.79 (ddd, J = 14.0, 9.3, 4.7 Hz, 1H), 1.41 (td, J = 9.2, 4.7 Hz, 1H), 1.02 (s, 3H), 0.85 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 215.4, 167.8, 138.0, 129.0, 124.4, 120.1, 58.8, 51.3, 50.9, 48.8, 42.7, 42.5, 29.7, 27.1, 24.9, 19.7, 19.6; HRMS (ESI-TOF) calculated for C₁₉H₂₆NO₄³²S [M+H]⁺: 364.1577; found 364.1584; **IR** (neat) 2980, 2889, 1704, 1667, 1599, 1545, 1491, 1462, 1441, 1381, 1299, 1251, 1132, 1082, 952, 879, 816, 740, 698, 673.

3-((4-fluorophenyl)sulfonyl)-1-phenylpropan-1-one (3p)

General procedure A was followed to obtain **3p** (129 mg, 0.44 mmol, 88%) as a white solid. ¹H NMR (500 MHz, CDCl₃) δ 8.02 - 7.97 (m, 2H), 7.96 - 7.92 (m, 2H), 7.65 - 7.60 (m, 1H), 7.52 - 7.48 (m, 2H), 7.30 - 7.24 (m, 2H), 3.59 (ddd, J = 8.3, 6.4, 1.8 Hz, 2H), 3.53 (ddd, J = 8.3, 6.4, 1.8 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 195.4, 166.1 (d, $J_{C-F} = 256.9$ Hz), 135.9, 135.3 (d, $J_{C-F} = 3.2$ Hz), 134.0, 131.1 (d, $J_{C-F} = 9.5$ Hz), 129.0, 128.2, 116.9 (d, $J_{C-F} = 22.6$ Hz), 51.3, 31.5; ¹⁹F NMR (471 MHz, CDCl₃) δ -102.9 - -103.0 (m, 1F); HRMS (ESI-TOF) calculated for C₁₅H₁₄FO₃³²S [M+H]⁺: 293.0642; found 293.0646; **m.p.**: 143 - 145 °C; IR (neat) 1679, 1590, 1493, 1415, 1356, 1315, 1290, 1270, 1258, 1235, 1200, 1161, 1143, 1131, 1084, 1059, 1014, 973,

946, 832, 817, 743, 695, 673, 637.

Phenyl 3-((4-fluorophenyl)sulfonyl)propanoate (3q)

General procedure A was followed to obtain 3q (146 mg, 0.48 mmol, 95%) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 8.00 - 7.93 (m, 2H), 7.39 - 7.32 (m, 2H), 7.29 - 7.19 (m, 3H), 7.06 - 7.01 (m, 2H), 3.53 (t, J = 7.5 Hz, 2H), 3.00 (t, J = 7.5 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 168.7, 166.1 (d, $J_{C-F} = 257.1$ Hz), 150.4, 134.7 (d, $J_{C-F} = 3.2$ Hz), 131.2 (d, $J_{C-F} = 9.7$ Hz), 129.6, 126.3, 121.3, 116.9 (d, $J_{C-F} = 22.6$ Hz), 51.7, 28.1; ¹⁹F NMR (471 MHz, CDCl₃) δ -102.6 - -102.7 (m, 1F); HRMS (ESI-TOF) calculated for C₁₅H₁₄FO₄³²S [M+H]⁺: 309.0591; found 309.0593; m.p.: 104 - 106 °C; IR (neat) 2981, 2889, 1750, 1591, 1492, 1462, 1381, 1310, 1291, 1251, 1193, 1155, 1085, 1022, 954, 902, 819, 803, 773, 751, 713, 697.

3-((4-fluorophenyl)sulfonyl)-N-(pyridin-3-yl)propenamide (3r)

General procedure A was followed to obtain 3r (85 mg, 0.28 mmol, 55%) as a white solid. ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.26 (s, 1H), 8.63 (dd, *J* = 2.7, 0.8 Hz, 1H), 8.24 (dd, *J* = 4.7, 1.5 Hz, 1H), 8.03 - 7.96 (m, 2H), 7.91 (ddd, *J* = 8.3, 2.6, 1.5 Hz, 1H), 7.52 - 7.44 (m, 2H), 7.31 (ddd, *J* = 8.4, 4.7, 0.8 Hz, 1H), 3.65 (t, *J* = 7.4 Hz, 2H), 2.72 (t, *J* = 7.4 Hz, 2H); ¹³C NMR (101 MHz, DMSO-*d*₆) δ 167.9, 165.2 (d, *J*_{C-F} = 252.9 Hz), 144.3, 140.7, 135.5, 134.9 (d, *J*_{C-F} = 3.0 Hz), 131.17 (d, *J*_{C-F} = 9.9 Hz), 126.0, 123.6, 116.7 (d, *J*_{C-F} = 22.8 Hz), 50.7, 29.5; ¹⁹F NMR (377 MHz, DMSO-*d*₆) δ -102.4 - -102.5 (m, 1F); HRMS (ESI-TOF) calculated for C₁₄H₁₄FN₂O₃³²S [M+H]⁺: 309.0704; found 309.0714; m.p.: 156 - 159 °C; IR (neat) 1589, 1496, 1446, 1308, 1291, 1222, 1149, 1120, 1099, 1083, 1012, 839, 808, 767, 749, 733, 706, 686. *N*-(benzo[*d*]thiazol-2-yl)-3-((4-fluorophenyl)sulfonyl)propenamide (3s)

General procedure A was followed to obtain **3s** (158 mg, 0.43 mmol, 87%) as a white solid. ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.02 - 7.97 (m, 2H), 7.97 - 7.93 (m, 1H), 7.74 - 7.71 (m, 1H), 7.53 - 7.46 (m, 2H), 7.45 - 7.39 (m, 1H), 7.32 - 7.26 (m, 1H), 3.70 (t, *J* = 7.2 Hz, 2H), 2.88 (t, *J* = 7.3 Hz, 2H); ¹³C NMR (101 MHz, DMSO-*d*₆) δ 168.7, 165.2 (d, *J*_{C-F} = 252.9 Hz), 157.7, 148.5, 134.8 (d, *J*_{C-F} = 2.9 Hz), 131.4, 131.2 (d, *J*_{C-F} = 9.9 Hz), 126.1, 123.6, 121.7, 120.6, 116.7 (d, *J*_{C-F} = 22.9 Hz), 50.3, 28.8; ¹⁹F NMR (471 MHz, DMSO-*d*₆) δ -104.6 - -104.7 (m, 1F); HRMS (ESI-TOF) calculated for C₁₆H₁₂FN₂O₃³²S₂ [M-H]⁻: 363.0279; found 363.0278; m.p.: 200 -204 °C; IR (neat) 1698, 1592, 1546, 1492, 1455, 1445, 1319, 1288, 1268, 1238, 1149, 1086, 1046, 1024, 983, 877, 832, 759, 727, 706, 667.

1-fluoro-4-((2-(phenylsulfonyl)ethyl)sulfonyl)benzene (3t)

General procedure A was followed to obtain **3t** (112 mg, 0.34 mmol, 68%) as a white solid. ¹H NMR (500 MHz, CDCl₃) δ 7.92 - 7.86 (m, 4H), 7.73 - 7.69 (m, 1H), 7.62 - 7.57 (m, 2H), 7.29 - 7.24 (m, 2H), 3.45 (s, 4H); ¹³C NMR (126 MHz, CDCl₃) δ 166.4 (d, $J_{C-F} = 258.2$ Hz), 138.1, 134.7, 134.2 (d, $J_{C-F} = 3.2$ Hz), 131.2 (d, $J_{C-F} = 9.7$ Hz), 129.9, 128.2, 117.2 (d, $J_{C-F} = 22.9$ Hz), 49.7, 49.5; ¹⁹F NMR (471 MHz, CDCl₃) δ -101.5 - -101.6 (m, 1F); HRMS (ESI-TOF) calculated for C₁₄H₁₃FNaO₄³²S₂ [M+H]⁺: 351.0131; found 351.0132; m.p.: 177 - 178 °C; IR (neat) 1589, 1496, 1446, 1308, 1291, 1222, 1149, 1120, 1099, 1083, 1012, 839, 808, 767, 749, 733, 706, 686. Compound **3t** was found to be unstable under various ionization techniques and HRMS could therefore not be obtained. Methyl 3-((4-fluorophenyl)sulfonyl)-2-methylpropanoate (3u)

General procedure A was followed to obtain 3u (101 mg, 0.39 mmol, 78%) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.93 - 7.85 (m, 2H), 7.25 - 7.18 (m, 2H), 3.66 (dd, J = 14.2, 7.7Hz, 1H), 3.59 (s, 3H), 3.06 (dd, J = 14.2, 5.1 Hz, 1H), 3.02 - 2.92 (m, 1H), 1.28 (d, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 173.9, 166.0 (d, $J_{C-F} = 256.6$ Hz), 135.3 (d, $J_{C-F} = 3.2$ Hz), 131.1 (d, $J_{C-F} = 9.7$ Hz), 116.7 (d, $J_{C-F} = 22.7$ Hz), 58.9, 52.4, 34.8, 17.9; ¹⁹F NMR (471 MHz, CDCl₃) δ -103.1 - -103.2 (m, 1F); HRMS (ESI-TOF) calculated for C₁₁H₁₄FO₄³²S [M+H]⁺: 261.0591; found 261.0602; IR (neat) 1735, 1591, 1493, 1459, 1405, 1320, 1290, 1230, 1141, 1085, 837, 758, 673.

3-((4-fluorophenyl)sulfonyl)-1,3-diphenylpropan-1-one (3v)

General procedure A was followed to obtain 3v (162 mg, 0.44 mmol, 88%) as a white solid.

