
Supplementary Materials: Bayesian model selection reveals biological origins of zero inflation

in single-cell transcriptomics

Additional Dataset I: the mouse kidney data

This dataset [1] is a single cell transcriptome atlas of mouse kidney. The library was prepared with the

whole kidney tissues of seven healthy male C57BL/6 mice using 10X Chromium (v2 chemistry) protocol and

sequenced on Illumina HiSeq 2000 platform. We downloaded a processed data file available at NCBI’s GEO

under accession number GSE107575. It includes 43,745 cells consisting of 16 distinct cell types: endothelial,

vascular, descending loop of Henle, podocyte, proximal tubule, ascending loop of Henle, distal convoluted

tubule, collecting duct (CD) principal cell, CD intercalated cell, CD transitional cell, fibroblast, macrophage,

neutrophil, natural killer cell in addition to two novel cell types. In order to ensure that we include only

expressed genes in our analysis, we restricted attention to 5,160 genes that had at least 1 UMI in at least

10% of cells, the same filtering criterion used for the heart data.

Additional Dataset II: the human PBMC data

This dataset [2] is peripheral blood mononuclear cells (PBMCs) from a healthy donor, sequenced on Illumina

NovaSeq platform with ∼54,000 reads per cell. We downloaded a processed data file [3] available at https:

//www.dropbox.com/s/zn6khirjafoyyxl/pbmc_10k_v3.rds?dl=0. It contains 9,432 cells consisting of 14

cell types: CD14+ Monocytes, CD4 Memory, CD4 Naive, pre-B cell, Double negative T cell, NK cell (bright

and dim), B cell progenitor, CD8 effector, CD8 Naive, CD16+ Monocytes, Dendritic cell, pDC, Platelet.

The raw data are also available at https://support.10xgenomics.com/single-cell-gene-expression/

datasets/3.0.0/pbmc_10k_v3. In order to ensure that we include only expressed genes in our analysis,

we restricted attention to 6,435 genes that had at least 1 UMI in at least 10% of cells, the same filtering

