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Supplementary Figure 1. CONSORT diagram of inclusion and exclusion steps for deriving the cohort 
of 237 SCAN-B TNBC cases from the Skåne healthcare region from which BRCA1 hypermethylated 
cases were identified based on pyrosequencing. Explicit patient inclusion and exclusion criteria are 
reported in Staaf et al. Nat Med 2019.

4257 patients met exclusion criteria based on
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3. Failed RNAseq quality filters

Enrolled patients SCAN-B
(n=340 patients, 83%)

Population-based NKBC TNBC cohort
(n= 408 patients)

SCAN-B population-based
cohort

(n=254 patients, 74.5%)

CONSORT DIAGRAM

Adjuvant chemotherapy cohort
(n=149 patients, 63%)

BRCA1 hypermethylated cases, n=43
BRCA1-null cases, n=19:

- 14 germline
- 5 somatic

Unique patients in NKBC registry with invasive 
breast cancer, September 1 2010 to March 31 2015 

(n=4665 patients )

Adjuvant chemotherapy cohort
eligible for relapse analysis (DRFI)

(n=144)

BRCA1 hypermethylated cases, n=43
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analysis based on clinical review:
1. Neoadjuvant treatment
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4. Patient not managed in an adjuvant setting
5. Lost to follow-up
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Supplementary Figure 2. (A) BRCA1 mRNA levels (FPKM) versus pyrosequencing methylation, with 
sample coloring according to BRCA1 status for 237 SCAN-B cases. (B) BRCA1 mRNA expression 
(FPKM) for hypermethylated cases, cases with BRCA1 variants grouped according to mutation type, 
and cases without BRCA1 alterations (BRCA1 wt) for the merged set of SCAN-B cases (n=237) and 
additional BRCA1-mutant cases from Jönsson et al. (Cancer Res 2012, n=27). Top axis indicates 
number of cases per group.
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Supplementary Figure 3. Gene expression molecular subtype proportions in BRCA1-null and 
non-BRCA1 altered SCAN-B cases. The latter group correspond to patients whose tumors are 
negative for hypermethylation or germline/somatic BRCA1 inactivating variants. Proportions are for all 
cases belonging to a group from the total 237-sample SCAN-B cohort. (A) BRCA1-null cases (n=25). 
(B) non-BRCA1 cases (n=155). Subtype names are explained in Table 2 in the main study.
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Supplementary Figure 4. Copy number differences between hypermethylated and BRCA1-null cases based on 
the combined 109-sample WGS cohort. (A) Difference in copy number gain frequency between hypermethylated minus 
BRCA1-null, i.e. a positive value above 0 means a higher frequency of gain in hypermethylated cases compared to BRCA1-
null. (B) Difference in copy number loss between hypermethylated minus BRCA-null cases, i.e. a positive value above 0 
means a higher frequency of loss in hypermethylated cases compared to BRCA1-null, whereas a negative value means 
more loss in BRCA1-null cases. (C) Histogram of uncorrected Fisher’s exact p-values for each marker for copy number gain 
and loss respectively. P-values reported are two-sided.
In A and B, red triangles indicate which of the 931851 tested markers that have an uncorrected Fisher’s exact p-value <0.05. 
No marker had a fdr adjusted p-value < 0.05. Fisher’s tests were performe for gain and loss separately in 2x2 table format.
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Supplementary Figure 5. Gene expression patterns of immune associated genes in BRCA1-null 
and hypermethylated SCAN-B cases. 102 genes associated with different immune cell types (see 
legend) were clustered using Pearson correlation and ward.D linkage in the 82 SCAN-B cases (25 
BRCA1-null, 57 BRCA1 hypermethylated) using mean-centered gene expression after offset of +0.1 
followed by log2 transformation. Gene symbols are available in the Source Data file.  
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Supplementary Methods 
 
 
Patient cohort and selection 
The patient cohort in this study has previously been described 1. Briefly, during September 1 
2010 to March 31 2015, 408 patients were diagnosed with TNBC in the Region Skåne 
healthcare area based on data from the Swedish national breast cancer quality registry (NKBC). 
To derive this patient set the following exclusion criteria were used in a two-step fashion: 
1: Removing non-TNBC cases 

- Cases that were not ER-negative  
- Cases that were not PR-negative  
- Cases that were not HER2-negative  

2: Removing TNBC cases with unclear treatment history 
- Cases with no planned surgery were removed. 
- Cases that did not have indication of planned pre- or postoperative treatment were 

removed. 
 