¹**H NMR** (400 MHz, CDCl₃) δ 7.97 - 7.92 (m, 2H), 7.61 - 7.50 (m, 3H), 7.49 - 7.43 (m, 2H), 7.29 - 7.17 (m, 5H), 7.08 - 7.01 (m, 2H), 4.93 (dd, J = 9.6, 3.6 Hz, 1H), 4.14 (dd, J = 17.9, 3.6 Hz, 1H), 3.93 (dd, J = 17.9, 9.6 Hz, 1H); ¹³**C NMR** (101 MHz, CDCl₃) δ 194.9, 165.9 (d, J_{C-F} = 256.6 Hz), 136.2, 133.9, 133.1 (d, J_{C-F} = 3.2 Hz), 132.6, 132.0 (d, J_{C-F} = 9.7 Hz), 129.9 129.1, 128.9, 128.7, 128.3, 116.2 (d, J_{C-F} = 22.6 Hz), 66.8, 36.9; ¹⁹**F NMR** (471 MHz, CDCl₃) δ -103.1 - -103.2 (m, 1F); **HRMS** (ESI-TOF) calculated for C₂₁H₁₈FO₃³²S [M+H]⁺: 369.0955; found 369.0962; **m.p.**: 170 - 172 °C; **IR** (neat) 2981, 2888, 1688, 1591, 1492, 1449, 1382, 1314, 1289, 1235, 1142, 1085, 1015, 957, 832, 817, 778, 750, 730, 698, 688, 672, 641, 615. 3-((4-fluorophenyl)sulfonyl)cyclohexan-1-one (3w)

General procedure A was followed to obtain **3w** (97 mg, 0.36 mmol, 71%) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.93 - 7.87 (m, 2H), 7.39- 7.32 (m, 2H), 3.36 - 3.25 (m, 1H), 2.64 - 2.54 (m, 2H), 2.47 - 2.39 (m, 1H), 2.37 - 2.18 (3H), 1.99 - 1.86 (m, 1H), 1.72 - 1.59 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 206.2, 166.2 (d, *J*_{C-F} = 257.4 Hz), 132.8 (d, *J*_{C-F} = 3.2 Hz), 131.9 (d, *J*_{C-F} = 9.7 Hz), 116.9 (d, *J*_{C-F} = 22.7 Hz), 62.5, 40.5, 40.4, 23.8, 23.4; ¹⁹F NMR (471 MHz, CDCl₃) δ -102.4 - -102.5 (m, 1F); HRMS (ESI-TOF) calculated for C₁₂H₁₇FNO₃³²S [M+NH₄]⁺: 274.0908; found 274.0910; m.p.: 84 - 87 °C; IR (neat) 1713, 1590, 1493, 1311, 1286, 1267, 1227, 1138, 1084, 1058, 843, 818, 776, 720, 674.

3-((4-fluorophenyl)sulfonyl)cyclopentan-1-one (3x)

General procedure A was followed to obtain **3x** (92 mg, 0.38 mmol, 76%) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.98 - 7.90 (m, 2H), 7.34 - 7.25 (m, 2H), 3.76 (p, *J* = 7.7 Hz, 1H), 2.72 - 2.62 (m, 1H), 2.60 - 2.37 (m, 3H), 2.35 - 2.20 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 212.5, 166.3 (d, *J*_{C-F} = 257.5 Hz), 133.6 (d, *J*_{C-F} = 3.3 Hz), 131.6 (d, *J*_{C-F} = 9.6 Hz), 117.1 (d, *J*_{C-F} = 22.6 Hz), 61.0, 38.7, 37.0, 23.3; ¹⁹F NMR (471 MHz, CDCl₃) δ -102.3 - -102.4 (m, 1F);HRMS (ESI-TOF) calculated for C₁₁H₁₁O₃F²³Na³²S [M+Na]⁺: 265.0305; found 265.0307; m.p.: 99 - 101 °C; IR (neat) 2981, 1738, 1700, 1589, 1493, 1473, 1462, 1383, 1323, 1287, 1253, 1227, 1141, 1081, 1014, 954, 903, 850, 837, 819, 789, 754, 124, 691, 655, 635. 1-benzyl-3-((4-fluorophenyl)sulfonyl)pyrrolidine-2,5-dione (3y)

General procedure A was followed to obtain **3y** (130 mg, 0.38 mmol, 75%) as a white solid. ¹**H NMR** (500 MHz, CDCl₃) δ 7.86 - 7.81 (m, 2H), 7.30 - 7.24 (m, 5H), 7.20 - 7.14 (m, 2H), 4.59 (d, *J* = 4.5 Hz, 2H), 4.30 (dd, *J* = 9.6, 3.8 Hz, 1H), 3.32 (dd, *J* = 19.1, 3.8 Hz, 1H), 3.07 (dd, *J* = 19.1, 9.6 Hz, 1H); ¹³**C NMR** (101 MHz, CDCl₃) δ 172.5, 168.4, 166.6 (d, *J*_{C-F} = 258.7 Hz), 134.7, 132.5 (d, *J*_{C-F} = 10.0 Hz), 132.3 (d, *J*_{C-F} = 3.2 Hz), 128.8, 128.8, 128.4, 116.9 (d, *J*_{C-F} = 22.8 Hz), 63.6, 43.2, 30.0; ¹⁹**F NMR** (471 MHz, CDCl₃) δ -100.7 - -100.8 (m, 1F); **HRMS** (ESI-TOF) calculated for C₁₇H₁₃FO₄N³²S [M-H]⁻: 346.0555; found 346.0550; **m.p.**: 181 - 183 °C; **IR** (neat) 2981, 2914, 1699, 1588, 1492, 1447, 1399, 1356, 1324, 1293, 1237, 1214, 1157, 1136, 1084, 1011, 955, 908, 836, 788, 754, 701, 655, 632, 614.

trans-2-((4-fluorophenyl)sulfonyl)-N-phenylcyclopentane-1-carboxamide (trans-3z)

General procedure A was followed to obtain *trans-3z* (113 mg, 0.33 mmol, 65%) as a white solid.

¹**H NMR** (500 MHz, DMSO-*d*₆) δ 9.95 (s, 1H), 7.98 - 7.92 (m, 2H), 7.44 - 7.36 (m, 4H), 7.29 - 7.23 (m, 2H), 7.04 - 7.00 (m, 1H), 4.09 (dt, J = 9.1, 7.2 Hz, 1H), 3.23 (dt, J = 9.1, 8.1 Hz, 1H), 2.16 - 2.07 (m, 1H), 2.06 - 1.97 (m, 2H), 1.79 - 1.71 (m, 1H), 1.71 - 1.59 (m, 2H); ¹³C **NMR** (126 MHz, DMSO-*d*₆) δ 170.6, 165.1 (d, *J*_{C-F} = 253.1 Hz), 138.7, 134.4 (d, *J*_{C-F} = 3.0 Hz), 131.5 (d, *J*_{C-F} = 9.9 Hz), 128.6, 123.3, 119.1, 116.6 (d, *J*_{C-F} = 22.8 Hz), 65.2, 46.8, 32.8, 27.0, 25.6; ¹⁹F **NMR** (471 MHz, DMSO-*d*₆) δ -104.7 - -104.8 (m); **HRMS** (ESI-TOF) calculated for C₁₈H₁₉FO₃N³²S [M+H]⁺: 348.1064; found 348.1070; **m.p.**: 175 - 178 °C; **IR** (neat) 1727, 1589, 1493, 1452, 1408,

1365, 1319, 1295, 1225, 1174, 1157, 1144, 1099, 1082, 1024, 955, 857, 844, 832, 820, 732, 709, 697, 647.

cis-2-((4-fluorophenyl)sulfonyl)-N-phenylcyclopentane-1-carboxamide (cis-3z)

General procedure A was followed to obtain *cis*-3z (61 mg, 0.18 mmol, 35%) as a white solid. ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.77 (s, 1H), 7.88 - 7.82 (m, 2H), 7.50 - 7.45 (m, 2H), 7.37 -7.30 (m, 2H), 7.29 - 7.23 (m, 2H), 7.05 - 6.99 (m, 1H), 4.09 (dt, *J* = 7.7 Hz, 1H), 3.16 (dt, *J* = 7.1 Hz, 1H), 2.34 - 2.21 (m, 1H), 2.04 - 1.76 (m, 4H), 1.71 - 1.58 (m, 1H); ¹³C NMR (101 MHz, DMSO-*d*₆) δ 169.0, 164.9 (d, *J*_{C-F} = 252.3 Hz), 139.0, 135.7 (d, *J*_{C-F} = 2.9 Hz), 131.2 (d, *J*_{C-F} = 9.9 Hz), 128.4, 123.0, 119.2, 116.3 (d, *J*_{C-F} = 22.9 Hz), 66.6, 46.8, 28.2, 26.3, 22.2; ¹⁹F NMR (471 MHz, DMSO-*d*₆) δ -105.2 - -105.3 (m, 1F); HRMS (ESI-TOF) calculated for C₁₈H₁₉FO₃N³²S [M+H]⁺: 348.1064; found 348.1069; m.p.: 188 - 191 °C; IR (neat) 1662, 1590, 1547, 1491, 1445, 1395, 1317, 1292, 1253, 1238, 1203, 1193, 1145, 1129, 1098, 1080, 1013, 963, 932, 905, 885, 850, 823, 792, 755, 722, 695, 632, 616.

cis-2-((4-fluorophenyl)sulfonyl)cyclobutyl)(pyrrolidin-1-yl)methanone (3aa)

General procedure A was followed to obtain **3aa** (96 mg, 0.31 mmol, 62%) as a white solid. ¹H NMR (500 MHz, DMSO-*d*₆) δ 7.92 - 7.86 (m, 2H), 7.52 - 7.46 (m, 2H), 4.49 - 4.43 (m, 1H), 3.65 (ddd, *J* = 8.8 Hz, 1H), 3.28 - 3.19 (m, 2H), 3.09 - 3.02 (m, 1H), 2.96 - 2.90 (m, 1H), 2.65 -2.55 (m, 1H), 2.28 - 2.18 (m, 2H), 1.83 - 1.76 (m, 1H), 1.76 - 1.68 (m, 1H), 1.68 - 1.61 (m, 1H), 1.61 - 1.53 (m, 1H), 1.53 - 1.44 (m, 1H); ¹³C NMR (126 MHz, DMSO-*d*₆) δ 166.0, 165.4 (d, *J* = 252.7 Hz), 134.8 (d, J = 3.0 Hz), 131.5 (d, J = 9.8 Hz), 116.4 (d, J = 22.7 Hz), 59.3, 45.2, 45.1, 39.4, 25.2, 23.5, 20.7, 20.6; ¹⁹F NMR (471 MHz, DMSO- d_6) δ -104.9 - -104.9 (m, 1F); HRMS (ESI-TOF) calculated for C₁₅H₁₉FO₃N³²S [M+H]⁺: 312.1064; found 312.1069; **m.p.**: 155 - 159 °C; IR (neat) 2981, 2889, 1737, 1702, 1617, 1590, 1493, 1380, 1349, 1316, 1292, 1231, 1193, 1141, 1084, 1048, 1024, 996, 822, 763, 752, 718, 690, 669.

Benzyl-cis-2-((4-fluorophenyl)sulfonyl)cyclobutane-1-carboxylate (3ab)

General procedure A was followed to obtain **3ab** (103 mg, 0.30 mmol, 59%) as a white solid. ¹H NMR (500 MHz, CDCl₃) δ 7.88 - 7.82 (m, 2H), 7.45 - 7.41 (m, 2H), 7.40 - 7.32 (m, 3H), 7.17 - 7.11 (m, 2H), 5.29 (d, *J* = 12.2 Hz, 1H), 5.15 (d, *J* = 12.1 Hz, 1H), 4.08 (dt, *J* = 9.1, 8.4 Hz, 1H), 3.51 - 3.43 (m, 1H), 2.76 - 2.66 (m, 1H), 2.63 - 2.54 (m, 1H), 2.23 - 2.14 (m, 1H), 2.14 - 2.05 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 170.4, 165.9 (d, *J* = 256.4 Hz), 135.6, 134.9 (d, *J* = 3.2 Hz), 131.3 (d, *J* = 9.6 Hz), 128.8, 128.7, 128.5, 116.5 (d, *J* = 22.5 Hz), 67.7, 59.2, 40.9, 22.5, 20.6; ¹⁹F NMR (471 MHz, CDCl₃) δ -103.4 - -103.5 (m, 1F); HRMS (ESI-TOF) calculated for C₁₈H₂₁FO₄N³²S [M+NH₄]⁺: 366.1170; found 366.1173; m.p.: 114-118 °C; IR (neat) 2981, 2889, 1726, 1586, 1383, 1349, 1317, 1269, 1251, 1233, 1181, 1145, 1081, 1030, 1009, 956, 847, 821, 772, 752, 740, 704, 673, 654, 606.