criterion used for the heart data.
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Fig. S1: Factors that determine the number of zeros in scRNA-Seq data. (a) Total UMI counts per cell,
which range from 746 to 17,302 with average 3,819 UMIs per cell, are shown as a histogram. (b) The number
zeros per cell is plotted against the log10 UMI count. The plot is facetted to show the individual cell types
as determined by data-driven clustering. The blue line shows the loess fit to the combined data. (c) The
per-gene rates of expression (µg), which range from 0.23 to 97.4 with average 1.51 UMI/10K, are shown as a
histogram. (d) A scatter plot shows the expected number of zeros under Poisson sampling (x-axis) compared
to the difference from expectation (observed - expected; y-axis) and reveals genes with an excess of zeros.
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Fig. S2: Power analysis of scRATE classification of ZI gene. We simulated data as described in Methods
(Simulation I ) across a range of zero inflation (0 to 90%, color coded). We applied scRATE with thresholds
ranging from 0 SE to 3 SE (x-axis) and counted the proportion of genes classified and ZIP or ZINB (y-axis).
The red line shows the numbers of ZI genes detected when the simulation model is NB, with no zero inflation.
This is the false positive rate, or type-I error, of the classifier. The other lines indicate different proportion
of zero inflation in the ZINB model. This is true positive rate, or power, of the classifier. Simulations are
based on sequence depths of 10,000 UMIs (a) and 50,000 UMIs per cell (b).
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Fig. S3: Area Under ROC Curve (AUC) of different model selection thresholds. As shown in Fig. S2, there
is a trade off along the stringency of threshold: the more stringent it gets, the rate of model under-calling
(false negative rate) increases while the rate of over-calling (false positive rate) reduces. In order to identify
the optimal threshold, we evaluated AUC with simulated gene sets (Simulation II ) for which distributions
are selected from the heart data with the 0, 1, 2, and 3 SE thresholds (rows). For each simulated gene set,
we performed scRATE classification with the 0, 1, 2, and 3 SE thresholds (columns). We find that the 1
SE threshold (the second column) is robust and performs relatively well across the simulated gene sets. See
Fig. S13 and S14 for the results with the mouse kidney and the human PBMC data sets.
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Fig. S4: Detection of ZI genes in down-sampled heart data. We randomly sampled subset of cells (Simulation
III ) across a range of sample sizes (x-axis), applied scRATE to the reduced data, and counted the numbers
of ZI genes (y-axis) at the threshold of 0 SE (a), 1 SE (b), 2 SE (c), and 3 SE (d). Red line is a lowess fit.
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Fig. S5: Zeros cluster within specific cell types for ZI genes in the heart data. A bi-clustered heatmap of ZI
genes (1 SE) by cell types shows the deviation from expected number of cells with zero UMI counts. Dark
shading indicates an excess of zeros and light shading indicates that the cell type has fewer cells with zero
UMI count than expected. See Tables S15 and S16 for the results with the mouse kidney and the human
PBMC data sets.
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Fig. S6: Examples of ZI genes that are no longer ZI after accounting for cell type. Ptpn18 is primarily
expressed in immune cells. The upper left panel shows the proportion of zeros, averaged across cells within
each cell type, as a function of the mean UMI count per cell. The upper right panel shows the estimated
rates of expressed for NB model overall (All Cells) and for each cell type as estimated by scRATE with cell
type as covariate. Lower panels show the same for Col1a2, a gene primarily expressed in fibroblasts.
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Fig. S7: Examples of ZI genes that remain ZI after accounting for cell type. Xist is a female specific transcript
encoded on the X chromosome. Ddx3y is a male specific gene encoded on the Y chromosome. Panels are as
described for Fig. S6. There appears to be a high proportion of granulocytes among the male cells.
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Fig. S8: Estimation of the mean (rate of expression) parameter in simulated data. Data were simulated under
either the NB model or ZINB model as described in Methods (Simulation IV ). All panels show estimated
rates (y-axis) are compared to simulation truth (x-axis). (a) Fitting NB model to NB simulated data. (b)
Fitting ZINB model to NB simulated data. (c) Fitting NB model to ZINB simulated data. (d) Fitting
ZINB model to ZINB simulated data. The biases observed in (b) and (c) are explained by the different
interpretation of mean rate between the NB and ZINB models.
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Fig. S9: Estimation of the overdispersion in simulated data. Data were simulated under either the NB model
or ZINB model as described in Methods (Simulation IV ). All panels show estimated overdispersion (y-axis)
are compared to simulation truth (x-axis). (a) Fitting NB model to NB simulated data. (b) Fitting ZINB
model to NB simulated data. (c) Fitting NB model to ZINB simulated data. (d) Fitting ZINB model to
ZINB simulated data. The biases observed in (b) and (c) illustrate how the overdispersion and zero inflation
parameters trade-off, with one compensating for the other when fitted model is mis-specified relative to the
data.
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Fig. S10: Estimated zero inflation on simulated ZINB data. True zero inflation π0 estimated from the mouse
heart data before cell type adjustment (a) and after cell type adjustment (b). Estimated zero inflation
π̂0 on simulated ZINB data before cell type adjustment (c) and after cell type adjustment (d). Cell type
adjustment reduces the estimated amount of zero inflation overall. The variability of estimated zero inflation
in simulation increases (c)(d) compared to that of real data (a)(b).
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Fig. S11: Effects of cell type and zero inflation on estimated overdispersion. The overdispersion parameter
(y-axis) was estimated using the NB model, with and without cell type as a covariate and again using the
ZINB model with and without cell type. For the cell type-specific genes Ptpn18 and Col1a2, there is a
small reduction in overdispersion from the NB to ZINB model without cell type. Including cell type as a
covariate reduces overdispersion to almost zero. For the sex-specific genes Xist and Ddx3y, the inclusion
of cell type has negligible effect on overdispersion whereas allowing for zero inflation reduces overdispersion
substantially.

