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Supplementary materials

S1 Bacterial sample preparation and image processing

Bacterial sample preparation and chemotaxis assay The fluorescent labeling of flagella of

Pseudomonas putida KT2440 FliCS267C followed the protocol of Ref. (7). Briefly, 50 mL of

the overnight cell suspension were washed once to remove the growth medium by centrifu-

gation (4000 rpm, 4 min, room temperature), followed by gentle resuspension of the pellet in

1 mL of MB+ (11.2 g L−1 K2HPO4, 4.8 g L−1 KH2PO4, 3.93 g L−1 NaCl, 0.029 g L−1 EDTA and

0.5 g L−1 glucose; pH 7.0). The flagellar filaments were then labeled with 50 µL Alexa Fluor

488 C5-maleimide dye (Life technologies) stock solution (1 mL dye, 1 mL DMSO (Prolabo))

on a rocker shaker at 40 rpm for about 30 min. Fluorescently stained bacteria were washed

(2500 rpm, 1.5 min, room temperature) with 1 mL of MB+ to remove free fluorescent dye. Af-

terwards, the cell suspension was divided into two parts. One was centrifuged and resuspended

in MB+ medium (chemoattractant-free cell suspension); the other was resuspended in MB+

supplemented with the chemoattractant (casamino acids, Amresco) at a concentration of 7 %

(wt/vol) to prepare the chemoattractant-containing cell suspension. In both cases, the OD600 of

the cell suspensions was 0.02 before filling them into chemotaxis chambers shown in Fig. S1A.

A µ-Slide Chemotaxis 3D chamber (ibidi) was utilized to create a stable linear gradient

of chemoattractant (35). Each chemotaxis unit has two large reservoirs and one central chan-

nel (observation area). The chemoattractant gradient is produced by diffusion across the central

channel. For the chemotaxis assay, the reservoir on the right hand side was filled with the

chemoattractant-containing cell suspension and the reservoir on the left was filled with MB+

chemoattractant-free cell suspension. In this way, the emergence of spurious drifts due to an

inhomogeneous initial distribution of bacteria was excluded. The field of view was placed in

the center of the gradient region, 30 µm above the bottom of the chamber (Fig. S1A); the to-
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Figure S1: Schematic illustration of the chemotaxis chamber as well as the experimental setup,
including the device communication. (A) Sketch of the ibidi-device containing three chemotaxis
chambers. Each chamber consists of two large reservoirs connected to a central channel. In
order to avoid drift as a consequence of an asymmetric initial distribution of bacteria resulting
in cell migration from high to low density areas, both, right and left reservoirs were filled
with bacterial suspension. In the chemotaxis assay, the right reservoir of the first chamber
additionally contained the chemoattractant (casamino acids). The second chamber was used for
the control experiment without a chemical gradient. Bacteria were imaged in the central area
marked in red. (B) Scheme of the microscope optical path and devices communication.

tal height of the observation area was 70 µm. For the bulk assay, both reservoirs carried the

chemoattractant-free cell suspension in order to ensure a homogeneous environment (control

experiment).

Cell imaging and tracking The image sequences were processed with an in-house, auto-

mated Matlab program based on the Image Processing Toolbox (version R2015a, The Math-

Works, USA). A pixel-wise time average projection of the image stack was calculated and sub-

tracted from each frame to remove non-motile objects and shading effects. The built-in Matlab

function imerode was then applied for morphological erosion (with a disk of radius 0.6 µm)

to reduce the background noise. The cells were detected by a maximum entropy thresholding

algorithm (36). We took the median of all threshold values calculated for individual images

of the stack as threshold. In order to eliminate any noise caused by segmentation, the binary

images were processed with the morphological operations imopen and imclose (with a disk of



radius 0.3 µm). After that, the function bwconncomp, and regionprops were applied to cluster

the pixels belonging to the putative cells and determine their sizes and centroids. The objects

with an area of 1 − 15.6 µm2 were taken as single bacterial cells. Finally, by employing the

tracking algorithm by Crocker and Grier (37), the trajectories were obtained.

S2 Exemplary trajectories

In the Figs. S2-S7, typical trajectories are exemplarily shown along with the characteristic time

series of speed and rotational velocity, with a particular focus on transitions from one swim

mode into another.
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Figure S2: Cell trajectory containing a reversal as a result of a push-wrap transition. (A) The
panel on the right shows the tracked cell positions. The cell swam in the push mode and, after a
reversal, the flagellar bundle changed to the wrapped mode. The overlapping forward and back-
ward parts of the trajectory close to the reversal event may be the result of a short intermediate
pull phase, see the rectangular inset. The panel on the left displays the raw image series of the
corresponding data points together with the schematic representations of the swim mode. The
first and second columns show the phase-contrast images of the cell body and the fluorescence
images of the flagellar bundle configuration (captured 0.05 s after the phase-contrast image), re-
spectively. The center of mass obtained by linear interpolation between adjacent phase-contrast
is marked by a pink rectangle. The dashed red line provides a guide to the eye for cell position.
The flagellar bundle highlighted by a red rectangle is tightly bound and long, and may thus be
the sign of a short intermediate pull mode with duration < 0.05 ms (cf. Movie S2). The scale
bars are 15.5 µm. (B) Time series of the absolute value of the rotational velocity ω and (C)
swimming speed v. The automatized event detection method identified the reversal based on
the peak value of the rotational velocity ω time series at time 1.7 s. The colour scheme is the
same as Fig. 1 of the main text (here and in figures S3-S6).
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Figure S3: Push-wrap transition with a reversal of the direction of motion. (A) The trajectory
contains two runs in different modes and two events. The rectangular inset shows the selected
data points including the reversal event. The corresponding raw image data in the left panel
shows the bundle transition from push to wrap. Initially, the bacterium swam in the push mode.
After the short reversal episode, the bundle wrapped around the cell body. During the reversal,
the cell body relocated forward while the bundle deformed simultaneously. This type of trajec-
tories are an indication for direct push to wrap transitions without any intermediate phase (see
also Movie S3). (B) The time series of the absolute value of the rotational velocity ω shows two
peaks, one at time 1.4 s and the other at time 3.8 s. (C) Speed v graph displays a deceleration
during the reversal.
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Figure S4: Relatively straight track of a cell in the push mode, interrupted by a stop. (A) The
raw data, corresponding to the rectangular inset of the trajectory, display the bundle dynamics
while the motor stopped rotating. The panels on the left indicate that the pusher slowed down
and the bundle underwent a polymorphic transition for a short amount of time (< 0.05 ms).
After that, the flagella bundle reformed and pushed the cell body again (see also Movie S4). (B)
Absolute value of the rotational velocity ω for the trajectory. (C) Corresponding speed v data:
the stop event is detected from an abrupt slowdown, beginning at time 1.3 s.
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Figure S5: Trajectory of a swimmer in the wrapped mode. (A) The run is interrupted by an
event; the direction of motion changes by an angle ψww ≈ 90°. The sequence of raw images
suggests that – although the flagellar bundle configuration seems not to have changed – the cell
reoriented (see also Movie S5). The high speed movie S9 (snapshots displays in Fig. S7) reveal
the mechanistic origin of the reorientation.