2-phenyl-trans-2-((4-fluorophenyl)sulfonyl)cyclobutane-1-carboxylate (trans-3ac)

General procedure A was followed to obtain trans-3ac (8 mg, 0.03 mmol, 5%) as a white solid.

¹**H NMR** (500 MHz, CDCl₃) δ 7.98 - 7.92 (m, 2H), 7.37 - 7.31 (m, 2H), 7.25 - 7.19 (m, 3H), 6.88 - 6.83 (m, 2H), 4.24 - 4.15 (m, 1H), 3.84 - 3.75 (m, 1H), 2.72 - 2.61 (m, 1H), 2.51 - 2.41 (m, 1H), 2.38 - 2.23 (m, 2H); ¹³**C NMR** (126 MHz, CDCl₃) δ 170.3, 166.2 (d, $J_{C-F} = 257.0$ Hz), 150.3, 133.9 (d, $J_{C-F} = 3.2$ Hz), 131.5 (d, $J_{C-F} = 9.7$ Hz), 129.6, 126.3, 121.2, 116.9 (d, $J_{C-F} = 22.6$ Hz), 58.5, 39.2, 21.3, 19.4; ¹⁹**F NMR** (471 MHz, CDCl₃) δ -102.9 - -103.0 (m, 1F); **HRMS** (ESI-TOF) calculated for C₁₇H₁₄FO₄³²S [M-H]⁻: 333.0602; found 333.0596 ; **IR** (neat) 2981, 2889, 1738, 1588, 1492, 1461, 1382, 1345, 1317, 1294, 1267, 1232, 1192, 1161, 1138, 1085, 1046, 1015, 982, 954, 913, 879, 843, 819, 764, 743, 719, 689, 650.

2-phenyl-cis-2-((4-fluorophenyl)sulfonyl)cyclobutane-1-carboxylate (cis-3ac)

General procedure A was followed to obtain *cis*-**3ac** (82 mg, 0.25 mmol, 49%) as a white solid. ¹H NMR (500 MHz, CDCl₃) δ 7.94 - 7.89 (m, 2H), 7.42 - 7.38 (m, 2H), 7.31 - 7.28 (m, 2H), 7.27 - 7.22 (m, 1H), 7.21 - 7.16 (m, 2H), 4.24 - 4.15 (m, 1H), 3.73 - 3.65 (m, 1H), 2.78 2.63 (m, 2H), 2.28 - 2.15 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 169.2, 166.0 (d, *J*_{C-F}= 256.5 Hz), 150.9, 134.7 (d, *J*_{C-F} = 3.1 Hz), 131.4 (d, *J*_{C-F} = 9.6 Hz), 129.5, 126.1, 121.8, 116.6 (d, *J*_{C-F} = 22.7 Hz), 59.4, 40.7, 22.4, 20.6; ¹⁹F NMR (471 MHz, CDCl₃) δ -103.2 - -103.3 (m, 1F); HRMS (ESI-TOF) calculated for C₁₇H₁₄FO₄³²S [M-H]⁻: 333.0602; found 333.0598 ; **m.p.**: 133 - 135 °C; IR (neat) 2978, 1726, 1541, 1486, 1453, 1369, 1356, 1308, 1261, 1177, 1123, 1092, 1058, 1040, 993, 950, 893, 817, 788, 756, 655, 621. Methyl 2-(1,3-dioxoisoindolin-2-yl)-3-((4-fluorophenyl)sulfonyl)propanoate (3ad)

General procedure A was followed to obtain 3ad (119 mg, 0.31 mmol, 61%) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.90 - 7.83 (m, 2H), 7.83 - 7.78 (m, 2H), 7.77 - 7.71 (m, 2H), 7.11 - 7.03 (m, 2H), 5.33 (dd, J = 11.5, 2.4 Hz, 1H), 4.29 (dd, J = 15.2, 11.5 Hz, 1H), 3.98 (dd, J = 15.2, 2.5 Hz, 1H), 3.72 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 167.2, 167.2, 165.8 (d, $J_{C-F} = 224.8$ Hz), 134.6, 134.5 (d, $J_{C-F} = 3.1$ Hz), 131.5, 131.2 (d, $J_{C-F} = 9.8$ Hz), 123.8, 116.7 (d, $J_{C-F} = 22.8$ Hz), 53.8, 53.1, 46.9; ¹⁹F NMR (471 MHz, CDCl₃) δ -102.6 - -102.7 (m, 1F); HRMS (ESI-TOF) calculated for C₁₈H₁₅FNO₆³²S [M+H]⁺: 392.0599; found 392.0599; m.p.: 155 - 159 °C; IR (neat) 2981, 2889, 1775, 1735, 1718, 1589, 1492, 1470, 1438, 1383, 1309, 1291, 1256, 1142, 1085, 1072, 1014, 1002, 956, 911, 873, 853, 839, 820, 806, 787, 756, 712, 656.

Ethyl (*E*)-3-((4-fluorophenyl)sulfonyl)acrylate ((*E*)-3ae)

General procedure B was followed to obtain (*E*)-3ae (14 mg, 0.04 mmol, 8%) as a colourless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.91 - 7.84 (m, 2H), 7.24 - 7.15 (m, 3H), 6.77 (d, *J* = 15.2 Hz, 1H), 4.19 (q, *J* = 7.1 Hz, 2H), 1.24 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 166.4 (d, *J*_{C-F} = 257.9 Hz), 163.5, 143.1, 134.7 (d, *J*_{C-F} = 3.2 Hz), 131.5 (d, *J*_{C-F} = 9.8 Hz), 131.4, 117.2 (d, *J*_{C-F} = 22.7 Hz), 62.3, 14.2; ¹⁹F NMR (471 MHz, CDCl₃) δ -101.8 - -101.9 (m, 1F); HRMS (ESI-TOF) calculated for C₁₁H₁₂FO₄³²S [M+H]⁺: 359.0435; found 359.0436; IR (neat) 1787, 1632, 1486,
1328, 1305, 1289, 1271, 1225, 1196, 1111, 1093, 1039, 963, 905, 857, 842, 805, 784, 753, 688, 631.

Ethyl (Z)-3-((4-fluorophenyl)sulfonyl)acrylate ((Z)-3ae)

General procedure B was followed to obtain (*Z*)-3ae (112 mg, 0.31 mmol, 62%) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 8.07 - 8.00 (m, 2H), 7.28 - 7.21 (m, 2H), 6.53 (s, 2H), 4.36 (q, *J* = 7.2 Hz, 2H), 1.39 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 167.4, 164.5 (d, *J*_{C-F} = 87.0 Hz), 135.6 (d, *J*_{C-F} = 3.1 Hz), 135.2, 132.3, 131.4 (d, *J*_{C-F} = 9.6 Hz), 116.8 (d, *J*_{C-F} = 22.6 Hz), 62.4, 14.1; ¹⁹F NMR (471 MHz, CDCl₃) δ -102.7 - 102.7 (m, 1F); HRMS (ESI-TOF) calculated for C₁₁H₁₂FO₄³²S [M+H]⁺: 359.0435; found 359.0439; m.p.: 99 - 101 °C; IR (neat) 1726, 1625, 1589, 1494, 1367, 1340, 1317, 1294, 1232, 1166, 1142, 1100, 1083, 1024, 942, 867, 841, 819, 760, 742, 703, 657, 629.

(E)-4-((4-fluorophenyl)sulfonyl)-N-phenylbut-3-enamide ((E)-3af)

General procedure B was followed to obtain (*E*)-3af (18 mg, 0.06 mmol, 11%) as a colourless oil.

¹**H NMR** (400 MHz, DMSO-*d*₆) δ 8.80 (t, J = 5.6 Hz, 1H), 7.98 - 7.91 (m, 2H), 7.88 - 7.84 (m, 2H), 7.58 - 7.43 (m, 5H), 6.98 (dt, J = 15.2, 4.4 Hz, 1H), 6.82 (dt, J = 15.1, 1.8 Hz, 1H), 4.17 - 4.12 (m, 2H); ¹³**C NMR** (101 MHz, CDCl₃) δ 167.6, 165.8 (d, $J_{C-F} = 256.5$ Hz), 143.60, 136.0 (d, $J_{C-F} = 3.2$ Hz), 133.5, 132.0, 130.8, 130.6 (d, $J_{C-F} = 9.6$ Hz), 128.7, 127.2, 116.8 (d, $J_{C-F} = 22.7$ Hz), 40.0; ¹⁹**F NMR** (377 MHz, DMSO-*d*₆) δ -104.9 - -105.0 (m, 1F); **HRMS** (ESI-TOF)

calculated for C₁₆H₁₅FO₃N³²S [M+H]⁺: 320.0751; found 320.0752; **IR** (neat) 2981, 2680, 1640, 1591, 1493, 1384, 1313, 1290, 1233, 1192, 1141, 1084, 1026, 956, 934, 865, 837, 818, 737, 716, 691, 671, 617.

(Z)-4-((4-fluorophenyl)sulfonyl)-N-phenylbut-3-enamide ((Z)-3af)

General procedure B was followed to obtain (*Z*)-3af (106 mg, 0.33 mmol, 66%) as a white solid. ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.86 (t, *J* = 5.5 Hz, 1H), 8.10 - 8.03 (m, 2H), 7.87 - 7.83 (m, 2H), 7.56 - 7.43 (m, 5H), 6.64 (dt, *J* = 11.2, 2.3 Hz, 1H), 6.43 (dt, *J* = 11.4, 5.8 Hz, 1H), 4.51 (td, *J* = 5.7, 2.2 Hz, 2H); ¹³C NMR (101 MHz, DMSO-*d*₆) δ 166.5, 165.0 (d, *J*_{C-F} = 253.1 Hz), 145.4, 137.1 (d, *J*_{C-F} = 2.9 Hz), 133.9, 131.3, 130.2 (d, *J*_{C-F} = 9.9 Hz), 129.4, 128.2, 127.1, 116.8 (d, *J*_{C-F} = 22.9 Hz), 36.8; ¹⁹F NMR (377 MHz, DMSO-*d*₆) δ -104.5 - -104.7 (m, 1F); HRMS (ESI-TOF) calculated for C₁₆H₁₅FO₃N³²S [M+H]⁺: 320.0751; found 320.0777; m.p.: 99 - 103 °C; IR (neat) 2981, 1633, 1589, 1578, 1535, 1492, 1428, 1374, 1330, 1307, 1292, 1264, 1221, 1181, 1158, 1141, 1085, 1065, 1031, 1011, 983, 954, 839, 814, 756, 737, 717, 703, 691, 675, 652, 631, 616.