13



100

400

900

1600

2500

3600

4900

0 25 50 75 100
Percent Non−zero Cells

G
en

e 
C

ou
nt

Selected Model

P
NB
ZIP
ZINB

(a)

100

400

900

1600

2500

3600

0 25 50 75 100
Percent Non−zero Cells

G
en

e 
C

ou
nt

Selected Model

P
NB
ZIP
ZINB

(b)

100

400

900

1600

2500

0 25 50 75 100
Percent Non−zero Cells

G
en

e 
C

ou
nt

Selected Model

P
NB
ZIP
ZINB

(c)

100

400

900

1600

2500

0 25 50 75 100
Percent Non−zero Cells

G
en

e 
C

ou
nt

Selected Model

NotZI
ZI

(d)

100

400

900

1600

0 25 50 75 100
Percent Non−zero Cells

G
en

e 
C

ou
nt

Selected Model

NotZI
ZI

(e)

100

400

900

1600

0 25 50 75 100
Percent Non−zero Cells

G
en

e 
C

ou
nt

Selected Model

NotZI
ZI

(f)

Fig. S12: Classification of genes by scRATE model selection applied to heart data. (a) Density plot of model
classification of genes across percentages of non-zero cells using scRATE with the 0 SE threshold. (b) As
above, for the 2 SE threshold. (c) As above, for the 3 SE threshold. Density plots of scRATE classification
collapsed to show only the ZI versus NotZI genes across percentages of non-zero cells with the 0 SE (d), 2
SE (e), and 3 SE (f) thresholds as indicated. See Fig. S17 and S18 for the results with the mouse kidney
and the human PBMC data sets.
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Fig. S13: AUC of different model selection thresholds with the simulation based on the kidney data. In
order to identify the optimal threshold as in Fig. S3, we evaluated AUC with simulated gene sets for which
distributions are selected from the kidney data with the 0, 1, 2, and 3 SE thresholds (rows). For each
simulated gene set, we performed scRATE classification with the 0, 1, 2, and 3 SE thresholds (columns). We
find that the 1 SE threshold (the second column) is again robust and performs relatively well across the
simulated gene sets.
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Fig. S14: AUC of different model selection thresholds with the simulation based on the PBMC data. In
order to identify the optimal threshold as in Fig. S3 and S13, we evaluated AUC with simulated gene sets
for which distributions are selected from the PBMC data with the 0, 1, 2, and 3 SE thresholds (rows). For
each simulated gene set, we performed scRATE classification with the 0, 1, 2, and 3 SE thresholds (columns).
We find again that the 1 SE threshold (the second column) is robust and performs relatively well across the
simulated gene sets.
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Fig. S15: Zeros cluster within specific cell types for ZI genes in the kidney data. A bi-clustered heatmap
of ZI genes (1 SE) by cell types shows the deviation from expected number of cells with zero UMI counts.
Dark shading indicates an excess of zeros and light shading indicates that the cell type has fewer cells with
zero UMI count than expected.
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Fig. S16: Zeros cluster within specific cell types for ZI genes in the PBMC data. A bi-clustered heatmap
of ZI genes (1 SE) by cell types shows the deviation from expected number of cells with zero UMI counts.
Dark shading indicates an excess of zeros and light shading indicates that the cell type has fewer cells with
zero UMI count than expected.
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Fig. S17: Classification of genes by scRATE model selection applied to the kidney data. (a) Density plot of
model classification of genes across percentages of non-zero cells using scRATE with the 0 SE threshold. (b)
As above, for the 1 SE threshold, (c) for the 2 SE threshold, and (d) for the 3 SE threshold.
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Fig. S18: Classification of genes by scRATE model selection applied to the PBMC data. (a) Density plot of
model classification of genes across percentages of non-zero cells using scRATE with the 0 SE threshold. (b)
As above, for the 1 SE threshold, (c) for the 2 SE threshold, and (d) for the 3 SE threshold.
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Table S1: Properties of genes classified by scRATE