p
u
sh

re
vr
es
al

w
ra
p
p
ed

0 1 2 3 4 5 6
0

10

20

30

40

0 1 2 3 4 5 6
0

10

20

30

start

v 
( 

m
/s

)
μ

ω
(r

ad
/s

)

time (s)

time (s)

16μm

A B

C

Figure S6: The trajectory illustrates a wrap-push transition. The speed change is clearly visible.
(A) Initially, the cell swam in wrapped mode. After a reorientation, it accelerated and the
bundle pushes the cell body forward (Movie S6). (B) The time series of the absolute value of
the rotational velocity ω shows a peak corresponding to the reversal event. (C) The time series
of the speed clearly shows the speed difference of push and wrap mode.
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Figure S7: High-speed imaging of the flagellar dynamics during transition. (A) Snapshots of
the direct transition from push to wrapped mode (see also Movie S7). The bacterium changed
the direction of motion upon reversal when the bundle configuration switched to the wrapped
mode. (B) Motor rotation stops during wrapped mode (see also Movie S8). The image sequence
in Movie S8 shows that the motor stopped the rotation twice at 0.65 s and 1.56 s for about 0.08 s.
(C) Wrapped mode interrupted by a stop of the motor rotation, coupled with the disintegration of
one filament from the bundle (see also Movie S9). The image series shows, moreover, changes
of the direction of motion by roughly ψww ≈ 90° which is caused by the dissolving bundle
dissolving for roughly 0.1 s (started from time 0.71 s to 0.82 s). The scale bars indicate 5µm.



S3 Theory of active particles with multi-mode motility

Stochastic dynamics of active particles with multi-mode motility In order to assess the

chemotactic efficiency of a bacterial swimmer with multi-mode motility, we developed a de-

scriptive model containing the most relevant physical aspects of the underlying motility pattern,

introduced in the following using the example of P. putida, cf. Fig. S8.

P. putida self-propels its motion employing a tuft of rotating flagella which are attached

to one end of the rod-shaped cell body, thereby enabling persistent active motion at a non-

vanishing, characteristic speed (run motility). This particular bacterial species exhibits distinct

run modes corresponding to different flagellar configurations with respect to the cell body, re-

ferred to as push, pull and wrapped mode. For bulk swimming analyzed in this work, we

observe significantly less pull-runs compared to the other run modes; that is why this type of

run-motility is neglected within the theoretical considerations.

In general, the run-motility in push (P) or wrapped (W) mode may be interrupted for differ-

ent reasons: the flagellar bundle may disintegrate leading to a change of its conformation, i.e. a

transition from push to wrapped mode or vice versa, or the flagellar rotation may be stopped

occasionally for short periods of time. As the flagellar activity is not coordinated during those

periods, bacteria will not displace themselves actively but only reorient the orientation of their

body axis randomly, such that the subsequent run is oriented into a different direction from the

preceding one. A typical trajectory will thus be a sequence of runs in push and wrapped mode,

interrupted by stop events or transitions from one run mode to another one. In this model, we

do not take mechanistic details of run and stop events into account but restrict the model to a

descriptive level.

During run phases, bacteria move at a characteristic speed corresponding to the respective

run mode – we denoted the speed in push mode vp and wrapped mode vw which we assume to be

constant. Spatial heterogeneities or fluctuations of the self-propulsion mechanism may induce



rotational noise with the intensities Dp and Dw, respectively, that parametrize the persistence

of runs. The occurrence of stop- and transition events as well as their durations are inherently

stochastic processes; accordingly, the duration of runs is a random variable. For simplicity, we

assume exponential distributions of run times in push and wrapped mode, characterized by the

average run times τp = 1/κp and τw = 1/κw. The rates κp,w determine the probability κp,w∆t

that a run ends within a time step ∆t. In order to account for run-time bias – different run times

in dependence of the direction of motion with respect to the chemical gradient – the rates are

coupled to the current direction of motion as follows:

κp,w(e) = λp,w − ηp,w (e · ∇c) = λp,w

[
1− εp,w (e · ∇c)

]
. (1)

Since the run-time is extended upgradient, the corresponding transition rates decrease. With-

out a chemical gradient, the transition rates are determined by λp,w. Here, we consider ηp,w

phenomenological parameters for the run-time bias which could be derived from a microscopic

model for the signaling cascade which controls flagellar motor reversals. We note that the bias

of run time ηp,w could, in principle, depend on other motion characteristics such as the speed in

the respective run state, for example, which is the case if the underlying model for the run-time

bias relies on the memory kernel as discussed in Ref. (23), but it is also observed in alternative

models describing directed motion in concentration gradients (24).

Since a bacterium can be in one of two run modes and both run modes may be inter-

rupted by stops or transitions from one to another, the motility pattern consists of six be-

havioural states: runs in push (P) and wrapped (W) model, intermittent stops of push (SP) and

wrapped (SW) runs as well as transition phases from push to wrap (TP) and vice versa (TW).

The motility pattern with all relevant transitions is pictorially represented in Fig. S8(a). Anal-

ogous to runs, stop- and transition events have a typical duration. Those times are commonly

an order of magnitude smaller than run times. The inverse of all characteristic times are the
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Figure S8: The cartoons are pictorial representations of the transitions between run- and resting
states – the dynamics of an active particle with multi-mode motility – corresponding to the
master equations (2,5), respectively. P. putida has two run states, push (P) and wrap (W),
which may be interrupted due to stops (S) of the flagellar driving or their reconfiguration (T)
with respect to the cell body. The respective transition rates are denoted by kappa. Model (b)
is obtained from the full dynamics (a) assuming that the duration of stop events and flagellar
reconfigurations (transitions from wrap to push and vice versa) is much shorter compared to
typical run states (see main text for mathematical details of this mapping).

corresponding transition rates, denoted by kappa in Fig. S8(a).

Stops and reconfigurations of flagella imply characteristic distributions for the angle of re-

orientation of the direction of motion. The dynamics of reorientation is naturally determined by

the flagellar activity, however, we are taking a step back from this detailed level of details and

describe it instead effectively in terms of a probability distribution. All parameters introduced

so far, including typical timescales, run speeds, the persistence of trajectories as well as the

probability distribution for reorientations during stop phases can be estimated from experimen-

tal data, describing the dynamics of P. putida.