(E)-1-fluoro-4-((3-phenoxyprop-1-en-1-yl)sulfonyl)benzene ((E)-3ag)

General procedure B was followed to obtain (*Z*)-3ag (43 mg, 0.15 mmol, 30%) as a white solid. ¹H NMR (500 MHz, CDCl₃) δ 8.00 - 7.95 (m, 2H), 7.36 - 7.30 (m, 2H), 7.30 - 7.24 (m, 2H), 7.18 (dt, *J* = 15.0, 3.3 Hz, 1H), 7.06 - 7.01 (m, 1H), 6.94 - 6.90 (m, 2H), 6.81 (dt, *J* = 15.0, 2.2 Hz, 1H), 4.79 (dd, *J* = 3.4, 2.2 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 165.8 (d, *J*_{C-F} = 256.3 Hz), 157.6, 141.0, 136.3 (d, *J*_{C-F} = 3.2 Hz), 131.2, 130.8 (d, *J*_{C-F} = 9.6 Hz), 129.8, 121.9, 116.8 (d, *J*_{C-F} = 22.6 Hz), 114.7, 65.6; ¹⁹F NMR (471 MHz, CDCl₃) δ -103.6 - - 103.7 (m, 1F); HRMS (ESI-TOF) calculated for C₁₅H₁₂FO₃³²S [M-H]⁻: 291.0497; found 291.0490; **m.p.**: 105 - 107 °C; **IR** (neat) 2981, 2889, 1767, 1702, 1638, 1587, 1491, 1446, 1385, 1315, 1294, 1286, 1254, 1236, 1159, 1141, 1087, 1025, 998, 958, 890, 872, 845, 834, 817, 777, 751, 711, 691, 668.

(Z)-1-fluoro-4-((3-phenoxyprop-1-en-1-yl)sulfonyl)benzene ((Z)-3ag)

General procedure B was followed to obtain (*Z*)-3ag (74 mg, 0.25 mmol, 50%) as a white solid. ¹H NMR (500 MHz, CDCl₃) δ 8.01 - 7.94 (m, 2H), 7.35 - 7.25 (m, 4H), 7.04 - 6.99 (m, 1H), 6.95 - 6.90 (m, 2H), 6.56 (dt, *J* = 11.5, 4.9 Hz, 1H), 6.36 (dt, *J* = 11.5, 2.4 Hz, 1H), 5.26 (dd, *J* = 5.0, 2.4 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 166.0 (d, *J*_{C-F} = 256.9 Hz), 157.8, 143.2, 136.7 (d, *J*_{C-F} = 3.2 Hz), 130.5 (d, *J*_{C-F} = 9.6 Hz), 130.1, 129.8, 121.6, 116.9 (d, *J*_{C-F} = 22.6 Hz), 114.8, 64.0; ¹⁹F NMR (377 MHz, CDCl₃) δ -102.9 - -102.9 (m, 1F); HRMS (ESI-TOF) calculated for C₁₅H₁₂FO₃³²S [M-H]⁻: 291.0497; found 291.0492; **m.p.**: 82 - 83 °C; **IR** (neat) 2981, 2888, 1588, 1494, 1446, 1383, 1317, 1294, 1236, 1206, 1178, 1162, 1149, 1138, 1083, 1044, 1012, 956, 840, 817, 770, 755, 713, 702, 690, 656, 632.

(Z)-2-(3-((4-fluorophenyl)sulfonyl)allyl)isoindoline-1,3-dione ((Z)-3ah)

General procedure B was followed to obtain (**Z**)-**3ah** (91 mg, 0.26 mmol, 53%) as a white solid. ¹**H NMR** (500 MHz, CDCl₃) δ 8.12 - 8.06 (m, 2H), 7.85 (dd, J = 5.4, 3.1 Hz, 2H), 7.74 (dd, J = 5.5, 3.0 Hz, 2H), 7.27 (t, J = 8.6 Hz, 2H), 6.32 (dt, J = 11.2, 2.0 Hz, 1H), 6.19 (dt, J = 11.5, 6.0 Hz, 2H), 7.27 (t, J = 8.6 Hz, 2H), 6.32 (dt, J = 11.2, 2.0 Hz, 1H), 6.19 (dt, J = 11.5, 6.0 Hz, 2H), 7.27 (t, J = 8.6 Hz, 2H), 6.32 (dt, J = 11.2, 2.0 Hz, 1H), 6.19 (dt, J = 11.5, 6.0 Hz, 2H), 7.27 (t, J = 8.6 Hz, 2H), 6.32 (dt, J = 11.2, 2.0 Hz, 1H), 6.19 (dt, J = 11.5, 6.0 Hz, 2H), 7.27 (t, J = 8.6 Hz, 2H), 7.27 (t, J = 8.6 Hz, 2H), 6.32 (dt, J = 11.2, 2.0 Hz, 1H), 6.19 (dt, J = 11.5, 6.0 Hz, 2H), 6.19 (dt, J = 11.5, 6.0 Hz, 2H), 7.27 (t, J = 8.6 Hz, 2H), 6.32 (dt, J = 11.2, 2.0 Hz, 1H), 6.19 (dt, J = 11.5, 6.0 Hz, 2H), 7.27 (t, J = 8.6 Hz, Hz, 1H), 5.07 (dd, J = 6.0, 2.1 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 167.7, 166.0 (d, $J_{C-F} = 256.5$ Hz), 140.4, 136.5 (d, $J_{C-F} = 3.2$ Hz), 134.4, 131.9, 131.3, 130.8 (d, $J_{C-F} = 9.7$ Hz), 123.6, 116.8 (d, $J_{C-F} = 22.6$ Hz), 35.0; ¹⁹F NMR (471 MHz, CDCl₃) δ -103.1 - -103.2 (m, 1F); HRMS (ESI-TOF) calculated for C₁₇H₁₃FNO4³²S [M+H]⁺: 346.0544; found 346.0551; m.p.: 128 - 130 °C; IR (neat) 3658, 2981, 2888, 1766, 1702, 1591, 1495, 1471, 1417, 1395, 1372, 1316, 1294, 1252, 1221, 1144, 1113, 1084, 952, 842, 832, 815, 796, 762, 738, 718, 692, 654.

(E)-2-(3-((4-fluorophenyl)sulfonyl)allyl)isoindoline-1,3-dione ((E)-3ah)

General procedure B was followed to obtain (*Z*)-3ah (35 mg, 0.10 mmol, 20%) as a white solid. ¹H NMR (500 MHz, CDCl₃) δ 7.89 - 7.83 (m, 4H), 7.76 (dd, *J* = 5.5, 3.1 Hz, 2H), 7.20 (t, *J* = 8.5 Hz, 2H), 6.96 (dt, *J* = 15.1, 5.3 Hz, 1H), 6.43 (dt, *J* = 15.1, 1.7 Hz, 1H), 4.47 (dd, *J* = 5.3, 1.7 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 167.4, 165.9 (d, *J*_{C-F} = 256.4 Hz), 139.6, 136.0 (d, *J*_{C-F} = 3.2 Hz), 134.6, 132.8, 131.9, 130.8 (d, *J*_{C-F} = 9.6 Hz), 123.8, 116.9 (d, *J*_{C-F} = 22.8 Hz), 37.6; ¹⁹F NMR (471 MHz, CDCl₃) δ -103.4 - 103.5 (m, 1F); **HRMS** (ESI-TOF) calculated for C₁₇H₁₃FNO4³²S [M+H]⁺: 346.0544; found 346.0544; **m.p.**: 162 - 166 °C; **IR** (neat) 3658, 2981, 2888, 1767, 1703, 1590, 1494, 1471, 1393, 1318, 1292, 1252, 1145, 1114, 1084, 952, 832, 815, 762, 738, 718, 691, 655.

(8*R*,9*S*,13*S*,14*S*)-13-methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-decahydro-6*H*cyclopenta[*a*]phenanthren-3-yl 3-((4-fluorophenyl)sulfonyl)propanoate (3ai)

General procedure A was followed to obtain **3ai** (189 mg, 0.39 mmol, 78%) as a white solid. ¹**H NMR** (500 MHz, CDCl₃) δ 7.97 - 7.92 (m, 2H), 7.25 - 7.22 (m, 3H), 6.77 (dd, J = 8.5, 2.6 Hz, 1H), 6.71 (d, J = 2.5 Hz, 1H), 3.50 (t, J = 7.5 Hz, 2H), 2.97 (t, J = 7.5 Hz, 2H), 2.88 - 2.84 (m, 2H), 2.51 - 2.44 (m, 1H), 2.39 - 2.32 (m, 1H), 2.28 - 2.19 (m, 1H), 2.17 - 2.06 (m, 1H), 2.06 - 1.90 (m, 3H), 1.65 - 1.35 (m, 6H), 0.87 (s, 3H); ¹³**C NMR** (126 MHz, CDCl₃) δ 220.8, 169.0, 166.2 (d, J_{C-F} = 257.3 Hz), 148.3, 138.4, 138.0, 134.7 (d, J_{C-F} = 3.1 Hz), 131.3 (d, J_{C-F} = 9.6 Hz), 126.7, 121.4, 118.5, 117.0 (d, J_{C-F} = 22.8 Hz), 51.8, 50.6, 48.1, 44.3, 38.1, 36.0, 31.7, 29.5, 28.1, 26.4, 25.9, 21.7, 14.0; ¹⁹**F NMR** (471 MHz, CDCl₃) δ -102.5 - -102.6 (m, 1F); **HRMS** (ESI-TOF) calculated for C₂₇H₃₃FO₅N³²S [M+NH₄]⁺: 502.2058; found 502.2065; **IR** (neat) 2971, 1692, 1589, 1520, 1489, 1467, 1440, 1380, 1342, 1315, 1295, 1234, 1159, 1130, 1085, 1051, 951, 838, 816, 789, 757, 707, 690, 669, 617. (*R*)-1-(3-(4-amino-3-(4-phenoxyphenyl)-1*H*-pyrazolo[3,4-*d*]pyrimidin-1-yl)piperidin-1-yl)-3-((4-fluorophenyl)sulfonyl)propan-1-one (3aj)

General procedure A was followed to obtain **3aj** (219 mg, 0.37 mmol, 73%) as a white solid. NMR analysis showed two rotamers.