(a)

0 SE model NumBest mNumZeros medNumZeros mPctNZ medPctNZ medAvgExpr mAvgExpr
P 1,111 8,366 8,710 20.4 17.1 0.192 0.251

NB 2,930 7,384 8,159 29.7 22.4 0.299 0.756
ZIP 525 8,581 8,865 18.3 15.6 0.178 0.223

ZINB 949 6,467 7,293 38.5 30.6 0.415 1.27

(b)

1 SE model NumBest mNumZeros medNumZeros mPctNZ medPctNZ medAvgExpr mAvgExpr
P 2,112 8,340 8,694 20.6 17.3 0.196 0.257

NB 3,183 7,119 7,924 32.3 24.6 0.338 0.889
ZIP 81 8,216 8,465 21.8 19.4 0.229 0.287

ZINB 139 4,553 4,435 56.7 57.8 1.39 3.05

(c)

2 SE model NumBest mNumZeros medNumZeros mPctNZ medPctNZ medAvgExpr mAvgExpr
P 2,930 8,285 8,676 21.2 17.4 0.200 0.268

NB 2,509 6,733 7,612 35.9 27.6 0.412 1.16
ZIP 5 8,546 9,127 18.7 13.1 0.148 0.249

ZINB 71 5,074 4,455 51.7 57.6 1.41 1.89
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Table S2: Mean square errors of mean and overdispersion parameters for the genes in the heart data (a) NB
simulation before cell type adjustment, (b) ZINB simulation before cell type adjustment, (c) NB simulation
using cell type as covariate, and (d) ZINB simulation using cell type as covariate.

(a)

NB simulation NB ZINB
mean 0.00153 0.00811
overdispersion 0.0166 0.2817

(b)

ZINB simulation NB ZINB
mean 0.01385 0.00587
overdispersion 0.24941 0.14867

(c)

NB simulation NB ZINB
mean 0.00548 0.00777
overdispersion 0.009 0.052

(d)

ZINB simulation NB ZINB
mean 0.00812 0.00705
overdispersion 0.0444 0.0165
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Table S3: Number of models called for the genes in the kidney data without using cell type as covariate (a),
using cell type as covariate (b), and using cell type as covariate after randomly shuffling cell type labels (c).

(a)

Threshold Selected model
P NB ZIP ZINB

0 SE 48 3,946 500 666
1 SE 434 4,378 109 239
2 SE 1,225 3,760 16 159
3 SE 2,024 3,023 7 106

(b)

Threshold Selected model
P NB ZIP ZINB

0 SE 104 3,654 485 917
1 SE 730 4,221 117 92
2 SE 1,807 3,311 9 33
3 SE 2,679 2,471 0 10

(c)

Threshold Selected model
P NB ZIP ZINB

0 SE 52 3,820 459 829
1 SE 447 4,367 111 235
2 SE 1,272 3,711 18 159
3 SE 2,053 2,995 7 105
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Table S4: The number of models called for the genes in the PBMC data without using cell type as covariate
(a), using cell type as covariate (b), and using cell type as covariate after randomly shuffling cell type labels
(c).

(a)

Threshold Selected model
P NB ZIP ZINB

0 SE 743 3,536 680 1,476
1 SE 1,536 4,174 213 512
2 SE 2,566 3,448 72 349
3 SE 3,458 2,682 54 241

(b)

Threshold Selected model
P NB ZIP ZINB

0 SE 1,307 2,941 701 1,486
1 SE 2,574 3,572 142 147
2 SE 3,930 2,460 6 39
3 SE 4,833 1,588 1 13

(c)

Threshold Selected model
P NB ZIP ZINB

0 SE 752 3,383 639 1,661
1 SE 1,556 4,147 221 511
2 SE 2,630 3,383 76 346
3 SE 3,486 2,652 55 242
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