SUPPORTING INFORMATION

For

Fibrillar and non-fibrillar amyloid beta structures drive two modes of membrane-mediated toxicity

Crystal M. Vander Zanden¹⁻³, Lois Wampler⁴, Isabella Bowers⁵, Erik B. Watkins⁶, Jaroslaw Majewski^{2,7,8} and Eva Y. Chi^{1,2*}

¹Center for Biomedical Engineering, University of New Mexico, Albuquerque, NM 87131. ²Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM 87131. ³Department of Chemistry and Biochemistry, University of Colorado Colorado Springs, Colorado Springs, CO 80918. ⁴Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843. ⁵Department of Engineering and Technology, Southeast Missouri State University, Cape Girardeau, MO 63701. ⁶MPA-11: Materials Synthesis and Integrated Devices, Los Alamos National Laboratory, Los Alamos, NM 87545. ⁷Division of Molecular and Cellular Biosciences, National Science Foundation, Alexandria, VA 22314. ⁸Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico 87545.

*Present address: 210 University Blvd. NE, University of New Mexico. Albuquerque, NM 87131

*To whom correspondence should be addressed: Eva Y. Chi: Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM, USA; <u>evachi@unm.edu</u>; Tel. (505) 277-2263

Supplemental Experimental Procedures

X-ray scattering data analysis:

X-ray reflectivity (XR) measurements were made to determine the electron density distribution of materials (lipids and proteins) at the air/water interface on a Langmuir trough along the surface normal. X-ray scattering theory and liquid diffractometer methods have been previously described³⁹⁻⁴¹ and the intensity of reflected X-rays can be used to deduce detailed information on the electron density distribution normal to the interface, $\rho(z)$. To change the angle of incidence on the sample, a Germanium monochromator crystal was tilted to deflect the beam and to reach the range of vertical momentum transfer vector values $0.01 < q_z < 0.8 \text{ Å}^{-1}$. Reflected intensities were background subtracted and normalized to incident beam flux. For better visualization, the X-ray reflectivities were normalized to the Fresnel reflectivity (scattering from an infinitely sharp air-water interface) with error bars representing one standard deviation of the measurement. A 'slab' model of molecular layers with distinct electron densities was used to fit reflectivity data to obtain the $\rho(z)^{24}$. The studied system was divided into layers, each of certain thickness and ρ , and interconnected by interfacial roughnesses approximated by error functions. The Motofit program⁴² implemented within the scientific data analysis software IGOR Pro was used for parameter fitting, and goodness of fit was monitored by χ^2 values.

For GIXD experiments, an incident beam striking the water surface at a momentum transfer vector $q_z = 0.85 \cdot q_c$, where $q_c = 0.02176 \text{ Å}^{-1}$ is the critical scattering vector for total external reflection from the subphase. At this q_z , an evanescent wave is generated which travels along the surface and can Bragg scatter from the molecular arrangements at the interface. The scattered intensity was measured by a 2-D detector over a range of horizontal and vertical scattering vectors q_{xy} and q_z : $q_{xy} \sim (4\pi/\lambda)\sin(2\theta_{xy}/2)$, where $2\theta_{xy}$ is the angle between the incident and diffracted beam projected on the liquid surface and $q_z = (2\pi/\lambda)\sin\alpha$, where α is the vertical scattering angle. Bragg peaks resolved in the q_{xy} but integrated over the q_z direction represent GIXD intensity resulting from a powder of 2-D crystallites. After background subtraction of the GIXD data, the Bragg peaks were fit with the Multi Peak Fit 2 function for IGOR Pro using Gaussian, Lorentzian, or Voigt profiles to optimize the goodness of fit. For Voigt profile fits, a conservative 15% error is assumed for the full width half maximum (FWHM) values. The *d*-

spacings are determined by the angular positions of the Bragg peaks, $d = 2\pi/q_{xy}^{max}$ (where q_{xy}^{max} is the center of the Bragg peak) for the 2-D lattice. Areas under peaks were also obtained.

The coherence length (L_c) of the 2-D crystallites is calculated from the resolution-corrected FWHM of the peaks using the Scherrer formula⁴³. The q_{xy} resolution of the ChemMatCARS liquid surface instrument, $\Delta q_{xy} = 0.006 \text{ Å}^{-1}$, was taken into consideration to calculate the intrinsic FWHM values. The average distance in the direction of the reciprocal lattice vector q_{xy} over which ordering extends, can be determined using Equation 1.

$$L_{\rm c} = \frac{0.9 \, x \, 2\pi}{\sqrt{FWHM^2 - 0.006^2}} \tag{1}$$

Supplementary Figures and Tables:

Table S1: XR fit parameters for $A\beta_m$, FO, and NFO adsorbed to an air/water interface

		Subphase			
	Thickness	$ ho$ / $ ho_{ m water}$	Roughness	Roughness	χ^2
$A\beta_m$	18.85 ± 0.18	1.285 ± 0.003	2.882 ± 0.006	10.04 ± 0.18	5.6
FO	18.90 ± 0.19	1.316 ± 0.003	2.827 ± 0.006	10.49 ± 0.19	6.0
NFO	15.90 ± 0.14	1.314 ± 0.003	2.730 ± 0.007	7.96 ± 0.13	4.1

Table S2: Calculated values from GIXD fitting parameters obtained from protein diffraction peaks of $A\beta$ adsorbed to an air/water interface.