¹**H** NMR (500 MHz, CDCl₃) δ 8.38 (s, 0.5H), 8.33 (s, 0.5H), 7.97 - 7.88 (m, 2H), 7.67 - 7.60 (m, 2H), 7.42 - 7.36 (m, 2H), 7.29 - 7.19 (m, 2H), 7.18 - 7.12 (m, 3H), 7.11 - 7.06 (m, 2H), 5.91 - 5.55 (m, 2H), 4.88 - 4.76 (m, 1H), 4.73 - 4.63 (m, 0.5H), 4.40 - 4.33 (m, 0.5H), 4.03 - 3.97 (m, 0.5H), 3.89 - 3.82 (m, 0.5H), 3.74 (br dd, J = 13.3, 10.1 Hz, 0.5H), 3.54 - 3.40 (m, 2H), 3.32 (dd, J = 12.8, 10.7 Hz, 0.5H), 3.23 - 3.14 (m, 0.5H), 2.96 - 2.84 (m, 2H), 2.83 - 2.75 (m, 0.5H), 2.44 - 2.27 (m, 1H), 2.27 - 2.19 (m, 1H), 2.06 - 1.99 (m, 0.5H), 1.97 - 1.90 (m, 0.5H), 1.77 - 1.68 (m, 0.5H), 1.68 - 1.57 (m, 0.5H); ¹³C NMR (126 MHz, CDCl₃) δ 167.4, 167.3, 166.0 (d, $J_{C-F} = 255.0$ Hz), 165.7 (d, $J_{C-F} = 255.7$ Hz), 158.7, 158.6, 158.2, 158.0, 156.4, 156.4, 156.1, 155.9, 154.5, 154.3, 144.2, 144.0, 135.4 (d, $J_{C-F} = 3.2$ Hz), 135.3 (d, J = 3.2 Hz), 131.0 (dd, $J_{C-F} = 9.0$ Hz), 131.0 (d, $J_{C-F} = 9.0$ Hz), 130.1, 130.1, 130.1, 127.9, 127.7, 124.2, 124.2, 119.7, 119.7, 119.3, 119.2, 116.9 (d, $J_{C-F} = 22.9$ Hz), 116.8 (d, $J_{C-F} = 22.8$ Hz), 98.8, 98.6, 53.2, 52.4, 52.4, 52.3, 49.6, 46.2, 45.6, 42.3, 30.2, 30.0, 26.3, 26.2, 25.0, 23.8; ¹⁹F NMR (471 MHz, CDCl₃) δ -103.0 (m, 0.5F), -103.0 -103.0 (m, 0.5F); HRMS (ESI-TOF) calculated for C₃₁H₃₀FO₄N₆³²S [M+H]⁺: 601.2028; found 601.2028; IR (neat) 2981, 2361, 2341, 1697, 1632, 1589, 1522, 1491, 1444, 1395, 1356, 1322, 1292, 1237, 1148, 1085, 1010, 954, 837, 802, 788, 755, 693, 669, 655.

2-(2,3-dichloro-4-(2-(((4-fluorophenyl)sulfonyl)methyl)butanoyl)phenoxy)acetic acid (3ak)

General procedure A was followed to obtain **3aj** (97 mg, 0.21 mmol, 42%) as a white solid. ¹**H NMR** (500 MHz, CDCl₃) δ 7.93 - 7.87 (m, 2H), 7.60 (d, J = 8.6 Hz, 1H), 7.22 (t, J = 8.5 Hz, 2H), 6.84 (d, J = 8.5 Hz, 1H), 4.76 (s, 2H), 3.99 - 3.84 (m, 2H), 3.20 - 3.13 (m, 1H), 1.87 - 1.76 (m, 1H), 1.63 - 1.52 (m, 1H), 0.86 (t, J = 7.4 Hz, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 199.9, 171.7, 166.1 (d, $J_{C-F} = 257.0$ Hz), 156.5, 135.7 (d, $J_{C-F} = 3.2$ Hz), 132.7, 132.5, 130.9 (d, $J_{C-F} = 9.6$ Hz), 128.5, 124.3, 116.9 (d, $J_{C-F} = 22.7$ Hz), 110.8, 65.9, 56.1, 45.5, 24.9, 10.7; ¹⁹**F NMR** (471 MHz, CDCl₃) δ -102.8 - -102.9 (m, 1F); **HRMS** (ESI-TOF) calculated for C₁₉H₁₆³⁵Cl₂FO₆³²S [M-H]⁻: 461.0034; found 461.0024; **IR** (neat) 2980, 2888, 2360, 2342, 2160, 2034, 1693, 1633, 1589, 1526, 1492, 1463, 1441, 1381, 1316, 1293, 1236, 1149, 1085, 1011, 951, 837, 817, 788, 756, 692, 669, 655, 631, 617.

(6*S*, 8*R*, 9*S*, 10*R*, 13*S*, 14*S*)-6-(((4-fluorophenyl)sulfonyl)methyl)-10,13-dimethyl-7,8,9,10,11,12,13,14,15,16-decahydro-3*H*-cyclopenta[*a*]phenanthrene-3,17(6*H*)-dione (3al)

General procedure A was followed to obtain **3al** (114 mg, 0.25 mmol, 50%) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.99 - 7.92 (m, 2H), 7.32 - 7.24 (m, 2H), 7.05 (d, J = 10.2 Hz, 1H), 6.22 (dd, J = 10.2, 1.7 Hz, 1H), 5.81 (t, J = 1.6 Hz, 1H), 3.44 (dd, J = 13.5, 3.4 Hz, 1H), 3.36 -3.26 (m, 1H), 3.13 (dd, J = 13.5, 8.9 Hz, 1H), 2.64 (dt, J = 12.6, 4.1 Hz, 1H), 2.48 (dd, J = 19.5, 8.6 Hz, 1H), 2.08 (dt, J = 19.2, 9.0 Hz, 1H), 2.01 - 1.91 (m, 2H), 1.90 - 1.80 (m, 2H), 1.77 - 1.58 (m, 2H), 1.31 (s, 3H), 1.30 - 1.19 (m, 2H), 1.12 - 0.98 (m, 2H), 0.95 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 219.6, 185.3, 167.2, 166.3 (d, $J_{C-F} = 256.7$ Hz), 156.1, 136.4 (d, $J_{C-F} = 3.6$ Hz), 130.8 (d, $J_{C-F} = 9.6$ Hz), 127.3, 121.6, 117.1 (d, $J_{C-F} = 22.8$ Hz), 58.4, 53.6, 50.3, 47.8, 44.2, 39.2, 35.7, 35.1, 34.2, 31.2, 22.4, 22.0, 18.9, 14.0; ¹⁹F NMR (471 MHz, CDCl₃) δ -102.5 - -102.6 (m, 1F); HRMS (ESI-TOF) calculated for C₂₆H₃₀FO4³²S [M+H]⁺: 457.1843; found 457.1846; IR (neat) 2981, 2889, 2361, 2341, 1735, 1660, 1621, 1590, 1494, 1462, 1381, 1312, 1291, 1239, 1146, 1086, 1010, 953, 888, 818, 717, 669. cis-2-((4-fluorophenyl)sulfonyl)cyclobutane-1-carboxylic acid (3am)

(See section 3; Scale-up experiments)

¹**H NMR** (400 MHz, DMSO-*d*₆) δ 12.43 (s, 1H), 7.96 - 7.89 (m, 2H), 7.50 - 7.42 (m, 2H), 4.50 - 4.40 (m, 1H), 3.48 - 3.40 (m, 1H), 2.39 - 2.26 (m, 2H), 2.20 - 2.09 (m, 1H), 2.02 - 1.91 (m, 1H); ¹³**C NMR** (101 MHz, DMSO-*d*₆) δ 171.9, 165.5 (d, *J*_{C-F} = 252.5 Hz), 135.8 (d, *J*_{C-F} = 3.0 Hz), 131.6 (d, *J*_{C-F} = 9.9 Hz), 116.8 (d, *J*_{C-F} = 22.7 Hz), 58.6, 40.2, 21.3, 20.9; ¹⁹**F NMR** (471 MHz, DMSO-*d*₆) δ -105.1 - -105.2 (m, 1F); **HRMS** (ESI-TOF) calculated for C₁₁H₁₀FO₄³²S [M-H]⁻: 257.0289; found 257.0288; **m.p.**: 185 - 187 °C; **IR** (neat) 2981, 2888, 1744, 1587, 1493, 1440, 1382, 1312, 1285, 1269, 1237, 1204, 1165, 1132, 1084, 1013, 955, 847, 836, 818, 779, 759, 718, 689, 650. cis-2-((4-fluorophenyl)sulfonyl)-1'-methylspiro[cyclobutane-1,3'-indolin]-2'-one (cis-5a)

General procedure A was followed to obtain *cis*-**5a** (64 mg, 0.19 mmol, 37%) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.69 - 7.64 (m, 2H), 7.24 - 7.19 (m, 2H), 7.05 - 6.99 (m, 3H), 6.64 (d, *J* = 7.8 Hz, 1H), 4.27 - 4.20 (m, 1H), 3.23 - 3.14 (m, 1H), 3.13 (s, 3H), 2.50 - 2.28 (m, 3H); ¹³C **NMR** (101 MHz, CDCl₃) δ 175.2, 165.8 (d, *J*_{C-F} = 256.3 Hz), 143.21, 134.7 (d, *J*_{C-F} = 3.2 Hz), 131.1 (d, *J*_{C-F} = 9.7 Hz), 129.5, 129.3, 122.7, 122.3, 115.9 (d, *J*_{C-F} = 22.6 Hz), 108.0, 65.3, 51.9, 28.4, 26.4, 21.0; ¹⁹F NMR (471 MHz, CDCl₃) δ -103.6 - -103.7 (m, 1F); **HRMS** (ESI-TOF) calculated for C₁₈H₁₇FO₃N³²S [M+H]⁺: 346.0908; found 346.0915; **m.p.**: 144 - 146 °C; **IR** (neat) 2981, 2889, 1737, 1702, 1615, 1590, 1493, 1474, 1429, 1380, 1350, 1331, 1316, 1286, 1258, 1230, 1192, 1140, 1099, 1084, 1014, 954, 884, 849, 820, 775, 751, 713, 698, 669.

trans-2-((4-fluorophenyl)sulfonyl)-1'-methylspiro[cyclobutane-1,3'-indolin]-2'-one (*trans*-5a)

General procedure A was followed to obtain *trans*-5a (64 mg, 0.19 mmol, 37%) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.83 - 7.79 (m, 1H), 7.34 - 7.28 (m, 3H), 7.18 (td, J = 7.6, 1.1 Hz, 1H), 6.99 - 6.92 (m, 2H), 6.62 (d, J = 7.7 Hz, 1H), 4.48 - 4.41 (m, 1H), 3.16 - 3.03 (m, 1H), 2.89 (s, 3H), 2.72 - 2.60 (m, 1H), 2.58 - 2.48 (m, 1H), 2.31 - 2.24 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 176.1, 165.8 (d, J_{C-F} = 256.4 Hz), 143.5, 134.0 (d, J_{C-F} = 3.2 Hz), 131.0 (d, J_{C-F} = 9.6 Hz), 129.1, 127.0, 126.5, 122.8, 116.0 (d, J_{C-F} = 22.6 Hz), 107.9, 61.9, 50.4, 28.6, 26.3, 20.0; ¹⁹F NMR (471 MHz, CDCl₃) δ -103.73 - -103.81 (m, 1F); HRMS (ESI-TOF) calculated for C₁₈H₁₇FO₃N³²S [M+H]⁺: 346.0908; found 346.0908; **m.p.**: 164 - 166 °C; **IR** (neat) 1713, 1614, 1588, 1493, 1468, 1427, 1406, 1376, 1348, 1310, 1292, 1271, 1240, 1128, 1188, 1143, 1105, 1084, 1053, 1024, 1009, 970, 937, 846, 816, 807, 793, 742, 711, 698, 655, 626.

