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Supplementary Note 1  

Comparison of variant prioritization approaches 

We applied FORGe (Pritt et al. 2018) to prioritize variants to be added to the Brown Swiss 
reference graph for chromosome 25. Specifically, we considered the four variant ranking 
approaches implemented in  FORGe and compared the mapping accuracy from the 
resulting graphs with a graph that was constructed with variants selected based on an allele 
frequency threshold. 
The following prioritization approaches were investigated: 
1. Pop Cov: variants ranked based on allele frequency 
2. Pop Cov + blowup: variants ranked based on allele frequency and proximity (variants that 

are nearby receive lower scores) 
3. Hybrid: variants ranked based on allele frequency and how the variants affect the 

resulting k-mer profile of the genome graph (variants that would increase the 
repetiveness of the resulting graph receive lower scores) 

4. Hybrid + blowup: hybrid methods + considering variant proximity 
5. AF threshold: variants ranked based on allele frequency (AF, as applied in our paper).  

We refer to the FORGe paper (Pritt et al. 2018) for a detailed description on the 
implementation of the variant prioritization methods 1-4. 

 
For each prioritization approach, we constructed a number of graphs that included the top x% 
of the ranked variants, where x ranged from 1 to 100 with steps of 10 (e.g., a graph 
constructed with x=10 included 34,715 out of 347,147 bta25 Brown Swiss variants). We then 
mapped paired-end reads simulated form a Brown Swiss animal (as detailed in the Material 
and Methods part of the main manuscript) to the graphs in order to calculate mapping 
accuracy.  

Graphs constructed with variants that were prioritized solely using allele frequency (as applied 
in our current paper and the Pop Cov method of FORGe) enable the most accurate mapping 
of reads (Table SN1 & Figure SN1). Considering additional factors other than allele frequency 
did not lead to further accuracy improvements. The mapping accuracy of the Pop Cov and AF 
threshold strategies was virtually identical when the same number of variants was used. The 
most accurate Pop Cov approach corresponds to an alternate allele frequency threshold of 
0.06.  

 

Table SN1: Comparison of the most accurate graph from each ranking method 

 
Ranking method Mapping error (%) Number of variants added to the 

graph with maximum accuracy 
Pop Cov 0.0722 208288 

Pop Cov + blowup 0.0730 208288 

AF threshold 0.0723 208288 

Hybrid 0.0749 347147 

Hybrid + blowup 0.0749 347147 
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Figure SN1: Comparison of different variant prioritization strategies.  
Proportion of incorrectly mapped reads for graphs constructed with five variant prioritization 
approaches. 
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Supplementary Note 2 

Adjusted (tuned) linear mapping approach 
 
We followed the proposed approach outlined by Grytten et. al., (2020) to adjust the default 
parameters of BWA mem in order to also consider sub-optimal alignments. 
First, we reduce the D value (default 0.5) to consider more alternative alignment positions. 
However, the mapping performance changed only marginally.  
Second, we ran Minimap2 in short read mode (-ax sr) to find all suboptimal alignments. 
Subsequently, we retained for each read the read placement from either BWA mem or 
Minimap2 that had the higher alignment score. For reads that had identical alignment score 
and position for both linear mappers, we retained the lower mapping quality score. For all 
other cases, we retained the BWA mem alignment.  
 
We made two observations (Figure SN2): 
1. The overall mapping accuracy increased mainly due to a smaller number of incorrectly 

placed reads that had high mapping quality (MQ > 10). This indicates that the tuned 
linear mapping approach assigns the quality of the alignments better.  

2. We found an improvement in mapping accuracy only on reads that are identical to the 
reference, but not on reads that contain variants.   

 
While Grytten et al. observed that an adjusted parameter setting of BWA mem and 
subsequent application of Minimap2 led to considerable accuracy improvements, the gain in 
accuracy was low in our study. The proportion of simulated reads with variants was twice as 
high (19.16% vs. 10.6%) in our study than in Grytten et al., because the average number of 
polymorphic sites per genome was almost two-fold higher in cattle than humans (see 
Additional file 3: Table S1). 
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Figure SN2: Mapping accuracy of paired-end reads simulated form a Brown Swiss 
animal using different mapping approaches.  

(a) Proportion of simulated reads with mapping errors for different mapping scenarios. (b) 
True positive and false positive rate parameterized on mapping quality for the different 
scenarios.   
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Supplementary Note 3  

Integrating structural variants into the graphs 
 
We investigated the effect of including longer (structural) variants. For this purpose, we first 
called and genotyped structural variants using Delly (Rausch et al. 2012) from 82 Brown 
Swiss samples that had been sequenced using short-reads (see Material and Methods part 
of the main manuscript). We discovered 157 precise SVs on bovine chromosome 25 that 
had an average length of 178 bp. We then combined these variants with 243,145 SNPs and 
Indels that were discovered using GATK. We used the bta25 ARS-UCD1.2 reference as a 
backbone and constructed four graphs: (i) SNPs (+Indels) from GATK, (i) SVs from Delly, 
(iii) SNPs (+Indels) from GATK + SVs from Delly, (iv) empty (only the backbone, no 
variants). We simulated 10 million paired end reads from haplotypes of one Brown Swiss 
animal (SAMEA6272105, that had 121,996 SNPs + Indels and 57 SVs that were included in 
the graph). The simulated reads were mapped to the different graphs using vg. 

 
Table SN3: Mapping accuracy for graphs that contained different variant types 
MQ=0 and MQ < 10 indicates the proportion of reads mapped with mapping quality 0 and 
less than 10, respectively.  
 

Graphs Variants in the 
graphs 

MQ=0  
(%) 

MQ<10 
(%) 

Mapping error 
(%) 

Linear 0 0.15474 0.22310 0.08599 

SNP 243,145 0.15366 0.21804 0.07995 

SV 157 0.15508 0.22390 0.08629 

SNP + SV 243,145 + 157 0.15458 0.21900 0.08003 
  
 
Adding SVs that were detect from short sequencing reads to the graph marginally affected 
the mapping performance. Actually, the mapping accuracy decreased slightly when SVs 
were added. Read mapping accuracy improvements were attributable to the SNPs and 
Indels detected using GATK.  
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