
Response to Reviewers 
 
I thank the reviewers for their careful reading of my manuscript and their thoughtful and 
constructive suggestions for improvement. My item-by-item responses are interleaved with their 
comments below (in blue). Note that I used a program, latexdiff, to highlight the changes in my 
manuscript. Any removed words were crossed out and colored red, whereas added words were 
colored blue and underlined with a squiggle. When equations were changed, additions were 
colored blue and removals were colored red. 
 
Reviewer #1: This paper describes the development and evaluation of UNEECON, a framework 
for jointly predicting deleterious variants and constrained genes. This is certainly an interesting 
topic in the context of variant effect prediction and interpretation. I find the attempt to unify 
variant-level and gene-level quite innovative, and it is certainly an approach that will be useful in 
the study of severe, early onset disorders. Further, the use of a deep neural network to learn 
parameters relevant to population genetics from millions of variants from gnomAD is a novel 
contribution to this area. From the perspective of constrained gene prediction, UNEECON 
results are quite promising. However, I remain skeptical of some of the claims with regards to 
pathogenicity prediction and the overall argument that this method would be better in practice 
than those evaluated here (see below). Overall, the paper is clearly written and the methods are 
outlined satisfactorily (see minor comments for some things that need to be clarified). I outline 
my comments below: 
 
I thank the reviewer for these comments. 
 
MAJOR: 
 
- A general issue that has plagued the field is the problem of unevenly distributed variant 
information across genes. Some genes are over-studied and are likely to have more variants 
identified as pathogenic. More importantly, many genes are likely to contain variants from only 
one class. UNEECON is interesting in this context that it is trained on genes that are mostly 
going to contain only benign variants and is evaluated on a ClinVar set that will skew mostly 
towards pathogenic-only or bi-class genes. Ref. 58 from this paper highlighted a method that 
performed extremely well in its evaluations when run on “pathogenic-only” or “benign-only” 
proteins but drastically underperformed on “mixed” genes. Given that UNEECON is heavily 
influenced by gene-level features, I wonder if it is susceptible to the same issue. One way to test 
this would be to perform a version of the ClinVar evaluation on only the subset of genes that 
contain both classes of variants. If performance drops then perhaps unification of variant-level 
and gene-level information may not be the best approach for variant pathogenicity prediction. 
 
As the reviewer suggested, I compared UNEECON with previously published methods in 
separating pathogenic missense variants from benign missense variants in the “mixed” genes 



which contain both pathogenic and benign variants. Again, UNEECON outperformed the other 
methods in this setting (Fig. S4). 
 
- On a related note, I am concerned about information leakage between the training set and 
evaluation sets used in this paper. I agree that UNEECON benefits from actually not using the 
pathogenic variants in its training and evaluation. However, the sheer size of gnomAD is 
expected to include every known gene in the training of the deep neural network. Since 
UNEECON uses gene-level information, there is a distinct possibility that performance may be 
inflated even after excluding variants in both ClinVar and gnomAD. In fact, Ref. 58 (cited for the 
circularity and inflation issues) points this out and recommends gene-level partitioning for 
cross-validation experiments such as those conducted by PolyPhen-2 and MutPred. Of course, 
in the context of this paper, the proposed experiment would be to train a version of UNEECON 
without variants in genes from the ClinVar set and evaluate that version on the ClinVar set. That 
way any gene-level bias in the performance measures would be eliminated. 
 
I agree with the reviewer that supervised machine learning models trained on pathogenic 
variants could suffer from the inflated performance, because different variants from the same 
gene may occur both in the training data and in the test data. As mentioned by the reviewer, 
some genes, such as ​TP53​ and ​BRCA1,​ are better studied, so variants in these genes may be 
overrepresented in both the training and the test data. In this case, supervised machine learning 
methods can potentially “memorize” which genes have the largest numbers of pathogenic 
variants in the training data. Because the same set of genes are also overrepresented in the 
test data, the supervised methods will show an over-optimistic performance due to information 
leakage. 
 
However, I want to emphasize that UNEECON did not use any known pathogenic variants for 
training. Instead, UNEECON was trained on gnomAD data, an unbiased map of genetic variants 
in healthy human populations. The variation of the gene-level density of gnomAD variants 
reflects the variation of natural selection across genes rather than the ascertainment bias in 
ClinVar or HGMD. Thus, there is no information leakage between the training and testing data, 
and UNEECON cannot “cheat” by memorizing the genes overrepresented in ClinVar or HGMD. 
Therefore, UEECON should not suffer from the same circularity that supervised methods have. 
 