The motility pattern depicted in Fig. S8(a) is the representation of a set of master equations

that describe the motility in each run state as well as the transitions between them as discussed



above. For the concrete model under consideration, those equations read:

∂tPp(r, e, t) =Lp[Pp]−κp(e)Pp+

∫
dde′[κtwgtw(e|e′)Ptw(r, e′, t)+ κspgsp(e|e′)Psp(r, e′, t)],

(2a)

∂tPw(r, e, t) =Lw[Pw]−κw(e)Pw+

∫
dde′[κtpgtp(e|e′)Ptw(r, e′, t)+ κswgsw(e|e′)Psw(r, e′, t)],

(2b)

∂tPsp(r, e, t) = (1− ppw)κp(e)Pp − κspPsp, (2c)

∂tPsw(r, e, t) = (1− pwp)κw(e)Pw − κswPsw, (2d)

∂tPtp(r, e, t) = ppwκp(e)Pp − κtpPtp, (2e)

∂tPtw(r, e, t) = pwpκw(e)Pw − κtwPtw (2f)

The parameter pwp denotes the probability that – given a run in the wrapped mode ends – it is

followed by a push run; an analogous reasoning applies to ppw. Further, the direction of motion

in two or three spatial dimensions is determined by the unit vector e. The operator

Li[Pi] = −vie ·∇Pi +Di

{
(d− 1)∂µ

(
eµPi

)
+ ∂µ∂ν

[(
δµν − eµeν

)
Pi

]}
(3)

accounts for self-propelled motion and rotational diffusion during run phases ( ) in two (d =

2) and three (d = 3) dimensions, respectively. The components of the unit vector e were

denoted by Greek indices and Einsteins sum convention is implied. The Kronecker symbol δµν

equals one for µ = ν and zero otherwise.

In line with the experimental observation, we assume that there is no significant parti-

cle transport during stop and transition phases. Moreover, isotropic translational diffusion is

generally of minor relevance for active swimmers and therefore neglected. Note, however,

that the reorientation could alternatively be described by active, rotational diffusion in the

states {SP, SW, TP, TW}. We include this effect into the effective distributions gij(e|e′) that

describe the probability to obtain the orientation vector e after a reorientation event given that

38



the direction of motion was e′ before. This approach allows to simplify the model considerably

as discussed next.

As mentioned above, the duration of run phases is much longer compared to stop events

or flagellar reconfigurations from wrap to push or vice versa; the experimental data suggest

that there is at least one order of magnitude difference. This finding can be used to eliminate

Eqs. (2c-2f), thereby reducing to number of equations to two and simplifying the complexity of

the problem. We will exploit in this context that the reorientation dynamics during stops is not

modeled explicitly but is effectively included in the probability distributions – in this way, the

last four equations allow for an immediate analytical solution yielding

Psp(r, e, t) = Psp(r, e, 0) e−κspt + (1− ppw)κp(e)

∫ t

0

dsPp(r, e, s) e
−κsp(t−s)

≈ (1− ppw)
κp(e)

κsp
Pp(r, e, t) , (4a)

Psw(r, e, t) = Psw(r, e, 0) e−κswt + (1− pwp)κw(e)

∫ t

0

dsPw(r, e, s) e−κsw(t−s)

≈ (1− pwp)
κw(e)

κsw
Pw(r, e, t) , (4b)

Ptp(r, e, t) = Ptp(r, e, 0) e−κtpt + ppwκp(e)

∫ t

0

dsPp(r, e, s) e
−κtp(t−s)

≈ ppw
κp(e)

κtp
Pp(r, e, t) , (4c)

Ptw(r, e, t) = Ptw(r, e, 0) e−κtwt + pwpκw(e)

∫ t

0

dsPw(r, e, s) e−κtw(t−s)

≈ pwp
κw(e)

κtw
Pw(r, e, t) . (4d)

If the rates in the exponents are high – reflecting that the underlying processes are fast – the

initial conditions at t = 0 are forgotten quickly; further, one may approximate in the second term

under the integrals Pi(r, e, s) ≈ Pi(r, e, t) which yields the simplified expressions indicated

above. They could equivalently be obtained from the adiabatic elimination ∂tPsp(r, e, t) ≈

0 directly (equivalently for the other quantities Psw, Ptp and Ptw). Reinserting the closure



relations [Eqs. (4)] into the full dynamics [Eq. (2)] yields the following, simplified description:

∂tPp(r, e, t) =Lp[Pp]−κp(e)Pp

+

∫
dde′[pwpκw(e′)gtw(e|e′)Pw(r, e′, t)+ (1− ppw)κp(e

′)gsp(e|e′)Pp(r, e′, t)],
(5a)

∂tPw(r, e, t) =Lw[Pw]−κw(e)Pw

+

∫
dde′[ppwκp(e

′)gtp(e|e′)Pp(r, e′, t)+ (1− pwp)κw(e′)gsw(e|e′)Pw(r, e′, t)].

(5b)

These equations represent a reduced model where the stop and transition phases were integrated

out; it is graphically represented in Fig. S8(b). This model is the basis for the analysis of the

chemotactic efficiency for the motion pattern of P. putida.

Large-scale transport properties – drift-diffusion approximation The models for the multi-

mode motility of P. putida introduced above, cf. Eqs. (2,5), are of the general form

∂tPi(r, e, t) =− vie ·∇Pi +Di

{
(d−1)∂µ

(
eµPi

)
+∂µ∂ν

[(
δµν−eµeν

)
Pi
]}

−
∑
j

{
κij(e)Pi−

∫
dde′κji(e

′)gji(e|e′)Pj(r, e′, t)
}
. (6)

The distribution functionPi(r, e, t) denotes the density of particles at position r moving into the

direction e at time t in motility state i. In order to simplify the notation, individual motility states

will be enumerated as indicated by Latin letters – let κij(e) be the rate for the transition from

state i to j that may generally depend on the direction of motion within a chemical gradient (run-

time bias). We expand all field-dependent rates into a Fourier series keeping the first nontrivial

order only:

κij(e) ≈ λij − ηije ·∇c. (7)



This is, at the same time, a Taylor expansion in spatial gradients to first order that is justified

as the variation of the chemical field over spatial scales that a bacterium traverses within one

single run is small and, thus, it is well approximated by a linear gradient. Accordingly, we will

keep first order terms in ∇c only in the following. Beyond that the experimental situation is

such that the chemical gradient is indeed linear.

The purpose of this section is to give mathematical details on the derivation of the drift-

diffusion approximation from the full dynamics that was used in the main text to address the

chemotactic efficiency of bacterial swimmers with multi-mode motility. It will be argued below

that the total density

ρ(r, t) =
∑
j

∫
ddePj(r, e, t) (8)

approximately fulfils a Fokker-Planck equation of the form

∂tρ ' −∇·
[
µ (∇c)ρ

]
+D∆ρ (9)

on large scales in the long-time limit. The average chemotactic drift velocity is given by vd =

µ∇c and D is the long-time diffusion coefficient. The effective transport coefficients µ and D

are functions of the underlying motility pattern, i.e. the transition rates as well as the motion

characteristics of individual runs, such as speed and persistence.

