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Movies S1 and S2 
 



Movie S1.Motion behavior of MMNM/PM nanomotors with NIR irradiation (9 s).
Movie S2. Motion behavior of MMNM-Cy5.5/PM nanomotors under fluorescent floating fibrin
clots with NIR irradiation (5 s) (Green color: fluorescent floating fibrin clots stained by FITC, Red
color: nanomotors stained with Cy5.5).

The photothermal conversion efficiency of MMNM was calculated according to the formula
reported in previous literatures (45). According to the conservation of energy in the system, the
following formula (1) can be obtained:
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Here, m represents the mass, Cp is for heat capacity, T is the temperature, respectively. The
subscript i of m and Cp refers to solvent water or nanoparticles (nanomotors in this work). QNPs, Qs

and Qloss are the photothermal energy inputs by the nanomotors, the photothermal absorbed by the
solvent per second, and the heat lost to the environment.
The specific formula to calculate QNPs is as follows:

 )10-I(1 -A
s NPQ (2)

Where I is the laser power, Aλ is the absorbance of nanomotors under the wavelength of 808 nm, η
is composed of light energy into heat energy conversion efficiency of field.

ThAQ loss (3)

h is the heat transfer coefficient, A is the surface area of container, ΔT is the temperature change
between the temperature in solution (T) and environmental temperature (Tsurr).

OHmax,losss 2ThAQ Q (4)

When the system reaches its maximum steady-state temperature, the output heat is equal to the
input heat, so

mixaxlosssNP ThAQQQ ,ms  (5)

According to formula (2), (4) and (5) above, the formula of photothermal conversion efficiency
can be converted as follows
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hA can be obtained from the following formula (46):
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Where, t is the solution cooling time (s). We fit it linearly to t and -lnθ in fig. S25, and the slope is

293.22, that is
hA

C
i

ipi ,m
. Since the values of mNPs and CNPs are very small, they are considered

negligible. So, Csolvent is the heat capacity of the water (4.2 J g-1 ℃-1), m is the quality of the
solution (1 g), hA can be calculated to be equal to 0.0143.
According to formula (6), ΔTmax,mix is 16.9 ℃, ΔTmax,H2O is 1.4 ℃, Aλ is 0.586, and finally the
calculated photothermal conversion efficiency of the nanomotor is 11.96%.

Table S1. Physical properties of different samples.
Sample

S (m2g-1) Vp (cm3g-1)
D (nm)

mesopore macropore

MS 237.1 0.585 3.59 ---

MMS 604.1 0.771 5.10 58

MMNM 415.7 0.690 3.59 40

MMNM/Hep 170.9 0.345 3.00 44

MMNM/Hep/UK 10.2 0.034 3.00 31

MMNM/Hep/UK/PM 9.4 0.004 --- 31

Table S2. Linear fitting parameters for MSD plot of nanomotors with NIR irradiation under
different power densities (y = a + bx).

Power density (W cm-2) R2 a b

NIR

0.5 0.9212 -6.93 6.71

1 0.8740 -2.02 7.22

1.5 0.9310 -144.71 101.82

2 0.9107 -304.49 188.62

Table S3. Parabolic fitting parameters for MSD plot of nanomotors with NIR irradiation under
different power densities (y = ax2+ bx + c).

Power density (W cm-2) R2 a b c

NIR

0.5 0.9357 0.36 3.49 -2.15

1 0.8747 0.08 8.00 -3.18

1.5 0.9934 11.18 0.80 7.84

2 0.9952 24.44 -31.56 22.51



Table S4. Power function fitting parameters for MSD plot of nanomotors with NIR irradiation
under different power densities (y = axb).

Power density (W cm-2) R2 a b

NIR

0.5 0.9361 2.22 1.49

1 0.8696 6.30 1.05

1.5 0.9930 12.59 1.95

2 0.9957 13.16 2.22

Table S5. Parameters and coefficients obtained for Zero-order release model Qt = K0t, First-order
release model ln(1-Qt/Qf) = -K1t and Peppas release model ln(Mt/M) = lna + blnt fitted to the UK
release profiles from MMNM/UK and Hep release profiles from MMNM/Hep.

Release models Release parameters UK Hep

Zero order
K0 26.65 2.84
R2 0.7251 0.7943

First order
K1 1.47 0.22
R2 0.9324 0.9754

Peppas
a 0.74 0.25
b 0.31 0.54
R2 0.9913 0.9526

Table S6. Parameters and coefficients obtained for Zero-order release model Qt = K0t, First-order
release model ln(1-Qt/Qf) = -K1t and Peppas release model ln(Mt/M) = lna + blnt fitted to the UK
and Hep release profiles from MMNM/Hep/UK/PM under NIR irradiation.