cis-2-(isopropylsulfonyl)-1'-methylspiro[cyclobutane-1,3'-indolin]-2'-one (cis-5b)

General procedure A was followed to obtain *cis*-**5b** (32 mg, 0.11 mmol, 22%) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.34 - 7.27 (m, 2H), 7.08 (td, *J* = 7.5, 1.0 Hz, 1H), 6.80 (d, *J* = 7.7 Hz, 1H), 4.16 - 4.07 (m, 1H), 3.38 - 3.26 (m, 1H), 3.23 (s, 3H), 2.99 (h, *J* = 6.9 Hz, 1H), 2.54 - 2.44 (m, 1H), 2.42 - 2.30 (m, 2H), 1.22 (d, *J* = 6.8 Hz, 3H), 1.18 (d, *J* = 6.9 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 176.4, 143.8, 130.0, 129.5, 122.7, 122.3, 108.3, 60.7, 54.1, 51.9, 28.3, 26.6, 21.6, 15.3, 15.1; HRMS (ESI-TOF) calculated for C₁₅H₂₀O₃N³²S [M+H]⁺: 294.1158; found 294.1162; **m.p.**: 186 - 188 °C; **IR** (neat) 2980, 2889, 1704, 1611, 1491, 1470, 1418, 1378, 1349, 1307, 1264, 1220, 1140, 1130, 1115, 1099, 1059, 1020, 1009, 972, 938, 898, 879, 855, 811, 789, 754, 692, 666, 609.

trans-2-(isopropylsulfonyl)-1'-methylspiro[cyclobutane-1,3'-indolin]-2'-one (trans-5b)

General procedure A was followed to obtain *trans*-5b (79 mg, 0.27 mmol, 54%) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.83 - 7.79 (m, 1H), 7.31 (td, *J* = 7.7, 1.2 Hz, 1H), 7.13 (td, *J* = 7.6, 1.0 Hz, 1H), 6.82 (dt, *J* = 7.7, 0.8 Hz, 1H), 4.34 (t, *J* = 8.7 Hz, 1H), 3.21 (s, 4H), 3.08 - 2.95 (m, 1H), 2.73 - 2.61 (m, 2H), 2.58 - 2.48 (m, 1H), 2.39 - 2.30 (m, 1H), 1.20 (d, J = 6.8 Hz, 3H), 1.19 (d, J = 6.9 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 177.1, 143.3, 129.1, 127.9, 126.3, 122.9, 108.2, 56.9, 53.4, 50.5, 29.3, 26.7, 21.0, 15.5, 14.4; HRMS (ESI-TOF) calculated for C₁₅H₂₀O₃N³²S [M+H]⁺: 294.1158; found 294.1163; **m.p.**: 166 - 168 °C; **IR** (neat) 2981, 2889, 1704, 1611, 1491, 1470, 1418, 1377, 1348, 1292, 1260, 1140, 1127, 1093, 1051, 1018, 955, 939, 898, 880, 855, 805, 789, 755, 690, 666, 611.

trans-1-chloro-2-((4-fluorophenyl)sulfonyl)-N-phenylcyclobutane-1-carboxamide (6)

4-fluorobenzenesulfonyl chloride (243 mg, 1.3 mmol, 2.5 equiv) was added to a stirred suspension of N-phenylacrylamide (74 mg, 0.5 mmol, 1.0 equiv), fac-Ir(ppy)₃ (1.70 mg, 0.0025 mmol, 0.5 mol%), MeCN (3.0 mL) and K₂HPO₄ (17.4 mg, 0.1 mmol, 0.2 equiv). The reaction mixture was stirred under blue LED irradiation for 1 hour. The solution was concentrated in vacuo and purified by flash column chromaography (silica, EtOAc in Heptane, 0/100 to 100/0) to afford 6 (134 mg, 0.37 mmol, 73%) as a white solid. ¹H NMR (500 MHz, CDCl₃) δ 8.32 (s, 1H), 7.85 - 7.79 (m, 2H), 7.59 - 7.55 (m, 2H), 7.39 - 7.34 (m, 2H), 7.19 - 7.14 (m, 3H), 4.31 (t, J = 9.7 Hz, 1H), 3.31 -3.22 (m, 1H), 2.52 (dt, *J* = 20.0, 10.3 Hz, 1H), 2.36 (dt, *J* = 11.5, 9.7 Hz, 1H), 2.25 - 2.16 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 166.2 (d, $J_{C-F} = 257.7$ Hz), 163.4, 137.2, 133.9 (d, $J_{C-F} = 3.2$ Hz), 131.4 (d, $J_{C-F} = 9.7$ Hz), 129.1, 125.2, 120.6, 116.8 (d, $J_{C-F} = 22.8$ Hz), 69.3, 66.1, 33.1, 20.9; ¹⁹F NMR (471 MHz, CDCl₃): δ - 102.0 - - 102.1 (m, 1F); HRMS (ESI-TOF) calculated for C₁₇H₁₄FO₃NCl³²S [M-H]⁻: 366.0372; found 366.0365; **m.p.**: 103 - 106 °C; **IR** (neat) 2981, 1691, 1588, 1488, 1439, 1400, 1321, 1298, 1257, 1233, 1150, 1095, 1051, 1021, 990, 973, 903, 839, 814, 757, 707, 668. Single Crystal Data for 6: C₁₇H₁₅ClFNO₃S, Mr =367.83. 150 K orthorhombic, P21/n, a = 6.8699(2) Å, b = 27.6557(7) Å, c = 8.8183(2) Å, V = 1644.22(7) Å, Data/restraints/parameters - 3403/0/217.

4-((4-fluorophenyl)sulfonyl)-N-phenylbutanamide (8a)

General procedure B was followed to obtain 8a (64 mg, 0.20 mmol, 40%) as a white solid. General procedure C was followed to obtain 8a (132 mg, 0.41 mmol, 82%) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.93 - 7.87 (m, 2H), 7.77 - 7.73 (m, 2H), 7.50 - 7.45 (m, 1H), 7.42 - 7.37 (m, 2H), 7.25 - 7.18 (m, 2H), 6.81 - 6.72 (m, 1H), 3.58 (q, *J* = 6.4 Hz, 2H), 3.22 - 3.16 (m, 2H), 2.08 (p, *J* = 6.7 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 167.9, 166.1 (d, *J*_{C-F} = 256.8 Hz), 135.2 (d, *J*_{C-F} = 3.2 Hz), 134.2, 131.8, 131.0 (d, *J*_{C-F} = 9.5 Hz), 128.7, 127.1, 116.9 (d, *J*_{C-F} = 22.6 Hz), 54.3, 38.4, 23.2; ¹⁹F NMR (377 MHz, CDCl₃) δ -103.0 - -103.1 (m, 1F); HRMS (ESI-TOF) calculated for C₁₆H₁₇FO₃N³²S [M+H]⁺: 322.0908; found 322.0916; m.p.: 136 - 138 °C; IR (neat) 1640, 1592, 1579, 1543, 1489, 1459, 1450, 1286, 1234, 1185, 1158, 1141, 1087, 1036, 1012, 999, 977, 858, 835, 818, 801, 771, 731, 717, 694, 672, 658, 619.

12-(5-((4-fluorophenyl)sulfonyl)pentyl)isoindoline-1,3-dione

General procedure C was followed to obtain **8b** (143 mg, 0.38 mmol, 76%) as a white solid. ¹H NMR (500 MHz, CDCl₃) δ 7.95 - 7.89 (m, 2H), 7.84 - 7.80 (m, 2H), 7.74 - 7.70 (m, 2H), 7.28 - 7.22 (m, 2H), 3.65 (t, J = 7.1 Hz, 2H), 3.13 - 3.07 (m, 2H), 1.81 - 1.72 (m, 2H), 1.71 - 1.63 (m, 2H), 1.48 - 1.39 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 168.3, 165.7 (d, $J_{C-F} = 256.1$ Hz), 135.1 (d, $J_{C-F} = 3.2$ Hz), 134.0, 131.9, 130.9 (d, $J_{C-F} = 9.6$ Hz), 123.1, 116.6 (d, $J_{C-F} = 22.6$ Hz), 56.0, 37.3, 28.0, 25.4, 22.3; ¹⁹F NMR (471 MHz, CDCl₃) δ -103.6 - -103.7 (m, 1F); HRMS (ESI-TOF) calculated for C₁₉H₁₉FO₄N³²S [M+H]⁺: 376.1013; found 376.1025; **m.p.**: 120 - 122 °C; **IR** (neat): 1771, 1707, 1640, 1592, 1543, 1494, 1466, 1441, 1400, 1378, 1340, 1319, 1286, 1255, 1230, 1199, 1187, 1162, 1145, 1087, 1074, 1049, 1014, 1000, 959, 941, 873, 835, 817, 794, 766, 721, 712, 693, 671, 622.

1-fluoro-4-((3-phenoxypropyl)sulfonyl)benzene (8c)

General procedure C was followed to obtain 8c (116 mg, 0.40 mmol, 79%) as a colourless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.97 - 7.91 (m, 2H), 7.29 - 7.19 (m, 4H), 6.94 (t, J = 7.4 Hz, 1H), 6.84 - 6.78 (m, 2H), 4.01 (t, J = 5.9 Hz, 2H), 3.34 - 3.28 (m, 2H), 2.25 - 2.16 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 165.9 (d, J_{C-F} = 256.5 Hz), 158.3, 135.2 (d, J_{C-F} = 3.3 Hz), 131.0 (d, J_{C-F} = 9.6 Hz), 129.6, 121.3, 116.8 (d, J_{C-F} = 22.7 Hz), 114.5, 65.3, 53.5, 23.1; ¹⁹F NMR (471 MHz, CDCl₃) δ -103.3 - -103.4 (m, 1F); HRMS (ESI-TOF) calculated for C₁₅H₁₄FO₃³²S [M-H]⁻: 293.0653 found 293.0659; **IR** (neat): 1589, 1493, 1473, 1405, 1316, 1288, 1237, 1172, 1140, 1085, 1040, 1014, 930, 886, 838, 819, 781, 755, 729, 692, 672, 634.