As a first step, we perform an order-parameter expansion of the master equation (6) begin-

ning with the densities

ρi(r, t) =

∫
ddePi(r, e, t) (10)

that determine the local density of swimmers in a certain motion state (index i). Their dynamics



is obtained by integrating Eq. (6) over all orientations e:

∂tρi(r, t) = −vi∇·mi(r, t)−
∑
j

∫
dde
{
κij(e)Pi(r, e, t)−κji(e)Pj(r, e, t)

}
(11a)

= −vi∇·mi(r, t)−
∑
j

[
λijρi − λjiρj

]
+
∑
j

[
ηijmi ·∇c− ηjimj ·∇c

]
. (11b)

To obtain the second line, we inserted the linearized rates given by Eq. (7). Upon summation

over all i, the last terms cancel out by symmetry such that the density dynamics is determined

by

∂tρ(r, t) = −
∑
i

vi∇·mi(r, t). (12)

Accordingly, particle transport within individual states is determined by the momentum flux wi =

vimi where

mi(r, t) =

∫
dde ePi(r, e, t) = ρi〈e〉i (13)

is proportional to the local mean orientation of particles 〈e〉i in state i. The dynamics of the

densities is thus not closed but a hierarchy of modes will be obtained – the densities ρi(r, t) are

coupled to the momentum fluxes which depend, in turn, on other order parameters. We will

use the fact that the large-scale, long-time dynamics of the total density ρ(r, t) is only deter-

mined by particle transport [cf. Eq. (12)] and, hence, is much slower compared to the dynamics

of mi(r, t), for example, that evolve on a timescale of the inverse transition rates λij . Math-

ematically speaking, the total density is a slow mode within the hierarchy of order parameter

equations which is why the dynamics of all other order parameter fields are enslaved by the den-

sity in the long-time limit. One may equivalently consider this projection of order-parameter

equations onto the slow mode (density ρ) a local equilibrium ansatz as shown below.

In order to find a closure relation for Eq. (12) – an expression for all fields mi in terms of

the total density ρ – we consider the dynamics of the fields mi(r, t), obtained by multiplication



of the master equations [Eqs. (6)] with e and subsequent integration of the direction of motion:

∂tmi(r, t) = −vi∇·Ti −Di(d− 1)mi −
∑
j

∫
dde e

{
κij(e)Pi(r, e, t)−κji(e)ΓjiPj(r, e, t)

}
.

(14)

In the last term, we used the rotational symmetry of the reorientation statistics gji(e|e′) =

δ(1− |e|) fji(e ·e′) to simplify∫
dde egji(e|e′) = e′〈e ·e′〉ji = e′〈cosψ〉ji = e′Γji (15)

and denoted Γji = 〈cosψ〉ji the mean cosine of the reorientation angle for a specific transition

from state j to i. Inserting the field dependence of the transition rates again [Eq. (7)], the integral

on the right hand side of Eq. (14) can be calculated explicitly:

∂tmi(r, t) = −vi∇·Ti −Di(d− 1)mi

−
∑
j

[
λijmi − λjiΓjimj

]
+
∑
j

[
ηijTi ·∇c− ηjiΓjiTj ·∇c

]
. (16)

The dynamics of the orientation fields mi(r, t) is coupled to the next higher, matrix-valued

order parameter

{Ti(r, t)}µν =

∫
dde eµeνPi(r, e, t) . (17)

Since the dynamics of the orientation fields mi is fast compared to the density dynamics, they

can be adiabatically eliminated just like it was done explicitly in the context of the derivation of

a reduced model from the full dynamics: we approximate ∂tmi ≈ 0 and solve Eq. (16) for mi

yielding

mi(r, t) ≈ −
∑
j

{
M−1}

ij
vj∇·Tj −

∑
jk

{
M−1}

ij
OjkTk ·∇c (18)

where the matricesM and O with the entries

Mij = δijDi(d− 1) +

[
δij
∑
k

(
λjk

)
− λjiΓji

]
, Oij = −δij

(∑
k

ηik

)
+ ηjiΓji (19)



were introduced for convenience. If Eq. (18) is inserted into the transport equation for the den-

sity [Eq. (12)], the structure of the final equation [cf. Eq. (9)] can already be conjectured: there

is a second order derivative that will yield the diffusion term and a drift term that includes gra-

dients of the external field (∇c). What is left to be done is to express the tensors Ti in terms

of the density ρ. To the order which we work in – first order in spatial gradients with the aim

of the reduction to a drift-diffusion approximation – it is sufficient to consider these tensors Ti
spatially homogeneous and field independent because all additional contributions would intro-

duce higher order terms. Due to the same reasoning, the last term in Eq. (11) containing the

products mi ·∇c is approximately zero as it would produce nonlinear contributions. The field

independent, spatially homogeneous dynamics of the tensors Ti is determined by

∂t{Ti}µν ≈ −2dDi {Ti}µν + 2Diρiδµν

−
∑
j

∫
dde eµeν

{
κij(e)Pi(r, e, t)−

∫
dde′κji(e

′)gji(e|e′)Pj(r, e′, t)
}
. (20)

Similarly to the reasoning before, we first calculate the conditional average∫
dde eµeνgji(e|e′) =

dΛji − 1

d− 1
e′µe
′
ν +

1− Λji

d− 1
δµν (21)

assuming unbiased reorientation statistics with respect to the original direction of motion, where Λji =

〈cos2 ψ〉ji is the squared average cosine of the reorientation angle for each transition from j to i

as indicated and d is the spatial dimension. Inserting into the equation above allows for a sim-

plification as follows:

∂t{Ti}µν = −2dDi {Ti}µν + 2Diρiδµν

−
∑
j

[
λij {Ti}µν −

dΛji − 1

d− 1
λji {Tj}µν

]
+
∑
j

1− Λji

d− 1
δµνλjiρj. (22)

The unique stationary solution of this equation obtained via adiabatic elimination, ∂t{Ti}µν ≈ 0,

is given by the rather simple expression

{Ti}µν = δµν
ρi
d

(23)



if the densities ρi fulfil the condition

0 =
∑
j

[
λijρi − λjiρj

]
. (24)

Note that a term of similar type appears on the right hand side of the density dynamics [Eq. (11b)]:

it has the structure of a master equation that describes the stationary state of a system where λij

are the rates for transitions from states i to j, and ρi are the populations of the respective states.