Also, as discussed in the manuscript and in the other reviewer’s comments, the key innovation 
of UNEECON is to combine gene-level constraints and variant-level features using an 
evolution-guided model. Training a version of UNEECON without gnomAD variants in disease 
genes will disable UNEECON’s ability to learn gene-level constraints in disease genes, leading 
to an underestimation of UNEECON’s performance. In the end, therefore, I have come to the 
conclusion that it is not appropriate to evaluate UNEECON’s performance based on a training 
set without gnomAD variants in disease genes. 
 
- On page 8, line 254, is it all that surprising that UNEECON-G and pLI scores do not correlate? 
Intuitively, the impact of missense variants and LOF mutations are going to vary in magnitude 



even within the same gene. While a biological explanation (as provided here) for this may very 
well be plausible, it is more likely that the discrepancies are due to technical reasons. A recent 
commentary (PMID: 30977936) has touched upon issues related to the methodology and 
applicability of pLI scores. This commentary highlights the example of BRCA genes that have 
near-zero pLI scores but are known to harbor several deleterious missense variants. 
 
I agree that the commentary paper (PMID: 30977936) has suggested that gene-level 
intolerance to LOF mutations may not be a good predictor of pathogenic missense mutations. A 
key difference between the commentary paper, which only discussed a few genes as examples, 
and my work is that I carried out a genome-wide investigation of the relationship between 
missense constraints and LOF constraints. Also, the results in my manuscript indeed 
strengthened the argument of the commentary paper. Therefore, I have cited the commentary 
paper and placed my findings in the context of this work.  
 
MINOR: 
 
- The bimodality of the UNEECON score distribution for active sites is worrisome with the peak 
closer to 0.25 is a little confusing. I interpret this as “there are more variants in active sites that 
have low UNEECON scores than high.” This is counter-intuitive and warrants some explanation. 
 
I thank the reviewer for this comment. I performed additional analyses to investigate why 
UNEECON scores showed a bimodal distribution in protein active sites. Because UNEECON 
scores reflect negative selection on heterozygous missense mutations, I hypothesize that the 
mode with a lower score corresponds to active sites in recessive genes, and the mode with a 
higher score corresponds to active sites in dominant genes. In agreement with this explanation, 
active sites in autosomal recessive disease genes had substantially lower UNEECON scores 
than those in haploinsufficient and autosomal dominant genes (Fig. S2). 
 
- In the functional analyses related to Fig. 5, are there any interesting depletions? I am curious 
about the functions of those genes that are tolerant to missense but not to LOF mutations. I am 
also not sure what “unclassified” means in this context. 
 
The term “unclassified” means the corresponding genes have no known or inferred function in 
Reactome. I have added a sentence to clarify this point. Also, a fold enrichment below 1 
indicates a depletion in the gene set intolerant to both missense and loss-of-function mutations, 
or equivalently, an enrichment in the gene set tolerant to missense but not to loss-of-function 
mutations. Thus, the genes that are tolerant to missense but not to loss-of-function mutations 
are more likely to have no known or inferred function. 
 
- What is the difference between Eqns. 2 and 3? It is difficult to tell with q_i being defined. 
 



Eqn. 2 represents a logistic regression model for parameter estimation, while Eqn. 3 shows the 
logit of predicted mutability given the estimated parameters. I have modified the Methods 
section to clarify this point. 
 
- In the Methods section, it would be helpful to readers if a clear account of the parameters to be 
estimated is provided up front. 
 
I have added sentences to define the parameters to be estimated in the Methods section. 
 
- The paper is missing details of the final model that emerged from the evaluation process, its 
architecture and its parameters. 
 
I have added the requested details to the Methods section. 
 
- Similarly, the paper lacks details on dataset sizes, particularly in the context of model training 
and evaluation. How many variants were used to train the deep mixed-effects model? How 
many variants were included in the evaluations relevant to ClinVar? How many pathogenic and 
how many benign? 
 
I have added the requested details to the revised manuscript. 
 
- I am also curious about the activation function of the output layer of the neural network. This is 
of particular relevance to z_ij and its scaling relative to u_j. Is there a potential for one quantity 
to systematically dominate the other in Eqn. 9? 
 