Criteria 2 above excluded TNBC patients with an unclear/unknown treatment status based on 
registry data, irrespective of the type of treatment given. This meant that the identified and 
retained patients could have had neoadjuvant treatment, adjuvant systemic treatment, no 
treatment, or even palliative treatment due to metastatic disease already at time of diagnosis 
(thus including these patient categories in subsequent cohorts). Of the 408 patients, 340 
provided informed written consent and were enrolled in the Sweden Cancerome Analysis – 
Breast (SCAN-B) study2, 3 (ClinicalTrials.gov ID NCT02306096). The final tally of 254 
samples were selected into this study based on also having available quality-controlled RNA 
sequencing (RNAseq) data from SCAN-B, sufficient DNA, and passing extensive review of 
available clinical data from individual patient´s files by a senior oncologist. RNAseq data for 
primary cases has been deposited in GEO series GSE96058 based on a previous study 
(outlining quality control filters and details of the RNAseq analysis). The 254 patients were 
diagnosed at any of the four main hospitals in the Region Skåne healthcare region, with a 
catchment area of approximately 1.3 million inhabitants (year 2017).  

Of the 254 cases, 237 had successful whole genome sequencing performed as 
outlined in Staaf et al. 1, representing the final patient cohort from which BRCA1 
hypermethylated and BRCA1 biallelic / germline inactivated cases (BRCA1-null) were selected. 
For the latter, the outlined scheme in Staaf et al. was used for defining a BRCA1-null phenotype.  
 
 
Tissue sampling, DNA and RNA extraction 
Fresh tumor tissue samples preserved in RNAlater (Qiagen, Hilden, Germany) were obtained 
in conjunction with routine clinical sampling by a diagnostic pathologist in regional pathology 
departments (see 3 for outline). RNA and DNA were extracted using the Qiagen Allprep 
extraction kit (Qiagen) as described2. DNA from whole blood was extracted by the Labmedicin 
Skåne Biobank, Lund, Sweden. 
 
 
Prior germline testing and classification of BRCA1 and BRCA2 germline 
variants 
46 patients had prior clinical genetic counseling involving NGS-based screening of BRCA1 
and BRCA2, or were enrolled in the SWEA research study (The Swedish BRCA1 and BRCA2 
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study collaborators (SWE-BRCA) Extended Analysis) for high-risk patients and screened for 
an extended panel of susceptibility genes. The inclusion criteria for the SWEA study were in 
line with the Swedish national clinical practice guidelines for breast cancer. Briefly, genetic 
testing was offered when there was at least a 10 % probability to detect a pathogenic germline 
variant in BRCA1 or BRCA2, based on the patient’s age at diagnosis, histology, and family 
history. Detected germline variants were classified according to the ENIGMA BRCA1/2 Gene 
variant Classification Criteria (2017-06-29) https://enigmaconsortium.org/library/general-
documents/. Only class 5 variants were considered as pathogenic, corresponding to nine 
BRCA1 and three BRCA2 variants.  
 
 
DNA promoter methylation analysis by pyrosequencing - Tumor DNA 
Bisulfite conversion of genomic tumor DNA was performed with the column based EpiTecht 
Fast DNA Bisulfite kit (Qiagen GmBH, Hilden, Germany. 500 ng commercially available 
unmethylated and methylated DNA controls (Human Methylated & Non-methylated DNA Set, 
Zymo Research) were included in each bisulfite conversion run. After conversion, a 
methylation specific PCR was performed on control samples. PCR products were next 
analyzed on agarose gels to verify that bands were observed for the positive (methylated) 
control but not for the negative (unmethylated) control. The converted control samples were 
then included in the corresponding pyrosequencing run as controls. Promoter methylation 
analysis was performed using a PSQ MD 96 pyrosequencing instrument (Qiagen). The 
PyroMark analysis program was used for data analysis and all electropherograms were 
manually checked. For BRCA1, analysis was performed as originally described by 4, and 
included analysis of two CpG island regions. A 7% cut-off was used as reported 1. CpG allele 
methylation percentage was averaged across each primer set and next merged to the mean of 
the two sets. Cut-offs were applied for making a call on methylation or no methylation.  