Accordingly, it reflects the assumption of local equilibrium mentioned earlier. We denote the

solution by ρi = ρPi where∑
j

QijPj = 0, Qij = δij

(∑
k

λik

)
− λji,

∑
j

Pj = 1. (25)

Mathematically speaking, P is the eigenvector corresponding to eigenvalue zero of the ma-

trix Q. Its components Pi correspond to the probability that a particle is found in a certain

motion state i in a spatially homogeneous system (∇c = 0).

This final step completes the drift-diffusion approximation. The expression for the transport

coefficients µ andD are eventually obtained by inserting {Ti}µν = δµνPiρ/d into the expression

for mi [Eq. (18)] and the resulting expression into the density dynamics [Eq. (12)] yielding

µ = −1

d

∑
ijk

vi
{
M−1}

ij
OjkPk, D =

1

d

∑
ij

vivj
{
M−1}

ij
Pj. (26)

Given a certain motility pattern characterized by the transition rates κij , the speeds vi and rota-

tional diffusion coefficients Di as well as the reorientation statistics, more precisely the mean

cosine of the reorientation angle Γij = 〈cosψ〉ij for each transition, these formulae allow to

calculate the chemotactic response and the diffusion coefficient for an active particle with multi-

mode motility pattern within a drift-diffusion framework: based on Eq. (19), the matrices M

andO are constructed, the matrixM has to be inverted and the components of the vector P are

found from the null space of matrix Q defined in Eq. (25). Below, this procedure is explicitly

applied to the motility pattern observed for P. putida.



We highlight that the spatial dimension is only included in the prefactor 1/d but it is not

changing the parameter dependence of transport coefficients structurally. Hence, all qualitative

results deduced from the drift-diffusion approximation are de facto dimension-independent.

Further, we note that the approach outlined above describes adaptive chemotaxis strategies as

the reorientation rates κij couple to the gradient orientation only, but they are independent of the

value of the local fields c. That is why the diffusion coefficient D is a constant and, moreover,

independent of the external field. The same value for the diffusion coefficients is obtained in

homogeneous systems without chemical gradients, discussed in (7).

Drift-diffusion approximation for P. putida In this appendix section, we list some mathe-

matical details concerning the application of the drift-diffusion approximation, as discussed in

the previous section, to the motility pattern displayed by P. putida. For simplicity, we neglect

the finite duration of stops and flagellar reconfigurations as they occur on timescales that are

considerably faster compared to the mean run time; our data suggest that there is at least one

order of magnitude difference. Accordingly, we apply the drift-diffusion approximation to the

dynamics reflected by Eqs. (5), pictorially represented in Fig. S8(b).

For the following theoretical considerations, we assume that both the run time in push and

wrapped mode are dependent on the actual direction of motion with respect to the chemical

gradient, i.e. both are chemotactic modes:

κp(e) = λp − ηp(e · ∇c) , κw(e) = λw − ηw (e · ∇c) . (27)

The rates λp,w are the inverse run time in push (p) and wrapped (w) mode in spatially homo-

geneous environments. The coupling of the run time to the chemical gradient is determined

by the parameters ηp,w: the run time is enhanced upgradient (taxis towards a chemoattractant)

for ηp,w > 0, implying that the corresponding rate is decreased. It reflects the actual run-time

bias – the difference of mean run times up- and downgradient – measured experimentally.



In order to simplify the notation, we index the push and wrapped run state by 1 and 2,

respectively. The relevant transition matrices then read as follows:

λ =

(
λp(1− ppw) λpppw
λwpwp λw(1− pwp)

)
, η =

(
ηp(1− ppw) ηpppw
ηwpwp ηw(1− pwp)

)
. (28)

The long-time transport properties, parameterized by µ and D, are obtained by insertion into

the general expressions discussed in the previous section.

We first look at the effective chemotactic drift velocity vd = µ∇c. Since the expressions

are rather complicated, a couple of abbreviations needs to be introduced. Let

Pp =
λwpwp

λpppw + λwpwp
, Pw =

λpppw
λpppw + λwpwp

(29)

be the probabilities to find a bacterial swimmer in the push or wrapped mode in the stationary

state that is obtained as the kernel of the matrixQ viaQ·P = 0 and Pp +Pw = 1, as previously

defined in Eq. (25). Further, we denote µ as a sum of two parts

µ = µpηp + µwηw, (30)

where µp is the chemotactic response due to a potential run-time bias in the push mode and µw

is the corresponding response function in the wrapped mode. Since the theory considers depen-

dencies in the chemical field to first order, the transport coefficient µ is directly proportional to

the relative run-time bias ηp,w. The corresponding prefactors, referred to as response functions,

are given by

µp =
Pp
d
· vpDw [1− Γpp (1− ppw)]− vwDpppwΓpw − vpΓpwΓwpλwppwpwp

DpDw − ΓpwΓwpλpλwppwpwp
, (31a)

µw =
Pw
d
· vwDp [1− Γww (1− pwp)]− vpDwpwpΓwp − vwΓpwΓwpλpppwpwp

DpDw − ΓpwΓwpλpλwppwpwp
(31b)

where we abbreviated the effective rotational diffusion coefficients

Dp = Dp +λp
[
1− Γpp (1− ppw)

]
, (32a)

Dw = Dw+λw
[
1− Γww(1− pwp)

]
. (32b)



The chemotactic response consists of two parts: the run-time bias in the respective run modes, ηp

and ηw, and the corresponding response functions µp and µw, respectively. The run-time bias

depends on the way how a bacterium senses extra-cellular chemical concentrations as well as

the internal signaling cascade controlling flagellar activity. As we do not address the biochem-

istry of the chemotaxis pathway, we do not explain the origin of the run-time bias ηp,w but rather

consider it as given, for example by the experimental investigation. What the analysis provides

is the response functions µp,w that do basically depend on how a bacterium moves in the respec-

tive run modes, its speed and persistence as well as the reorientation statistics upon stopping

or transitions from one run mode to another. Given a certain run-time bias, a specific motility

pattern determines the efficiency of a chemotactic response.

Using the abbreviations introduced above, the effective diffusion coefficient reads

D =
1

d
·
[
Pp ·

v2pDw + vpvwλpppwΓpw

DpDw − ΓpwΓwpλpλwppwpwp
+ Pw ·

v2wDp + vpvwλwpwpΓwp
DpDw − ΓpwΓwpλpλwppwpwp

]
. (33)

It is instructive to see in this regard how these expression simplify if no transitions in between

swim modi occurred. For ppw → 0, a bacterium would stay all the time in the push run mode,

interrupted by stop events at a rate λp. The resulting transport coefficients then read

µp =
1

d
· vpλp (1− Γpp)

Dp
=

1

d
· vpλp (1− Γpp)

Dp +λp
(
1− Γpp

) , (34)

and, trivially, µw = 0 as well as

D =
1

d
· v

2
p

Dp
=

1

d
· v2p

Dp +λp
(
1− Γpp

) . (35)

The equivalent expressions for pwp → 0 are obtained by interchanging indices for push and

wrapped mode: p ↔ w. Those expressions may by considered the pure cases in the sense that

only run mode is accessible, interrupted by reorientation events. The structure of the diffusion

coefficient in these limits is typical: it is determined by the squared speed times the persistence

time, given by the inverse effective rotational diffusion coefficient. The effective rotational



diffusion incorporates the actual rotational diffusion, reorientation rates as well as the statistics

of the reorientation angle. As a last point, we note that the spatial dimensionality does not

affect any result discussed in this work qualitatively as it contributes a trivial prefactor d−1 to

the response functions [Eq. (31)] and the diffusion coefficient [Eq. (33)].

