Total Synthesis and Structure Revision of Diplobifuranylone B

Xinpeng Cheng, Carlos D. Quintanilla, and Liming Zhang*

Department of Chemistry & Biochemistry, University of California, Santa Barbara, CA 93106

Content	Page number
¹ H and ¹³ C NMR Comparison	S2
Chemical Shifts of the C3 of γ-Lactones	S4
Comments about Literature Misassignment	S5
DFT Calculations	S6
References	S9
¹ H, ¹³ C, ¹ H Homonuclear Decoupling and 2D NMR spectra	S10

E-mail: zhang@chem.ucsb.edu

¹H NMR Comparison

Position	2	19	Literature ¹	
5	4.53 (dt, <i>J</i> = 7.3, 5.8 Hz, 1H)	4.54 (ddd, <i>J</i> = 8.0, 5.3, 2.8 Hz, 1H)	4.55 (ddd, <i>J</i> = 8.0, 5.3, 2.8, 1H)	
4	2.39 – 2.31 (m, 1H)	2.34 – 2.27 (m, 1H)	2.29 (m, 1H)	
	2.19 – 2.11 (m, 1H)	2.26 – 2.18 (m, 1H)	2.22 (m, 1H)	
3	2.61 – 2.49 (m, 2H)	2.66 (ddd, <i>J</i> = 17.7, 10.1, 7.0, 1H)	2.66 (ddd, <i>J</i> = 16.7, 10.1, 7.0, 1H)	
		2.47 (ddd, <i>J</i> = 17.7, 10.3, 6.4, 1H)	2.45 (ddd, <i>J</i> = 16.7, 10.3, 6.4, 1H)	
2'	4.85 – 4.81 (m, 1H)	4.97 (dtd, <i>J</i> = 6.1, 2.5, 1.7 Hz)	4.97 (m, 1H)	
3'	5.96 (dt, <i>J</i> = 6.3, 1.8 Hz, 1H)	5.90 (dt, <i>J</i> = 6.3, 2.0 Hz, 1H)	5.92 (br,d, <i>J</i> = 9.3 Hz, 1H)	
4'	6.07 (dt, <i>J</i> = 6.6, 1.7 Hz, 1H)	6.01 (dt, <i>J</i> = 6.3, 2.0 Hz, 1H)	6.01(br,d, <i>J</i> = 9.3 Hz, 1H)	
5'	4.74 – 4.71 (m, 1H)	4.79 (dddd, <i>J</i> = 5.9, 3.7, 2.3, 1.5 Hz 1H)	4.79 (m, 1H)	
6	3.89 (dq, <i>J</i> = 6.5, 3.8 Hz)	3.90 (dq, J = 6.5, 3.4 Hz)	3.90 (dq, <i>J</i> = 6.6, 3.4 Hz, 1H)	
7	1.22 (d, $J = 6.5$ Hz)	1.17 (d, <i>J</i> = 6.5 Hz)	1.18 (d, <i>J</i> = 6.6 Hz, 1H)	
OH	-	1.64, br, s	1.85, br,s	

¹³C NMR Comparison

$HO = \begin{pmatrix} 4' & 3' & H & 1 \\ 5' & 2' & + & 5 \\ 6 & 0 & H & 4 \\ 7 & 2 & HO & 6 \\ 6 & 7 & H & 5' & 2 \\ 6 & 7 & 19 \\ (6R, 5'S, 2'R, 5S) & (6R, 5'S, 2'S, 5S) \end{pmatrix}$								
Position	2	19	Literature ¹	∆(2-Lit.)	∆(19-Lit.)			
5	81.04	80.12	80.1	+0.94	+0.02			
4	23.54	23.75	23.7	-0.16	+0.05			
3	27.74	27.97	22.9	+4.84	+5.07			
	176.39	177.24	177.2	-0.85	+0.04			
2'	87.11	87.97	87.9	-0.79	+0.07			
3'	129.50	128.79	128.7	+0.80	+0.09			
4'	127.20	127.33	127.3	-0.10	+0.03			
5'	91.00	91.01	90.9	+0.10	+0.11			
6	69.08	69.09	69.1	-0.02	-0.01			
7	18.92	17.94	17.9	+1.02	+0.04			

Dihydrofuran-2(3H)-one

Liteature²: ¹H NMR (400 MHz, CDCl₃): δ 4.30 (t, J = 7.1 Hz, 2 H), 2.45 (t, J = 7.9 Hz, 2 H), 2.26 - 2.18 (m, 2 H).

¹³C NMR (100 MHz, CDCl₃): δ 177.81, 68.49, 27.70, 22.06;

The Chemical Shifts of the C3 of γ-lactones Possessing Only One Substituent at C5

HO

Synth. Commun. 48, 2801-2808

Angew. Chem. Int. Ed. 57, 1386-1389.

Tetrahedron, 67, 9358-9367

J. Agric. Food Chem. 64, 217-225

Org. Biomol. Chem. 13, 4051-4058

J. Org. Chem. 57, 3828-3832 J. Nat. Prod. 69, 980-982 ОН он он 29.45 Me Ŵе Мe Мe Мe

Angew. Chem. Int. Ed. 46, 545-548.