 

DNA promoter methylation analysis by pyrosequencing - Blood DNA 
Pyrosequencing analysis of BRCA1 promoter methylation levels was also performed in 
peripheral blood DNA from in total 104 of the 237 cases. The same primers as for tumor 
analyses were used. Bisulfite conversion was performed using the EZ-96 DNA Methylation 
Kit (Zymo Research, Irvine, CA, USA). 500 ng commercially available unmethylated and 
methylated DNA controls (Human Methylated & Non-methylated DNA Set, Zymo Research) 
were included in each bisulfite conversion run. After conversion, a methylation specific PCR 
was performed on control samples, with primers versus DPAK1 (included in the kits). PCR 
products were next analyzed on agarose gels to verify that bands were observed for the positive 
(methylated) control but not for the negative (unmethylated) control. The converted control 
samples were then included in the corresponding pyrosequencing run as controls. Promoter 
methylation analysis was performed using the same PSQ MD 96 pyrosequencing instrument 
as for tumors. Commercially available controls included in the bisulfite conversion were 
included in each pyrosequencing run as quality controls. The PyroMark analysis program was 
used for data analysis and all electropherograms were manually checked. 

 
 
Global DNA methylation analysis  
Global DNA methylation profiles of 235 SCAN-B TNBCs were successfully completed using 
the Illumina MethylationEPIC beadchips according to manufacturer’s instructions, performed 
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at the Center for Translational Genomics, Lund University, Medicon Village, Lund. Among 
the analyzed cases were 57 BRCA1 hypermethylated and 25 BRCA1-null cases. Preprocessing 
was performed according to the following steps: 

1. IDAT files were loaded into the minfi R Bioconductor package ver 1.32.0 5. Functional 
normalization was performed using the “preprocessFunnorm” function, Beta values 
were derived using the “funnorm” function. 

2. Probes flagged as poor-performing by Zhou et al. 6 were removed. 
3. Correction for Infinium I/II probe bias as outlined 7, 8. 

 
Preprocessing left 760405 probes for further analysis. Filtering for CpGs reduced the final 
dataset to 614977 probes. Briefly, the filtering was set so that, per CpG, there had to be an 
absolute difference in beta-value of at least 0.1 between the sample with the 5th lowest beta and 
the sample with the 5th highest beta in the 235 cases with DNA methylation data. In practice, 
this filter removes CpGs with a close to zero standard deviation in beta-value, that are 
uninformative in downstream supervised/unsupervised analyses. 
 
 
Gene expression analyses 
Gene expression data was available from Gene Expression Omnibus 9, series GSE96058, 
reported elsewhere 10 along with quality control and preprocessing information. FPKM data 
for specific genes were extracted and log2 transformed. For TNBCtype, IC10, CIT 
classification, 228 cases were available for analysis based on GSE96058 10 (primary tumors 
only). For remaining cases, these were included separately and subtyped only using AIMS 11 
(as this is a single sample predictor of molecular subtype) and analyzed for individual FPKM 
gene expression.    
 
Classification according to different molecular subgroups in breast cancer was performed as 
follows, after i) an offset of +1 was added to all FPKM values, ii) log2 transformation: 

- PAM50. PAM50 subtypes were obtained using the AIMS single sample classifier11, 
based on the aims R package ver 1.18.0. All samples were classified. 