Relevance of the pull-run-mode We note that the response functions µp and µw of the pull

and wrapped states discussed in the main text are proportional to the probabilities Pp,w to find

a bacterium in the respective run state, cf. Eq. (31). By studying an extended version of the

model including pull runs, that was introduced in Ref. (7), we convinced ourselves that the full

response function can be written as

µ = µpηp + µwηw + µlηl,

to first order in gradients, cf. Eq. (3) in the main text. Here, the index l denotes the pull state.

Furthermore, each of the response functions is proportional to the probability to find the bac-

terium in the respective swimming mode,

µp ∝ Pp, µw ∝ Pw, µl ∝ Pl,

i.e. the response functions are proportional to the relative fraction of time a bacterium spends in

each run state. We checked that µl tends to zero if the life time of the pull state tends to zero,

consistently. Since we observed only very few pull runs in our study (around 2% as shown in

Fig. 1), we can indeed neglect the pull state within our modeling study as they are irrelevant for

the long-time, large-scale transport properties.

Chemotaxis in disordered environments In the main text, the chemotactic efficiency of bac-

terial swimmers with multi-mode motility in disordered environments is discussed. Mathemat-

ical details on the modeling are given in this section.



We include collisions of bacteria with obstacles into the model of swimmers with multi-

mode motility, as schematically represented in Fig. S9: compared to Fig. S8, there are two addi-

tional transition pathways symbolizing collision events. As before, the duration of stop, transi-

tion and collision events is not taken into account for simplicity. Mathematically speaking, we

describe the dynamics in heterogeneous environments within the same framework introduced

above by

∂tPp(r, e, t) =Lp[Pp]+Lc[Pp]−κp(e)Pp

+

∫
dde′[pwpκw(e′)gtw(e|e′)Pw(r, e′, t)+ (1− ppw)κp(e

′)gsp(e|e′)Pp(r, e′, t)],
(36a)

∂tPw(r, e, t) =Lw[Pw]+Lc[Pw]−κw(e)Pw

+

∫
dde′[ppwκp(e

′)gtp(e|e′)Pp(r, e′, t)+ (1− pwp)κw(e′)gsw(e|e′)Pw(r, e′, t)],

(36b)

where the collision operator

Lc[Pi] = −κ(c)i
[
Pi(r, e, t)−

∫
dde′gc(e|e′)Pi(r, e′, t)

]
(37)

with κ(c)i = viρ0σ was added in the respective motility states. The reorientation of the direction

of motion induced by collisions is described by the probability density function gc(e|e′).

Based on Eqs. (36,37), we performed a drift-diffusion approximation to obtain expressions

for the long-time chemotactic drift velocity vd ' µ∇c as well as the effective diffusion coeffi-

cient D. The derivation follows the steps discussed in detail before. We find that the relevant

transport coefficients µ and D are structurally identical to Eqs. (31,33) discussed before – col-

lisions with obstacles will effectively renormalize the rotational diffusion coefficients:

Dp → Dp +vpρ0σ(1− Γc), (38a)

Dw→ Dw+vwρ0σ(1− Γc). (38b)
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Figure S9: Generalization of the motility pattern of P. putida with multi-mode motility,
cf. Fig. S8, including collisions with obstacles at rates κ(c)p and κ(c)w in push and wrap mode,
respectively. Collisions are assumed to induce a random change of the direction of motion.

The relative increase of rotational diffusion is, however, proportional to the speed in the respec-

tive run state and, thus, different for push and wrapped run mode as collisions are more likely

to occur for large speeds in a given time interval. The factor Γc = 〈cosψ〉c is the mean cosine

of the reorientation angle upon collisions of bacteria with obstacles.

In the main text, we discussed the chemotactic drift coefficients µp and µw as a function

of the mean free path, i.e. the characteristic distance lc = 1/(ρ0σ) in between obstacles. For

low obstacles densities, the mean free path diverges and, thus, the drift coefficients reduce to

the expressions in a homogeneous medium without obstacles as can be seen from Eqs. (38).

In the opposite limit of high obstacles densities corresponding to high collisions rates with

obstacles or, equivalently, small mean-free path lengths lc → 0, the drift coefficients reduce to

the following expressions:

µp '
Pp

d(1− Γc)
·κ

(c)
w vp [1− Γpp(1− ppw)]− κ(c)p vwΓpwppw

κ
(c)
p κ

(c)
w

=
Pp
d
· 1− Γ̄p
1− Γc

· lc +O
(
l2c
)
,

(39a)

µw '
Pw

d(1− Γc)
·κ

(c)
p vw [1− Γww(1− pwp)]− κ(c)w vpΓwppwp

κ
(c)
p κ

(c)
w

=
Pw
d
· 1− Γ̄w
1− Γc

· lc +O
(
l2c
)
.

(39b)

First of all, we see from these expressions that the chemotactic performance vanishes in the



limit of high obstacles densities (lc → 0), consistently. Further, the speeds cancel from the ex-

pressions in this limit because the collisions rates κ(c)i are proportional to the speeds itself – in

contrast to the situation without obstacles, increasing the speed of runs does not imply a higher

chemotaxis efficiency because collisions with obstacles become more frequent. The transport

coefficients µp and µw are rather determined by purely geometric properties of the trajecto-

ries: the coefficients Γ̄p = Γpp(1 − ppw) + Γpwppw and Γ̄w = Γww(1 − pwp) + Γwppwp are the

weighted average of the reorientation angle in the push and in the wrapped mode, respectively.