Release models Release parameters UK Hep

Zero order
K0 28.89 3.33
R2 0.8849 0.7805

First order
K1 1.12 0.22
R2 0.9028 0.9593

Peppas
a 0.59 0.36
b 0.50 0.37
R2 0.9943 0.9939



Table S7. The Pt amount in major organs of the rat treated with different samples.

Sample Time

(d)

Heart

(mg/g)

Lung

(mg/g)

Kidney

(mg/g)

Liver

(mg/g)

Spleen

(mg/g)

MMNM/UK 3 < 0.0001 < 0.0001 < 0.0001 0.0002 < 0.0001
7 < 0.0001 < 0.0001 0.002 0.0006 < 0.0001

MMNM/Hep 3 < 0.0001 < 0.0001 < 0.0001 0.0002 < 0.0001
7 < 0.0001 < 0.0001 0.001 0.0006 < 0.0001

MMNM/Hep/UK
3 < 0.0001 < 0.0001 0.0002 0.0003 < 0.0001
7 < 0.0001 < 0.0001 0.0004 0.0008 < 0.0001

MMNM/Hep/UK/PM
3 < 0.0001 < 0.0001 < 0.0001 0.0005 < 0.0001
7 < 0.0001 < 0.0001 0.0005 0.0004 < 0.0001

Table S8. The Pt amount in major organs of the rat treated with MMNM/Hep/UK/PM under NIR
irradiation.

Time
(d)

Heart
(mg g-1)

Lung
(mg g-1)

Kidney
(mg g-1)

Liver
(mg g-1)

Spleen
(mg g-1)

1 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001
3 < 0.0001 < 0.0001 0.002 0.001 < 0.0001

7 < 0.0001 < 0.0001 0.001 0.001 < 0.0001

Table S9. Blood routine analysis of rats after being treated with different samples for 7 d.

Group PBS Nanomotors
Percentage of monocytes 2.8±0.78 2.2±0.29

Neutrophil count 0.5±0.21 0.2±0.07
Red blood cell count 7.85±0.49 7.26±0.25
Hemoglobin (HGB) 151±5.66 138±0.71
Hematocrit (HCT) 45.2±3.04 42.7±0.57

Mean corpuscular volume (MCV) 58.0±0.28 58.8±1.27
Mean hemoglobin content (MHC) 19.2±0.14 19.0±0.57

Mean corpuscular hemoglobin concentration (MCHC) 321±2.12 323±2.83
RBC volume distributing width (RDW) 14.7±0.14 15.1±1.48



Table S10. Values of serum enzymes in blood of rats after being treated with different samples for
7 d.

Group PBS Nanomotors
Cholinesterase (CHE) 0.2±0.07 0.2±0.07
Total Protein (TP) 59.2±2.55 57.1±2.33

Albumin 31.0±0.35 30.3±0.99
Globulin 28.2±0.35 25.4±1.34

Ratio of albumin to globulin 1.19±0.05 1.25±0.03
Glucose 8.92±0.21 9.75±0.59
Urea 6.7±0.21 6.6±0.21

Creatinine 25±2.12 27±2.29
Total carbon dioxide 21.8±0.42 22.1±1.56

Cholesterol 1.53±0.09 1.57±0.32
H-cholesterol 1.22±0.02 1.30±0.28
L-cholesterol 0.51±0.01 0.51±0.02

Apolipoprotein B 0.01±0.00 0.01±0.00
Total calcium 2.98±0.08 2.96±0.02
Phosphorus 2.86±0.10 2.70±0.18
Potassium 6.58±0.20 6.56±0.06
Sodium 139.4±1.13 138.6±1.98
Chlorine 95.0±2.05 96.4±1.63

Table S11. Blood routine analysis of rats after being treated with different samples for 25 d.

Group PBS Nanomotors
Percentage of monocytes 7.2±5.09 6.3±0.49

Neutrophil count 0.1±0.00 0.1±0.07
Red blood cell count 9.18±0.36 8.09±0.32
Hemoglobin (HGB) 187±2.42 161±2.12
Hematocrit (HCT) 51.8±0.80 45.7±0.71

Mean corpuscular volume (MCV) 58.7±1.63 59.2±0.42
Mean hemoglobin content (MHC) 20.9±0.35 20.9±0.14

Mean corpuscular hemoglobin concentration (MCHC) 355±4.24 354±0.71
RBC volume distributing width (RDW) 13.5±0.67 15.7±0.78



Table S12. Values of serum enzymes in blood of rats after being treated with different samples for
25 d.