4-((4-fluorophenyl)sulfonyl)butyl 4-cyanobenzoate (8d)

General procedure C was followed to obtain 8d (147 mg, 0.41 mmol, 82%) as a colourless oil. ¹H NMR (400 MHz, CDCl₃) δ 8.10 - 8.05 (m, 2H), 7.95 - 7.89 (m, 2H), 7.76 - 7.72 (m, 2H), 7.26 - 7.19 (m, 2H), 4.38 - 4.29 (m, 2H), 3.21 - 3.08 (m, 2H), 1.96 - 1.82 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 165.5 (d, *J*_{C-F} = 258.7 Hz), 164.8, 135.1 (d, *J*_{C-F} = 3.2 Hz), 133.8, 132.3, 131.0 (d, *J*_{C-F} = 9.6 Hz), 130.1, 118.0, 116.7 (d, *J*_{C-F} = 22.6 Hz), 116.5, 64.5, 55.8, 27.3, 19.6; ¹⁹F NMR (377 MHz, CDCl₃) δ -103.0 - -103.1 (m, 1F); HRMS (ESI-TOF) calculated for C₁₈H₁₅FO₄N³²S [M+H]⁺: 360.0711; found 360.0696; IR (neat) 2232, 1715, 1591, 1492, 1472, 14004, 1313, 1272, 1221, 1178, 1141, 1123, 1111, 1085, 1034, 1020, 961, 905, 868, 838, 778, 765, 738, 694.

4-((4-fluorophenyl)sulfonyl)-3-methylbutyl benzoate (8e)

General procedure C was followed to obtain 8e (151 mg, 0.43 mmol, 86%) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.99 - 7.94 (m, 2H), 7.92 - 7.86 (m, 2H), 7.56 (ddt, J = 7.9, 6.9, 1.3 Hz, 1H), 7.46 - 7.40 (m, 2H), 7.18 - 7.11 (m, 2H), 4.37 - 4.28 (m, 2H), 3.18 (dd, J = 14.2, 5.3 Hz, 1H), 3.01 (dd, J = 14.2, 7.3 Hz, 1H), 2.35 - 2.23 (m, 2H), 2.06 - 1.96 (m, 2H), 1.79 - 1.67 (m, 2H), 1.18 (d, J = 6.8 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 166.8 (d, J_{C-F} = 263.2 Hz), 164.6, 136.0 (d, J_{C-F} = 3.3 Hz), 133.2, 130.8 (d, J_{C-F} = 9.6 Hz), 130.1, 129.6, 128.5, 116.7 (d, J_{C-F} = 22.6 Hz), 62.4, 62.1, 35.2, 26.3, 19.9; ¹⁹F NMR (471 MHz, CDCl₃) δ -103.3 - -103.4 (m, 1F); HRMS (ESI-TOF) calculated for C₁₈H₂₀FO4³²S [M+H]⁺: 351.1061; found 351.1065; m.p.: 63 - 65 °C; IR (neat): 1712, 1588, 1491, 1469, 1455, 1405, 1390, 1359, 1310, 1278, 1243, 1230, 1194, 1178, 1142, 1123, 1097, 1083, 1072, 1032, 1000, 954, 854, 843, 820, 801, 765, 713, 690, 677, 632, 618.

(1s,3s)-3-(((4-fluorophenyl)sulfonyl)methyl)cyclobutane-1-carbonitrile (8f)

General procedure C was followed to obtain **8f** (118 mg, 0.47 mmol, 93%) as a white solid (mixture of both diastereomers, d.r: 60/40).

¹**H NMR** (400 MHz, CDCl₃) δ 7.94 - 7.87 (m, 2H), 7.30 - 7.23 (m, 2H), 3.26 (d, J = 7.3 Hz, 1H), 3.25 (d, J = 7.4 Hz, 1H), 3.15 - 3.07 (m, 0.4H), 3.07 - 2.96 (m, 1H), 2.87 - 2.73 (m, 0.6H), 2.61 -2.47 (m, 2H), 2.23 - 2.12 (m, 2H); ¹³**C NMR** (101 MHz, CDCl₃) δ 166.5 (d, $J_{C-F} = 257.1$ Hz), 166.0 (d, $J_{C-F} = 257.1$ Hz), 135.3 (d, $J_{C-F} = 3.2$ Hz), 135.1 (d, $J_{C-F} = 3.2$ Hz), 130.9 (d, $J_{C-F} = 9.5$ Hz), 130.9 (d, $J_{C-F} = 9.6$ Hz), 122.2, 121.2, 117.0 (d, $J_{C-F} = 22.5$ Hz), 116.9 (d, $J_{C-F} = 22.6$ Hz), 61.3, 60.7, 32.8, 31.4, 27.7, 27.2, 20.2, 19.3; ¹⁹**F NMR** (471 MHz, CDCl₃) δ -102.6 - 102.8 (m, 1F); **HRMS** (ESI-TOF) calculated for C₁₂H₁₆FO₂N₂³²S [M+NH₄]⁺: 271.0911; found 271.0915; **m.p.**: 100 - 102 °C; **IR** (neat): 2947, 2360, 2341, 1587, 1493, 1406, 1310, 1287, 1225, 1142, 1099, 1085, 1012, 844, 818, 780, 754, 671.

3-((4-fluorophenyl)sulfonyl)cyclopentyl benzoate (8g)

General procedure C was followed to obtain **8g** (137 mg, 0.38 mmol, 75%) as a white solid. ¹**H NMR** (500 MHz, CDCl₃) δ 7.99 - 7.93 (m, 4H), 7.60 - 7.55 (m, 1H), 7.47 - 7.41 (m, 2H), 7.30 - 7.25 (m, 2H), 5.57 - 5.52 (m, 1H), 3.83 - 3.74 (m, 1H), 2.44 (ddd, J = 14.5, 8.9, 5.4 Hz, 1H), 2.36 - 2.27 (m, 1H), 2.26 - 2.17 (m, 3H), 2.08 - 1.98 (m, 1H); ¹³**C NMR** (126 MHz, CDCl₃) δ 166.0 (d, $J_{C-F} = 256.2$ Hz), 165.9, 134.7 (d, $J_{C-F} = 3.4$ Hz), 133.3, 131.4 (d, $J_{C-F} = 9.6$ Hz), 130.1, 129.6, 128.5, 116.83 (d, $J_{C-F} = 22.6$ Hz), 76.6, 62.9, 34.4, 32.0, 25.0; ¹⁹**F NMR** (471 MHz, CDCl₃) δ -103.2 - -103.3 (m, 1F); **HRMS** (ESI-TOF) calculated for C₁₈H₂₁FO₄N³²S [M+NH₄]⁺: 366.1170; found 366.1178; **m.p.**: 120 - 122 °C; **IR** (neat): 1713, 1590, 1493, 1451, 1404, 1359, 1314, 1271, 1233, 1142, 1112, 1084, 1070, 1026, 1014, 967, 911, 839, 711, 685, 671. Stereochemistry of **8g** could not be assigned. 6-chloro-1-(3-((4-fluorophenyl)sulfonyl)propyl)-3-methylpyrimidine-2,4(1H,3H)-dione (8h)

General procedure C was followed to obtain 8h (131 mg, 0.37 mmol, 73%) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.99 - 7.92 (m, 2H), 7.31 - 7.24 (m, 2H), 5.94 (s, 1H), 4.21 (t, J =7.3 Hz, 2H), 3.30 (s, 3H), 3.20 (t, J = 7.6 Hz, 2H), 2.22 - 2.11 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 166.1 (d, $J_{C-F} =$ 257.0 Hz), 160.6, 151.1, 145.0, 134.8 (d, $J_{C-F} =$ 3.2 Hz), 131.1 (d, $J_{C-F} =$ 9.7 Hz), 116.93 (d, $J_{C-F} =$ 22.6 Hz), 102.5, 53.7, 45.4, 28.4, 22.4;¹⁹F NMR (471 MHz, CDCl₃) δ -102.73 (tt, J = 8.7, 4.5 Hz, 1F); HRMS (ESI-TOF) calculated for C₁₄H₁₅ClFO₄N₂³²S [M+H]⁺: 361.0420; found 361.0428.; m.p.: 136 - 138 °C; IR (neat): 1701, 1665, 1605, 1591, 1494, 1438, 1418, 1401, 1376, 1351, 1314, 1284, 1237, 1204, 1158, 1140, 1085, 1030, 962, 861, 819, 774, 756, 690, 667, 652, 634.

1-(3-((4-fluorophenyl)sulfonyl)propyl)-3,7-dimethyl-3,7-dihydro-1H-purine-2,6-dione (8i)

General procedure C was followed to obtain 8i (74 mg, 0.21 mmol, 41%) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.93 - 7.88 (m, 2H), 7.51 - 7.50 (m, 1H), 7.24 - 7.18 (m, 2H), 4.07 (t, *J* = 6.7 Hz, 2H), 3.95 (s, 3H), 3.53 (s, 3H), 3.21 - 316 (m, 2H), 2.11 - 2.02 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 166.0 (d, *J*_{C-F} = 256.3 Hz), 155.2, 152.0, 149.1, 141.9, 135.0 (d, *J*_{C-F} = 3.2 Hz), 131.2 (d, *J*_{C-F} = 9.6 Hz), 116.7 (d, *J*_{C-F} = 22.6 Hz), 107.6, 54.5, 39.6, 33.7, 29.9, 22.1; ¹⁹F NMR (471 MHz, CDCl₃) δ -103.5 (s, 1F); HRMS (ESI-TOF) calculated for C₁₆H₁₈FO₄N₄³²S [M+H]⁺: 381.1027; found 381.1030; m.p.: 159 - 161 °C; IR (neat): 1710, 1656, 1587, 1548, 1489, 1445, 1406, 1376, 1354, 1310, 1281, 1229, 1197, 1182, 1142, 1112, 1097, 1085, 1028, 1010, 1001, 898, 879, 838, 822, 804, 784, 748, 731, 635, 611. 3-(3,5-dichlorophenyl)-5-(2-((4-fluorophenyl)sulfonyl)ethyl)-5-methyloxazolidine-2,4-dione (8j)

General procedure C was followed to obtain **8i** (148 mg, 0.34 mmol, 67%) as a white solid. ¹**H NMR** (400 MHz, CDCl₃) δ 7.97 - 7.91 (m, 2H), 7.45 - 7.42 (m, 3H), 7.32 - 7.27 (m, 2H), 3.27 (ddd, *J* = 13.7, 10.4, 5.6 Hz, 2H), 3.16 (ddd, *J* = 13.7, 10.6, 5.9 Hz, 2H), 2.49 - 2.32 (m, 2H), 1.67 (s, 3H); ¹³**C NMR** (101 MHz, DMSO-*d*₆) δ 172.8, 165.3 (d, *J*_{C-F} = 252.9 Hz), 152.0, 134.9 (d, *J*_{C-F} = 3.0 Hz), 134.0, 133.1, 131.2 (d, *J*_{C-F} = 9.9 Hz), 128.6, 125.8, 116.8 (d, *J*_{C-F} = 22.8 Hz), 84.1, 49.3, 28.7, 20.9; ¹⁹**F NMR** (471 MHz, DMSO-*d*₆) δ -104.4 - -104.6 (m, 1F); **HRMS** (ESI-TOF) calculated for C₁₈H₁₃Cl₂FO₅N³²S [M+H]⁺: 443.9881; found 443.9873; **IR** (neat) 1816, 1730, 1577, 1492, 1455, 1397, 1379, 1307, 1232, 1179, 1138, 1085, 1053, 1027, 961, 938, 864, 834, 806, 764, 746, 677, 657, 640, 622.