S4 Details on data analysis and parameter inference

Parametric maximum likelihood inference of the run-time statistics In order to substanti-

ate the statistical analysis of the run-time statistics discussed in the main text (cf. Fig. 3), which

is based on a (numerical) non-parametric maximum likelihood estimate (15), we additionally

present in this appendix a parametric maximum likelihood approach. This will allow us to

quantify the statistical significance of differences between the up- and downgradient run-time

distributions in the push and wrapped swimming modes. As a model for the run time distribu-

tion, we use the Weibull distribution

ψx(t) = ζk(ζt)k−1 e−(ζt)
k

. (40)

This probability density function has two parameters: k parametrizes the shape of the distri-

bution and ζ determines the characteristic timescale. We chose this distribution because it is a

rather flexible model in the sense that in contains several important limiting cases. For k = 1,

it reduces to an exponential distribution. Therefore, the maximum likelihood analysis provides

a direct test of how close the run-time distributions are to an exponential distribution, which

is implicitly assumed in the active particle model. Moreover, the skewness of this distribution

vanishes for k ≈ 3.6 where it becomes bell-shaped, similar to a Gaussian distribution.



The observed run-times have to be classified into four categories as detailed below (15).

There are runs which begin and end with a turn or stop event; the statistics of these fol-

lows the probability density function ψx(t). We abbreviate these run-times as xi with i =

1, 2, . . . , nX . Different types of censoring can appear if bacteria enter or leave the focal imag-

ing plane during a run, such that the observation of a run does not start or end with a turn

or stop: run times where the beginning was not observed but the end is observed are abbre-

viate by yi (i = 1, 2, . . . , nY ); those where only the beginning but not the end was observed

are referred to as zi (i = 1, 2, . . . , nZ); finally, the observation time of runs which are cen-

sored on both sides are called wi (i = 1, 2, . . . , nW ). Accordingly, the total number of runs

is N = nX + nY + nZ + nW . Distinguishing these different types of runs is important as they

contribute differently to the likelihood function

L =

(
nX∏
i=1

ψx(xi)

)
·
(

nY∏
j=1

ψy(yj)

)
·
(

nZ∏
l=1

ψz(zl)

)
·
(

nW∏
m=1

ψw(wm)

)
(41)

where

ψy(t) =
ζ

Γ(1 + 1/k)
e−(ζt)

k

, ψz(t) = e−(ζt)
k

, ψw(t) =
Γ
(
1/k, (ζt)k

)
Γ(1/k)

, (42)

which were derived from the actual run-time distribution [Eq. (40)] applying renewal theory,

cf. Ref ( ). Loosely speaking, an observation of a run of type z with the duration zi contains the

information that the run-time was equal or longer than zi, which is why ψz(t) is the cumulative

distribution of ψx(t).

The likelihood function L is maximized with respect to the two parameters of the Weibull

distribution (ζ, k). In the vicinity of this maximum, we approximate the likelihood by a Gaus-

sian distribution. The estimated values for the parameter k are summarized in Table S1. All

values are reasonably close to k ≈ 1, such that an exponential run-time distribution for the

modeling is justified. Note in this context that minor deviations from the exponential shape will

not change the qualitative reasoning.

39



flagella direction of motion estimate for k 2σ-confidence interval
co

nt
ro

l push left 0.99 (0.85, 1.13)
push right 0.94 (0.84, 1.04)
wrap left 1.03 (0.93, 1.13)
wrap right 1.00 (0.90, 1.10)

ch
em

o

push upgradient 0.79 (0.69, 0.89)
push downgradient 0.93 (0.81, 1.05)
wrap upgradient 0.91 (0.81, 1.01)
wrap downgradient 0.92 (0.82, 1.02)

Table S1: Parametric maximum likelihood estimates of the parameter k of the run-time distri-
bution, modeled by a Weibull distribution [cf. Eq. (40)].

The maximum likelihood approach furthermore allows us to quantitatively compare run-

time distributions in the presence of a chemical gradient. The marginal likelihood L(ζ) as a

function of the scale parameter ζ is graphically represented in Fig. S10; note in this context

that the maximum likelihood approach is equivalent to a Bayesian approach using flat prior

distributions. The analysis was performed for bacteria moving upgradient and downgradient,

respectively. The analysis reveals that the relative run-time bias in the wrapped mode is much

larger compared to the push mode.

From the posterior distributions of the scale parameters in up- and downgradient direction,

we furthermore calculated the probability density function for the difference of these scale

parameters – a vanishing difference of the scale parameters indicates the absence of a run-

time bias. The obtained distributions are shown as insets in Fig. S10, where the 2σ interval

is graphically highlighted as a gray shaded region. One can see that δζ = 0 is indeed within

the 2σ-interval in the case of bacteria swimming in the push mode, whereas it lies far outside

this region in the wrapped mode. To be precise, we find that the differences in the case of push

swimmers correspond to a 1.6σ fluctuation, which we do not consider as statistically significant,

whereas we find a 3.1σ fluctuation in the case of wrapped swimmers. It is thus reasonable to
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Figure S10: Inferred likelihood L as a function of the scale parameter ζ for swimming in the
push (panel A) and wrapped mode (panel B). The insets represent the derived likelihood for the
difference of scale parameters δζ for up- vs. downgradient swimming; the 2σ-interval is high-
lighted in gray. There is a statistically significant run-time bias in the wrapped mode, whereas
the difference of up- and downgradient run-time statistics in the push mode is statistically not
significant.

believe that, in the case of the push swimmers, the up- and downgradient run-time distributions

are indistinguishable and apparent differences are due to fluctuations, whereas in the case of

wrapped swimmers, the difference between the up- and downgradient run-time distributions is

statistically significant, as a 3σ-fluctuation is highly unlikely. This led us to the conclusion that

the wrapped swimming mode is the dominant one for performing chemotaxis.

Applying the same analysis technique to the control data set, where no chemoattractant is

present, allows us to estimate the mean run-time in push and wrapped mode, respectively. Given

the maximum likelihood estimates for k and ζ , the mean run-time is calculated via

〈t〉 =
Γ(1 + 1/k)

ζ
. (43)

We obtained 〈t〉p = (3.3 ± 0.3)s for runs in the push mode and 〈t〉w = (2.3 ± 0.2)s in the

wrapped mode, respectively. Hence, the mean transition rate used in the theoretical analysis in

the main text are given by λp ≈ 0.3 s−1 and λw ≈ 0.4 s−1.



Parameters of the active particle model All model parameters that were used in the mod-

eling part and in the theoretical discussion of the main text were estimated from experimental

data; the estimates are summarized in Tab. S2 at the end of this section. In this appendix, we

complement the main text by additional experimental data and provide furthermore details on

the parameter estimation used to determine all model parameters of the motility pattern of Pseu-

domonas putida. However, we would like to stress that the main purpose of the modeling part

is not only to reproduce the experimental observations, but simplifying assumptions are made

in order to obtain a model which is both, descriptive and analytically tractable, such that the

long-time dynamics of bacteria in concentration gradients can be calculated based on a physical

model of the experimentally available short-time dynamics.