Group PBS Nanomotors
Cholinesterase (CHE) 0.1±0.00 0.1±0.00
Total Protein (TP) 61.8±0.79 61.7±0.78

Albumin 36.1±0.28 36.2±0.28
Globulin 24.3±0.99 24.4±1.20

Ratio of albumin to globulin 1.4±0.01 1.35±0.01
Glucose 12.33±3.30 11.66±0.23
Urea 6.5±0.28 6.7±0.28

Creatinine 22±0.71 27±0.71
Total carbon dioxide 15.9±0.28 15.8±0.85

Cholesterol 1.42±0.20 1.36±0.13
H-cholesterol 1.00±0.10 0.99±0.12
L-cholesterol 0.21±0.06 0.22±0.03

Apolipoprotein B 0.01±0.00 0.01±0.00
Total calcium 3.12±0.05 3.09±0.07
Phosphorus 2.21±0.30 2.18±0.01
Potassium 11.52±0.02 9.51±0.28
Sodium 135.7±2.47 134.7±1.70
Chlorine 99.3±2.12 99.2±0.42

Fig. S1. Pore structure characterization of MS. (A) N2 adsorption-desorption isotherms and (B)
BJH pore size distribution curves of MS.



Fig. S2. Pore structure characterization of MMS. (A) N2 adsorption-desorption isotherms and (B)
BJH pore size distribution curves of MMS.

Fig. S3. Pore structure characterization of MMNM. (A) N2 adsorption-desorption isotherms and
(B) BJH pore size distribution curves of MMNM.

Fig. S4. EDS spectrum of MMNM.



Fig. S5. Colocalization of PM stained with DiO (green) and MMNM stained with Cy5.5 (red) by
CLSM observation (Scale bar: 10 µm).
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Fig. S6. TG measurement of MMNM and MMNM/PM.
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Fig. S7. Zeta potential of different samples.



Fig. S8. Western blot assay. (A) Assessment of the proteins by Western blot, and (B) the relative
expression level of GP IIb-IIIa receptor molecules on PM and MMNM/PM.

Fig. S9. TEM image of MMNM/PM after being irradiation by NIR for 10 min.

Fig. S10. Motion behavior analysis. (A) Linear (y = a + bx) and (B) power function (y = axb)
fitting parameters for MSD plot under different NIR power densities.



Fig. S11. Pore structure characterization of MMNM loaded with drugs. (left) N2

adsorption-desorption isotherms and (right) BJH pore size distribution curves of different samples.

Fig. S12. TEM images of (a) MMNM/Hep, (b) MMNM/Hep/UK and (c) MMNM/Hep/UK/PM.



Fig. S13. EDS spectra of different samples.

Fig. S14. Dynamic light scattering (DLS) of different samples.
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Fig. S15. FTIR spectra of different samples.
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Fig. S16. FTIR spectra of different samples.
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Fig. S17. FTIR spectra of different samples.



Fig. S18. Drug release analysis. The cumulative release profiles of (A) UK from MMNM/UK and
(B) Hep from MMNM/Hep in vitro; the release kinetics of (C) UK from MMNM/UK and (D) Hep
from MMNM/Hep (Zero-order release model, First-order release model and Peppas release
model). Experimental data are mean +/- s.d. of samples in a representative experiment (n=3).

Fig. S19. Drug release analysis. The release kinetics of UK from MMNM/Hep/UK/PM with NIR
irradiation (A: Zero-order release model, B: First-order release model, and C: Peppas release
model).

Fig. S20. Drug release analysis. The release kinetics of Hep from MMNM/Hep/UK/PM with NIR
irradiation (A: Zero-order release model, B: First-order release model, and C: Peppas release
model).



Fig. S21. In vitro anticoagulability and blood compatibility of nanomotor. (A) Coagulation time,
(B) the hemolysis rates for different samples under different conditions and (C) their
corresponding optical images of RBCs (scale bar: 10 µm). Experimental data are mean +/- s.d. of
samples in a representative experiment (n=3).

Fig. S22. The amount of Hep released in different samples for the first 1 h: (a) MMNM/Hep, and
(b) MMNM/Hep/UK. Experimental data are mean +/- s.d. of samples in a representative
experiment (n=3).
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Fig. S23. Anticoagulant properties of the released Hep solution from (a) PBS, (b) MMNM/Hep,
and (c) MMNM/Hep/UK for 1 h. Experimental data are mean +/- s.d. of samples in a
representative experiment (n=3).