8. Determination of the stereochemistry for compounds 3aa, 3ab, 3ac, 5a, 5b

The determination of the stereochemistry was achieved using NOESY (Nuclear Overhauser Effect SpectroscopY) analysis.

cis-configuration:

NOE interaction detected between H_{α} and H_{β} .

No NOE interaction detected between H_{α} and H_{β} .

cis-configuration:

NOE interaction detected between H_A and H_B .

trans-configuration:

No NOE interaction detected between H_A and H_B .

9. References

[1] X.-J. Tang, W. R. Dolbier, Jr., Angew. Chem. Int. Etd. 2015, 54, 4246–4249; Angew. Chem. 2015, 127, 4320–4323.

[2] J. Eriksson, O. Åberg, B. Långström, Eur. J. Org. Chem. 2007, 3, 455-461.

[3] O. A. Al-Fulaij, A.-Z. A. Elassar, A. F. El-asmy, J. Appl. Polym. 2015, 43, 42712-42726.

[4] D. B. Bagal, S.-W. Park, H.-J. Song, S. Chang, Chem. Commun. 2017, 53, 8798-8801.

[5] C. J. Teskey, P. Adler, C.R. Goncalves, N. Maulide, Angew. Chem. Int. Ed. 2019, 58, 447–451; Angew. Chem. 2019, 131, 456–460.

[6] H.-D. Xu, W. Zhang, D.-X. Shu, J. B. Werness, W.-P. Tang, *Angew. Chem. Int. Ed.* **2008**, *47*, 8933–8936; *Angew. Chem.* **2008**, *120*, 9065–9068.

[7] X.-J. Tang, W. R. Dolbier, Jr., Angew. Chem. Int. Etd. 2015, 54, 4246–4249; Angew. Chem. 2015, 127, 4320–4323.

[8] A. Song, K. A. Parker, N. S. Sampson, J. Am. Chem. Soc. 2009, 131, 3444-3445.

[9] J. E. Enholm, T. Low, D. Cooper, I. Ghivirija, Tetrahedron 2012, 68, 6920-6927.

[10] J. L. Romine, Z. Yang, G. Wang, V. N. Nguyen, J. A. Bender, D. R. St. Laurent, M. Belema, WO/2014/065791, **2014**.

[11] P. J. Bhuyan, H. N. Borah, J. S. Sandhu, J. Chem. Soc., Perkin Trans. 1999, 1, 3083-3084.

[12] H. K. Hun, F. T. Luo, J. Ch. Chem. Soc. 2012, 59, 394.

[13] Y. Xie, P.-W. Sun, Y. Li, S. Wang, M. Ye and Z. Li, *Angew. Chem. Int. Ed.*, **2019**, *58*, 7097–7101; *Angew. Chem.* **2019**, *131*, 7171–7175.

[14] Q. Y. Lin, X. H. Xu, K. Zhang, F. L. Qing, Angew. Chem. Int. Ed., 2016, 55, 1479–1483; Angew. Chem. 2016, 128, 1501–1505.

[15] L. Palatinus, G. Chapuis, J. Appl. Cryst. 2007, 40, 786–790.

[16] a) P. W. Betteridge, J. R. Carruthers, R. I. Cooper, K. Prout, D. J. Watkin, *J. Appl. Cryst.* **2003**, *36*, 1487; b) R. I. Cooper, A. L. Thompson, D. J. Watkin, *J. Appl. Cryst.* **2010**, *43*, 1100-1107.

[17] L. Li, Y. Liu, Y. Peng, L. Yu, X. Wu, H. Yan, Angew. Chem. Int. Ed. 2016, 55, 331–335; Angew. Chem. 2016, 128, 339–343.

 $<^{-102.5}_{-102.5}$

o o s H F 3a

19F NMR (471 MHz, CDCl3)

19F NMR (471 MHz, DMSO-d6)

1H NMR (400 MHz, CDCl3) sys~ H

Br∽

7.67 7.48 7.47 7.42 7.42 7.42 7.32 7.32 7.33 7.30 7.33 7.36 8 7.26 7.26 7.26 8 7.26 8 7.26 8 7.26 7.26

 $\overbrace{-2.89}^{3.67}$

1H NMR (500 MHz, CDCl3)

1H NMR (500 MHz, CDCl3)

512

19F NMR (471 MHz, CDCl3)

o o s °∀ °

3q

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 f1 (ppm)

 $<^{-102.6}_{-102.7}$

 $<^{-101.5}_{-101.6}$

19F NMR (471 MHz, CDCl3) 0 0 × C 1 o o 3t

 $<^{-102.4}_{-102.5}$

S93

19F NMR (471 MHz, CDCl3)

őö

Зу

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 f1 (ppm)

 $<^{^{+100.7}}_{^{-100.8}}$

 $<^{-104.7}_{-104.7}$

trans-3z

19F NMR (471 MHz, DMSO-d6)

 $< \frac{-105.2}{-105.2}$

cis-3z

19F NMR (471 MHz, DMSO-d6)

 $<^{-104.9}_{-104.9}$

19F NMR (471 MHz, DMSO-d6)

1H NMR (500 MHz, CDCl3)

 $\begin{array}{c} 5.30\\ 5.128\\ 5.14\\ 6.14\\ 1.05\\ 2.14\\ 2.05\\ 2.14$

 $<^{-103.4}_{-103.5}$

3ab

19F NMR (471 MHz, CDCl3)

S104

trans-3ac

19F NMR (471 MHz, CDCl3)

S106

cis-3ac

19F NMR (471 MHz, CDCl3)

 $<^{^{+102.6}}_{^{+102.7}}$

 $<_{^{+101.8}}^{^{+101.8}}$

19F NMR (471 MHz, CDCl3)

Ĵ

(*E*)-3ae

<u>___</u>

(*Z*)-3ae

1H NMR (400 MHz, CDCl3) 0 0=\$. ↓ 0

8.07

~ 8.07 ~ 8.00 ~ 7.28 ~ 7.21 4.39 4.37 4.35 4.34 $\underbrace{}_{1.39}^{1.40}$

 $< ^{-104.9}_{-105.0}$

19F NMR (377 MHz, DMSO-d6)

N N

E.

്ര്

F o s=o (*Z*)-3af

19F NMR (377 MHz, DMSO-d6)

b -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -2 f1 (ppm) -10 -20 -30

 $<^{-104.5}_{-104.6}$

(*Z*)-3ag

O, 0=°s

1H NMR (500 MHz, CDCl3)

A set of the set of the

 $< ^{+102.9}_{-102.9}$

19F NMR (377 MHz, CDCl3)

1H NMR (500 MHz, CDCl3)

1H NMR (500 MHz, CDCl3)

19F NMR (471 MHz, CDCl3)

OX N NO 0 0 F (*Z*)-3ah

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 f1 (ppm)

 $<^{-103.1}_{-103.2}$

S123

D0
190
180
170
160
150
140
130
120
110
100
90
80
70
60
50
40
30
20
10
0

f1 (ppm)
f1
f

 $<^{-103.4}_{-103.5}$

19F NMR (471 MHz, CDCl3)

Ĭ

S125

19F NMR (471 MHz, CDCl3)

 $<_{^{+102.5}}$

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 f1 (ppm)

-102.9 -103.0 -103.1 -103.2

^{200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10} $\mathrm{S130}_{\mathrm{fl}}$ (ppm)

 $<_{^{+102.8}}$

19F NMR (471 MHz, CDCl3) 0

HO

orici Gak

S132

 $<^{-102.5}_{-102.6}$

C

19F NMR (471 MHz, CDCl3)

19F NMR (471 MHz, CDCl3)

 $<^{^{+103.7}}_{^{-103.8}}$

trans-5a

19F NMR (471 MHz, CDCl3)

S145

1H NMR (400 MHz, CDCl3)

19F NMR (377 MHz, CDCl3)

° N o o 8a

 $<^{^{+103.0}}_{^{+103.1}}$

1H NMR (500 MHz, CDCl3)

7.35 7.28 7.74 7.75 7.72 7.28 7.28 7.28 7.28 7.28

 $\begin{array}{c} \begin{array}{c} 3.66 \\ 3.165 \\ 3.65 \\ 3.65 \\ 3.63 \\ 3.63 \\ 3.63 \\ -1.71 \\ 1.72 \\ 1.72 \\ 1.72 \\ 1.72 \\ 1.73 \\ 1.39 \end{array}$

 $<^{^{+103.3}}_{^{-103.3}}$

19F NMR (471 MHz, CDCl3)

s

S151

19F NMR (471 MHz, CDCl3)

 $<^{-103.0}_{-103.1}$

19F NMR (471 MHz, CDCl3)

 $\underbrace{ \left\{ \begin{smallmatrix} -102.6 \\ -102.7 \\ -102.8 \end{smallmatrix} \right. } \right.$

19F NMR (471 MHz, CDCl3)

0 0,0 F 8g

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 fl (ppm)

 $<^{^{+103.2}}_{^{+103.3}}$

 $\begin{array}{c} 102.7\\ 102.7\\ 102.7\\ 102.7\\ 102.8\\ 102.8\\ 102.8\end{array}$

8h

19F NMR (471 MHz, CDCl3)

 $<_{-104.6}^{-104.4}$

11. X-ray - Crystallographic Data for 6

 Table S2. Crystal data and structure refinement for 6.

Empirical formula	C17 H15 C1 F N O3 S		
Formula weight	367.83		
Temperature	150 K		
Wavelength	1.54184 Å		
Crystal system	Monoclinic		
Space group	P 21/n		
Unit cell dimensions	a = 6.8699(2) Å	$\alpha = 90^{\circ}$.	
	b = 27.6557(7) Å	$\beta = 101.073(2)^{\circ}.$	
	c = 8.8183(2) Å	$\gamma = 90^{\circ}$.	
Volume	1644.22(7) Å ³		
Z	4		
Density (calculated)	1.486 Mg/m ³		
Absorption coefficient	3.486 mm ⁻¹		
F(000)	760		
Crystal size	0.35 x 0.22 x 0.04 mm ³		
Theta range for data collection	5.356 to 76.157°.		
Index ranges	-5<=h<=8, -34<=k<=34, -11<=l<=10		
Reflections collected	11306		
Independent reflections	3403 [R(int) = 0.042]		
Completeness to theta = 74.634°	99.6 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	0.87 and 0.50		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	3403 / 0 / 217		
Goodness-of-fit on F ²	1.0142		
Final R indices [I>2sigma(I)]	R1 = 0.0396, $wR2 = 0.0966$		
R indices (all data)	R1 = 0.0490, wR2 = 0.1071		
Largest diff. peak and hole	0.51 and -0.35 e.Å ⁻³	0.51 and -0.35 e.Å ⁻³	