The analysis of the run-time statistics, which is discussed in the main text in the context

of Fig. 3, was performed using the non-parametric maximum likelihood approach proposed

in (15). It enables us to take censored data into account in an analogous way as discussed in

the previous section. However, the non-parametric approach allows us to estimate the run-time

statistics without implying a specific shape of the run-time distribution. Using a numerical

likelihood maximization scheme, this method yields the survival time distribution

s(t) =

∫ ∞
t

duψx(u) (44)

and, as an additional parameter, the average run-time in the respective run-modes. The two

approaches yield consistent results, i.e. the mean transition rates for the push and wrapped

modes are λp ≈ 0.3 s−1 and λw ≈ 0.4 s−1, however, the error bars are larger in the non-

parametric approach because there are more degrees of freedom.

The velocities of bacteria during runs were calculated using a finite difference approxima-

tion of the first derivative. The scatter plots of the obtained velocities in push and wrapped mode

are represented in Fig. S11. The crater-like shape of the velocity distribution – particularly well



Figure S11: Scatter plots of the velocities for (A) push and (B) wrapped swimming modes from
which the mean speed, shown as a blue circle, was calculated.

visible for runs in the wrapped mode – is a hallmark of self-propelled motion, as it contrasts to

the Gaussian velocity distribution of passive Brownian diffusion. The ensemble average yields

the speeds vp ≈ 25µm/s and vw ≈ 13µm/s for the push and wrapped modes, respectively.

At this point, the model simplifies the dynamics as temporal fluctuations of the speed are not

taken into account. Note, however, that the values of the speeds are of minor relevance to the

discussion in the main text, as the qualitative results only depend on the speed ratio vp/vw ≈ 2.

The rotational diffusion coefficients were estimated from the variances of the histograms

of the angular reorientations, ∆ϕ(t) = ϕ(t + ∆t) − ϕ(t), taken for bacteria moving at a

speed comparable to the mean speed. These histograms are shown in Fig. S12 for runs in

the push and wrapped mode. They are well approximated by a Gaussian density; accordingly,

the angular dynamics is well-described by rotational noise. We obtained the parameter val-

ues Dp ≈ 0.03 rad2/s and Dw ≈ 0.13 rad2/s, respectively. The corresponding fitted distribu-

tions are also shown in Fig. S12.

Further important parameters of the model are the average cosine of the reorientation angles

for stop or reversal events: 〈cosψpp〉, 〈cosψwp〉, 〈cosψpw〉 and 〈cosψww〉. The histograms of the
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Figure S12: Histograms of the angular reorientations ∆ϕ(t) = ϕ(t + ∆t) − ϕ(t) measured
experimentally in push (panel A) and wrapped swimming mode (panel B), from which the rota-
tional noise strengths are derived. The probability densities are well approximated by Gaussian
distributions shown by blue lines, thus supporting the modeling of the angular dynamics via
rotational diffusion.

observed angles are shown in the main text (Fig. 2) from which the respective averages follow

immediately. Whenever a run ends, one can observe whether a run in the same swimming mode

follows or, equivalently, whether the swimming mode changes and how many times each sce-

nario occurs. By directly counting all experimentally observed transitions, we determined the

estimates of the splitting probabilities to be within the 2σ confidence intervals pwp ∈ (0.4, 0.45)

and ppw ∈ (0.7, 0.8).

While reversal events (push-wrap and wrap-push transitions) can be unambiguously iden-

tified based on their large turning angle, the detection of stop events is more difficult, as it

depends sensitively on the choice of the parameters in the event detection scheme. It is thus

crucial to verify that the model predictions are not sensitive to the identification of stop events

as we will demonstrate in the following.

The way in which stop events are detected influences several quantities, in particular, the

transition probabilities pwp and ppw and the run-time distributions in up- and downgradient di-

rection. If the number of stop events is overestimated, the run-times decrease but the probability
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Figure S13: Posterior probability density for the model parameters ppp (panel A) and pww (panel
B), distinguished according to the direction of motion of bacteria with respect to the chemical
gradient. The insets show the probability density functions for the up-down-gradient difference
of these parameters, where additionally the 2σ interval is highlighted in gray. We find that the
difference in the case of push-push transitions (panel A) – equivalently push-wrap transitions –
corresponds to a 0.7σ fluctuation and, in the case of wrap-wrap transitions (panel B), to a 1.5σ
fluctuation. Accordingly, the apparent difference of the parameter values up- and downgradient
is statistically insignificant, i.e. the probabilities ppp, pww, ppw and pwp are constant parameters,
independent of the direction of motion.

that a push (wrapped) run is followed by another push (wrapped) run in the same direction in-

creases, resulting in the same net displacement in a given direction. We thus expect that the

overall chemotactic drift coefficient µ is robust with respect to moderate errors in the detection

scheme of stop events.

From the modeling perspective, it is crucial that we assume that the mean run-times depend

on the chemical gradient (the durations of runs in up- and down-gradient direction differ), while

the transition probabilities pwp and ppw are constant parameters (independent of the direction of

motion with respect to the chemical gradient). If the number of stops was overestimated, the

parameters pwp = (1− pww) and ppw = (1− ppp) would become dependent on the direction of

motion with respect to the chemical gradient as well. In this case, upgradient runs in wrapped

mode, in contrast to downgradient wrapped runs, would be more likely to be followed by an-

other wrapped run in the same direction. Using Bayesian inference, we convinced ourselves that



these probabilities, inferred from our event detection algorithm, are indeed independent of the

gradient direction. The likelihood for the counting experiment is determined by the binomial

distribution

P (k|N, p) =

(
N
k

)
pk(1− p)N−k (45)

such that, using a flat prior, the posterior distribution is given by a beta distribution

f(p|α, β) =
Γ(α + β)

Γ(α) Γ(β)
pα−1(1− p)β−1 (46)

with α = k+1 and β = N−k+1, whereN is the total number of transitions and k is the number

of transitions along a certain channel, i.e. from push (wrap) to push (wrap). The posterior

distributions are displayed in Fig. S13, where we show both, the inferred distributions as well

as the probability density functions of the differences of the respective probabilities (insets of

Figs. S13) for the push-push and wrap-wrap transitions. We find that the difference in the case

of push-push transitions (equivalently push-wrap transitions) corresponds to a 0.7σ fluctuation

and, in the case of wrap-wrap transitions, to a 1.5σ fluctuation, which in both cases we do not

consider as statistically significant. Therefore, we do believe that our way of estimating stop

events is meaningful.



model parameter estimated mean value
Dp 0.03 s−1

Dw 0.13 s−1

vp 25µm/s
vw 13µm/s
λp 0.3 s−1

λw 0.4 s−1

pwp 0.42
ppw 0.75

〈cosψpp〉 0.9
〈cosψpw〉 −0.9
〈cosψwp〉 −0.9
〈cosψww〉 0.55

Table S2: The table summarizes the mean values of model parameters as they were estimated
from experimental data.
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