Fig. S24. The residual thrombus weight in static thrombolysis model (a: PBS, b: MMNM, c:
MMNM/Hep, d: MMNM/UK, e: MMNM/Hep/UK, and f: MMNM/Hep/UK/PM). An asterisk
denotes statistical significance between bars (*P < 0.05) using one-way ANOVA analysis.
Experimental data are mean +/- s.d. of samples in a representative experiment (n=3).



Fig. S25. (A) The relationship between temperature and time of MMNM solution after NIR
irradiation for 10 min and laser shutdown to room temperature (808 nm, 2.5 W cm-2); (B) the
relationship between negative natural logarithm function of temperature at cooling stage and
cooling time. Experimental data are mean +/- s.d. of samples in a representative experiment (n=3).

Fig. S26. The residual thrombus weight in dynamic thrombolysis model (a: PBS, b: MMNM, c:
MMNM/Hep, d: MMNM/UK, e: MMNM/Hep/UK, and f: MMNM/Hep/UK/PM). An asterisk
denotes statistical significance between bars (*P < 0.05) using one-way ANOVA analysis.
Experimental data are mean +/- s.d. of samples in a representative experiment (n=3).



Fig. S27. Freezing microtome section of blood vessels of the control group and after the
nanomotors targeting blood vessel-thrombosis for 24 h (Blue: DAPI, Red: MMNM-Cy5.5) (Scale
bar: 200 µm).
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Fig. S28. Retention ratio of (a) Cy5.5, (b) MMNM-Cy5.5, (c) MMNM-Cy5.5+NIR, (d)
MMNM/PM-Cy5.5, and (e) MMNM/PM-Cy5.5+NIR irradiation after being injected in vivo for
24 h. An asterisk denotes statistical significance between bars (*P < 0.05) using one-way ANOVA
analysis. Experimental data are mean +/- s.d. of samples in a representative experiment (n=3).
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Fig. S29. Drug dynamics of UK in vivo for pure UK and nanomotors with drugs. Experimental
data are mean +/- s.d. of samples in a representative experiment (n=3).

Fig. S30. Drug dynamics of Hep in vivo for pure Hep and nanomotors with drugs. Experimental
data are mean +/- s.d. of samples in a representative experiment (n=3).



Fig. S31. Photographs of blood vessels and thrombus at 0 d, 3 d, and 7 d of different samples (a:
MMNM/UK, b: MMNM/Hep, c: MMNM/Hep/UK, d: MMNM/Hep/UK/PM).
(Photo Credit: Rongliang Wang and Rui Wu, Department of Sports Medicine and Adult
Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing
University Medical School, Nanjing, 210008, China.)

Fig. S32. Relative volume of thrombus after being treated with different samples for 0, 3 and 7 d
(a: MMNM/UK, b: MMNM/Hep, c: MMNM/Hep/UK, d: MMNM/Hep/UK/PM). An asterisk
denotes statistical significance between bars (*P < 0.05) using one-way ANOVA analysis.
Experimental data are mean +/- s.d. of samples in a representative experiment (n=3).



Fig. S33. H&E sections and staining of major organs of rats after 3 and 7 d of thrombolysis (400×).

Fig. S34. H&E sections and staining of major organs of rats after being treated with nanomotors for 1
d.

Fig. S35. Possible mechanism for the motion of nanomotors under NIR irradiation.



Fig. S36. Time-lapsed CLSM images of fluorescent floating fibrin clots in the presence of
nanomotors upon NIR irradiation (Movie S2, 808 nm, 5 s) (Green color: fluorescent floating fibrin
clots stained by FITC, Red color: nanomotors stained with Cy5.5).

Fig. S37. The longitudinal section of the thrombus after being treated with Cy5.5-stained
nanomotors under NIR irradiation for different time and corresponding penetration distance.
Experimental data are mean +/- s.d. of samples in a representative experiment (n=3).



Fig. S38. Cell viabilities of HUVECs treated with different samples. (a: blank; b: MMNM; c:
MMNM/Hep/UK; d: MMNM/Hep/UK/PM, e: MMNM/Hep/UK/PM+NIR irradiation).
Experimental data are mean +/- s.d. of samples in a representative experiment (n=3).

Fig. S39. Cross-sectional histology of rat blood vessels (stained with H&E, elastic fiber staining,
reticular fiber staining, TUNEL, 40×).



Fig. S40. Schematic illustration and CLSM images of MMNM/FITC/PM nanomotors in vitro
experimental models from HUVECs to SMCs with or without NIR irradiation (Blue color: DAPI,
nucleus; Green color: nanomotors stained with FITC).
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