- TNBCtype 12, 13. For TNBCtype classification the entire GSE96058 data set was used. 
Data was mean-centered across all samples for each gene, TNBC cases were extracted 
and uploaded as a separate data set into the web-based classifier 13. For a few cases the 
web-based application called the samples as not being ER-negative. These samples 
were removed from the TNBC data set (inferring missing values) and remaining 
samples were again uploaded to the web-based application for subtyping.  

- IC1014. For IC10 classification the entire GSE96058 data set was used. Data was mean-
centered across all samples for each gene. IC10 subgroups were obtained through the 
ic10 R package ver. 1.5 using default processing.  

- CIT15. CIT subtypes were obtained through the citbcmst R package, using pearson 
correlation as distance method and gene symbol as matching entity.  

 
Consensus clustering 
Consensus clustering was performed in R 16 using the ConsensusClusterPlus R-package 17 ver. 
1.50.0. For FPKM data as input this was first offset by +0.1, log2 transformed, and mean-
centered across samples for each RefSeq associated gene. A filter step based on standard 
deviation of expression was used as defined in result presentations. In the clustering, we used 
Pearson correlation as distance metric and ward.D2 linkage. Additional parameters were 
pItem=0.8, pFeature=0.8, number of iterations = 2000. 
 



 4 

Supervised Significance of Microarray analysis (SAM) 
SAM analysis was performed using the functions in the siggenes R package ver 1.58.0. 
Analysis was performed using the sam() function with settings: rand = 123, 
control=samControl(n.delta=10000,q.version = 1,lambda = seq(0, 0.95, 0.01))). Analysis was 
performed on the same gene set as the unsupervised clustering.  
 
 
Immune cell type deconvolution 
To understand the immune cell composition of the TNBC samples (n=235 of the 237 samples 
used), we used two different approaches to explore the underlying distribution of the immune 
cells in tumors.  

At first, we used Illumina EPIC array-based DNA methylation data for immune 
cell type deconvolution using EpiDISH with Robust Partial Correlations (RPC) as the method 
18. Here, we used two different references for deconvolution process, first one being DNase 
Hypersensitive Site (DHS) based curated CpGs for seven immune cell types (Monocytes, 
Neutrophils, Eosinophils, CD4+ T-cells, CD8+ T-cells, CD56+ Natural Killer (NK) cells and B-
cells) (“centDHSbloodDMC.m”) and the other being similarly curated non-DHS CpGs based 
(“centBloodSub.m”). For further details regarding these references please refer to the original 
paper 18. Estimates from both references were very similar for almost all cell types and in the 
final analysis the centBloodSub.m was used. 

Next, we used mRNA expression from the matching tumor samples (n=235) to 
deconvolute the tumor microenvironment first using xCell 19 which digitally deconvolves the 
tumor samples into a wide range of possible cell types. Here, the number of reference cell types 
is quite high, so there is a small possibility that some unrelated cell types might show positive 
estimate by chance. Hence, in order to get closest possible to the ground truth, we downloaded 
single cell RNA Sequencing (scRNA-Seq) based mRNA expression dataset from an earlier 
study on primary TNBC 20 from GEO (GSE75688) and used the identified immune and non-
immune cell types to do the deconvolution of the bulk tumor RNA-Seq data using 
CIBERSORTx 21. CIBERSORTx is a modified version of earlier cell type deconvolution 
method CIBERSORT 22 with the option of constructing custom reference signature matrix 
using scRNA-Seq based tumor mRNA expression. We used the aforementioned scRNA-Seq 
based TNBC dataset for building the signature matrix and using that deconvolved the Lund 
TNBC tumors into 5 different cell types (Epithelial, stroma, macrophage, B and T cells) using 
default settings.  
 
 
Survival analyses 
Definition of clinical endpoints: 

- Overall survival was obtained from national registries, calculated as the time from 
diagnosis to death of any cause. 

- Invasive disease-free survival (IDFS) was defined according to STEEP guidelines23, as 
the time from diagnosis to either death of any cause or invasive breast-cancer related 
events (loco-regional and distant recurrence). 