Sample	q _{xy} Position (Å ⁻¹)	FWHM*	d Spacing (Å)	Integrated Peak Area	Coherence Length L _c (Å)*				
β-Sheet Diffraction Peaks									
$A\beta_m$	1.329 ± 0.008	0.064 ± 0.010	4.727 ± 0.03	100 ± 30	87 ± 13				
FO	1.326 ± 0.008	0.074 ± 0.011	4.739 ± 0.03	180 ± 50	76 ± 11				
NFO	1.328 ± 0.009	0.070 ± 0.011	4.731 ± 0.03	150 ± 50	80 ± 12				
Higher Order Diffraction Peaks									
Aβm	0.152 ± 0.007	0.032 ± 0.005	41.2 ± 1.8	120 ± 60	180 ± 30				

*A conservative 15% error was assumed

	Slab 1 (Tails)			Slab 2 (Heads)			Slab 3 (outside layer)			Subphase	
	Thickness	$ ho$ / $ ho_{ m water}$	Roughness	Thickness	$ ho$ / $ ho_{ m water}$	Roughness	Thickness	$ ho$ / $ ho_{ m water}$	Roughness	Roughness	χ^2
DMPG	15.9 ± 0.2	0.97 ± 0.03	3.27 ± 0.3	9.1 ± 0.3	1.58 ± 0.02	3.4 ± 0.2	/	/	/	2.8 ± 0.4	7.84
$DMPG + A\beta_m$	14.67 ± 0.03	1.057 ± 0.004	4.41 ± 0.02	9.4 ± 0.4	1.534 ± 0.007	3.7	34.0 ± 0.3	1.154 ± 0.002	11.1	8.59 ± 0.17	0.83
DMPG + FO	13.21 ± 0.04	0.940 ± 0.004	4.0	9.1±0.4	1.552 ± 0.013	5.1	37.4 ± 0.6	1.171 ± 0.004	11.6±0.4	10.5 ± 0.3	1.83
DMPG + NFO	16.0± 0.2	0.98 ± 0.03	3.32 ± 0.04	9.3 ± 0.3	1.53 ± 0.03	3.4 ± 0.2	/	/	/	2.93 ± 0.10	5.2

Table S3: XR fit parameters for DMPG monolayer alone and after addition of $A\beta_m$, FO, or NFO

Table S4: Calculated values from GIXD fitting parameters obtained from lipid and protein diffraction peaks of Aβ binding to a DMPG monolayer.

Sample	q _{xy} Position (Å ⁻¹)	FWHM	d Spacing (Å)	Inter-Molecule Distance (Å)**	Integrated Peak Area	Coherence Length L _c (Å)	Surface Pressure (mN/m)			
Protein + DMPG: Lipid Diffraction Peaks										
DMPG	1.491 ± 0.006	0.0133 ± 0.0003	4.214 ± 0.017	4.87 ± 0.02	704 ± 12	469 ± 12	25.0			
$DMPG + A\beta_m$	1.485 ± 0.006	0.0274 ± 0.0012	4.232 ± 0.018	4.89 ± 0.02	369 ± 10	209 ± 9	35.8			
DMPG + FO	1.489 ± 0.007	0.0218 ± 0.0012	4.220 ± 0.018	4.87 ± 0.02	229 ± 9	269 ± 14	37.0			
DMPG + NFO	1.490 ± 0.007	0.0172 ± 0.0017	4.216 ± 0.019	4.87 ± 0.02	138 ± 10	350 ± 30	30.0			
Protein + DMPG: β-Sheet Diffraction Peaks										
$DMPG + A\beta_m$	1.329*	0.071 ± 0.017	4.73 ± 0.02	-	69 ± 12	79 ± 11	35.8			
DMPG + FO	1.329 ± 0.010	0.083 ± 0.012	4.73 ± 0.04	-	130 ± 13	67 ± 17	37.0			
DMPG + NFO	-			-	-	-	-			

*This value was fixed to reduce the number of parameters in fitting. **Calculated as the distance between acyl tails assuming hexagonal packing

Figure S1: Two-dimensional intensity, $I(q_{xy}, q_z)$, GIXD images of diffraction peaks for (A) DMPG before and after addition of A β_m , FO, and NFO, and (B) A β_m , FO, and NFO adsorbed to an air/water interface.

References

- 1. Jensen, T. R., and Kjaer, K. (2001) Structural properties and interactions of thin films at the air-liquid interface explored by synchrotron x-ray scattering. *Nov. methods to study interfacial layers*
- 2. Als-Nielsen, J., and Kjaier, K. (1989) X-ray reflectivity and diffraction studies of liquid surfaces and surfactant monolayers. *Phase Transitions Soft Condens. Matter*
- 3. Als-nielsen, J., Jacquemain, D., Kj, K., Leveiller, F., Lahav, M., and Leiserowitz, L. (1994) Principles and applications of grazing incidence X-ray and neutron scattering from ordered molecular monolayers at the air-water interface. *Phys. Rep.* **246**, 251–313
- Chi, E. Y., Ege, C., Winans, A., Majewski, J., Wu, G., Kjaer, K., and Lee, K. Y. C. (2008) Lipid membrane templates the ordering and induces the fibrillogenesis of Alzheimer's disease amyloid-β peptide. *Proteins Struct. Funct. Bioinforma*. **72**, 1–24
- 5. Nelson, A. (2006) Co-refinement of multiple-contrast neutron/X-ray reflectivity data using MOTOFIT. J. *Appl. Cryst.* **39**, 273–276
- 6. Guinier, A. (1963) *X-ray diffraction in crystals, imperfect crystals, and amorphous bodies* (Freeman, W. H. ed), San Francisco