One way to understand the relative contributions of z_ij and u_j is to look at Fig. S8. It effectively 
partitioned the contribution of z_ij into the contributions of individual variant features and 
compared them with the contribution of u_j. This figure showed that u_j had the largest 
contribution to the output layer of the neural network. 
 
Reviewer #2: The work represents an important advance in prioritization of genes and variants 
relevant to human disease. it has been known since the introduction of gene level intolerance 
scoring in 2013 that gene level metrics of the strength of purifying selection provide independent 
information about variation pathogenicity to the longer established variant level metrics that 
largely depend on conservation and amino acid substitution features. While attempts have been 
made previously to integrate both approaches into a single predictive framework these have 
been based on supervised learning approaches using a set of putatively pathogenic and benign 
variants. The work here combines a selected set of variant level features with a gene level term 
and estimates selective constraint operating against all possible gene sequence changes based 
on human polymorphism data compared against sequence specific mutability. As such, it 
provides an integrated approach assessing purifying selection operating in the human 
population. 
 



The authors have rerun the standard assessments used to test both gene level and variant level 
predictors with generally improved performance both for identifying relevant gene sets (e.g. 
haploinsufficient genes) and pathogenic variants. In addition to these advances, the model 
allows some novel biological insights, including explaining an important reasons for discrepancy 
between intolerance to missense and loss of function variation as being due to the proportion of 
proteins that is disordered. The model also highlights that the gene level term is more 
informative than variant level terms which is still not as widely appreciated as it should be. 
For these reasons the work here represents an important advance in the field. 
 
I thank the reviewer for these comments. 
 
While the paper is generally clearly written and the conclusions generally fair, I do have a 
couple of relatively minor suggestions for consideration. Perhaps most fundamentally, while the 
use of UNEECON deep learning model to combine variant features and a gene level term to 
predict the strength of selection operating against specific alleles is welcome, since it allows non 
linear combinations of these terms to be learned, it is striking that a linear approximation of the 
UNEECON model is very highly correlated, suggesting little benefit from the model learning 
optimum non linear combinations. The authors appropriately use the linear model to infer the 
relative importance of features, but the very high correlation between the two models suggests 
the linear modle is likely to have similar performance to UNEECON. Given the more direct 
interpretability of the linear model, the authors should comment on whether the more complex 
model is in fact needed for use. The second small point is that some of the comparisons are 
inappropriate since some of the metrics are used in ways they were not intended for. For 
example, in Figure 3a representing prediction in distinguishing pathogenic variants gene level 
metrics such as RVIS are compared directly to UNEECON. As outlined however in the initial 
work, gene level metrics are intended to be used alongside some version of a variant level 
predictor (since as emphasized here and in the original publications the two approaches offer 
independent information). The fair comparison therefore for generating a version of figures 3 
focused on variants would be to use a combination of a variant and gene level metric for all 
those comparisons like RVIS that are gene level metrics. This idea was outlined in the initial 
publications under the banner of a combined threshold for both gene level and variant level. I 
have no doubt that UNEECON would still perform better, but one appropriate simple 
comparison would be to re run these analyses including for example a hard threshold on some 
appropriate variant score such as PP2 alongside the quantitative gene level score such as RVIS 
as currently used. Finally, the gene level metrics in use are known to struggle with small genes 
since there is often not enough polymorphism data to infer selection. The authors should 
address robustness to gene size. 
  
For the first point, I agree that the additional nonlinearity introduced by neural networks may not 
be critical for the dataset described in this work. Nevertheless, the deep mixed-effects model 
has the flexibility of modeling complex interactions between variant-level features, which may be 
important for analyzing other datasets. I have added sentences to make this point clear. 
 



For the second point, as suggested by the reviewer, I compared UNEECON with the 
combined-threshold method from the original RVIS paper. As shown in Figure S7, UNEECON 
outperformed the combined-threshold method in separating pathogenic missense variants from 
benign missense variants. 
 
For the third point, in the original manuscript, I have already controlled for the impact of gene 
length on performance evaluation. More specifically, for each disease/essential gene in the 
positive gene set, I used MatchIt in R to pair it with a negative gene with matched gene length. I 
have added a few sentences to make this point clear. 
 
 
 
 