- Distant relapse-free interval (DRFI) was defined according to STEEP guidelines as the 
time from surgery to diagnosis a distant relapse (event) or to last day of follow-up 
(censoring). Events include patients that first developed a loco-regional relapse, and 
then a distant relapse. For these patients the day of the distant relapse was used.  

 
Exclusion criteria for outcome analyses: 

- Neoadjuvant treatment 
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- Metastatic disease at time of diagnosis (including microinvasive disease). 
- Metastatic disease identified immediately prior to, or during adjuvant chemotherapy. 
- Patients not managed in an adjuvant setting (irrespective if adjuvant treatment or not 

provided later). 
- Bilateral breast cancer. 
- Lost to follow-up before start of systemic treatment. 
- Unclear histological type (one case). 
- For DRFI, patients with a relapse or death from a malignancy of uncertain origin were 

excluded. These patients were however included in OS and IDFS analyses. 
 
Multivariable analyses 
Analysis was performed using the coxph R function from the survival R package ver 3.1-12. 
Covariates in multivariable Cox regression were patient age (<40, 40-60, ≥60 years), lymph 
node status (N0/N+), tumor size (≤20, >20mm), and tumor grade (1,2,3). Data for lymph node 
status, tumor size and tumor grade were obtained from 1. 
 
 
Statistical analyses 
All p-values reported from statistical tests are two-sided if not otherwise specified. Box-plot 
elements corresponds to: i) center line = median, ii) box limits = upper and lower quartiles, iii) 
whiskers = 1.5x interquartile range. 
 
 
Whole Genome Sequencing Analysis 
Whole genome sequencing analysis is extensively described in Staaf et al. 1. Processed data for 
the 237 final cases from that study was used. Corresponding meta WGS data was obtained 
from the study reported by Nik-Zainal et al. 24 for a set of BRCA1-null cases. For analyses of 
drivers (mutations and copy number) we restricted the analysis to the drivers defined in Nik-
Zainal et al. using the supplementary information provided in that study as starting point 
(Supplementary Table 14 in Nik-Zainal et al.) combined with driver data from Staaf et al. 1. 
For mutational and rearrangement signatures supplemental data from Nik-Zainal was used and 
combined with SCAN-B data 

For general comparisons of tumor cell content in SCAN-B samples we used WGS 
estimates based on the ASCAT algorithm. For the specific comparison of pyrosequencing 
methylation % versus tumor cell content for SCAN-B samples we used estimates from the 
Battenberg algorithm (https://github.com/cancerit/cgpBattenberg) which can account for 
subclones. 
 
 
HRD classification 
HRD classification was obtained from 1, based on two different classifiers; HRDetect 25 and 
genomic scars (copy number based) 26 computed from WGS data. To note, for each 
classification one sample was classified as HRD-low, however not the same sample. For 
HRDetect, the HRD-low hypermethylated case showed concurrent MMRd which caused the 
algorithm to inaccurately classify the sample as HRD-low. 
 
 
Neoantigen prediction from substitutions 
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The NeoPredPipe software (https://github.com/MathOnco/NeoPredPipe) was used to predict 
putative neoantigens with substitution mutation calls provided by CaVEMan 
(https://cancerit.github.io/CaVEMan/) and HLA typing provided by the Polysolver software. 
As input, hg19 was used as the human reference genome throughout all analysis for the 
neoantigen predictions. NeoPredPipe was run with default parameters except that options "-c 
1 2 -m" where set. Polysolver was run on WGS  data from blood DNA with options "unknown 
ethnicity", "use population-level allele frequencies as priors", and "do not use empirical insert 
size distribution". Only variants with a PASS flag in the variant call file from CaVEMan was 
used as input to NeoPredPipe. Integration with RNAseq expression was done as outlined for 
NeoPredPipe, and only neoantigens with an expression >0.1 was kept. The NeoPredPipe 
version available in the GitTrunk Feb 7 2020 was used, referenced as 
https://github.com/MathOnco/NeoPredPipe/tree/3384e75634c564b961ba2a65ac66905d9117
d3b9, which is an improved version of the tagged 1.1 version on GitHub. 
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