Ĥ

റ

Ο

Ĥ

O

Мe

Ö

J. Am. Chem. Soc. 115, 8558-8564

J. Nat. Prod. 66, 279-281

Comments about Literature Misassignment

The absolute stereochemistry of C6, i.e., (R) is determined by the Mosher's method in the initial report.¹ The absolute stereochemistry of the other chiral centers are assigned in 2017 by the chiroptical methods.³ In addition, *D. corticola* produces several metabolites: furanones such as sapinofuranone B, sapinofuranone C, diplofuranones A, and diplobifuranylones A–C. All the known structures have lactone rings with *S* configuration at the C5 position. So, the C6 and C5 configurations, being *R* and *S*, respectively, are secure.

The only other potential stereoisomers are (6R, 5'R, 2'R, 5S) and (6R, 5'R, 2'S, 5S). Based on the coupling constant between H-2' and H-5' reported in the initial report,¹ the relative stereochemistry of the dihydrofuran moiety should be *trans*. In this way, only two possible stereoisomers are left: (6R, 5'S, 2'S, 5S) and (6R, 5'R, 2'R, 5S). It is reasonable that ¹H and ¹³C NMR spectra should be able to rule them out.

Computational Details.

Structural optimizations were performed at the B3LYP⁴⁻⁵ level of theory with cc-pVDZ basis set.

The Cartesian coordinates of **19**, the revised structure of diplobifuranylone B with a *trans*dihydrofuran ring.

- C 0.616300 1.830200 0.255100
- C 1.797000 1.714200 -0.354800
- C 2.074300 0.271100 -0.682300
- C -0.023500 0.468600 0.382100
- Н 0.159700 2.752400 0.616000
- Н 2.484600 2.527000 -0.593900
- O 0.929600 -0.435900 -0.179400
- Н -0.207900 0.191000 1.440100
- Н 2.144800 0.108700 -1.775900
- C 3.384700 -0.280800 -0.092300
- Н 4.175400 0.464200 -0.331700
- C -1.362500 0.355800 -0.350900
- C -2.438200 1.359500 0.102500
- Н -1.174400 0.426700 -1.436600
- C -3.291500 -0.878000 0.033400

- C -3.731400 0.575100 -0.119200
- Н -2.383700 2.305000 -0.454500
- Н -2.309400 1.585900 1.174800
- Н -4.122200 0.701600 -1.143600
- Н -4.547800 0.802700 0.578600
- C 3.326800 -0.491100 1.417400
- Н 4.295000 -0.865000 1.791400
- Н 3.108500 0.450900 1.945900
- Н 2.544600 -1.224800 1.660100
- O 3.639000 -1.497400 -0.788800
- Н 4.386800 -1.934400 -0.357100
- O -1.931800 -0.947000 -0.087300
- O -3.970100 -1.849700 0.223300

The Cartesian coordinates of **2**, the norminal structure of diplobifuranylone B with a *cis*dihydrofuran ring. It has an intramolecular H-bond.

- C -0.323600 -1.428000 1.197200
- C -1.580100 -0.983500 1.230000
- C -2.102400 -0.778600 -0.166600
- C 0.125600 -1.579800 -0.235300
- Н 0.299300 -1.667300 2.059400

- Н -2.167300 -0.780900 2.125400
- O -0.989200 -1.140800 -1.013600
- Н -2.944900 -1.463700 -0.391900
- C -2.545000 0.662100 -0.496100
- Н -2.606600 0.707400 -1.604400
- C 1.358700 -0.775800 -0.653600
- C 2.692200 -1.188500 -0.008300
- Н 1.420900 -0.819000 -1.754800
- C 2.368600 1.190600 0.090900
- C 3.463600 0.132800 0.025400
- Н 3.193800 -1.983800 -0.576800
- Н 2.524300 -1.558200 1.016000
- Н 4.033800 0.304100 -0.903900
- H 4.158200 0.251600 0.867100
- C -3.914700 0.990500 0.086300
- Н -4.185500 2.024600 -0.173400
- Н -4.691800 0.316200 -0.307300
- Н -3.903200 0.916700 1.186100
- O -1.638100 1.625300 0.002000
- O 1.180100 0.617000 -0.293300
- O 2.446500 2.345400 0.400800
- Н 0.351600 -2.641300 -0.477800
- Н -0.734000 1.368200 -0.250500

Reference

Evidente, A.; Andolfi, A.; Fiore, M.; Spanu, E.; Maddau, L.; Franceschini, A.; Marras,
F.; Motta, A. Diplobifuranylones A and B, 5'-Monosubstituted Tetrahydro-2H-bifuranyl-5-ones
Produced by Diplodia corticola, a Fungus Pathogen of Cork Oak. *J. Nat. Prod.* 2006, 69, 671-674.

2. Das, A.; Chaudhuri, R.; Liu, R.-S. Gold-Catalyzed Oxidative Cleavage of Aryl-Substituted Alkynyl Ethers Using Molecular Oxygen. Simultaneous Degradation of C–H and Single and Triple Carbon–Carbon Bonds Under Ambient Conditions. *Chem. Comm.* **2009**, 4046-4048.

3. Mazzeo, G.; Cimmino, A.; Masi, M.; Longhi, G.; Maddau, L.; Memo, M.; Evidente, A.; Abbate, S. Importance and Difficulties in the Use of Chiroptical Methods to Assign the Absolute Configuration of Natural Products: The Case of Phytotoxic Pyrones and Furanones Produced by Diplodia Corticola. *J. Nat. Prod.* **2017**, 80, 2406-2415.

4. Becke, A. D. Density-Functional Thermochemistry. III. The Role of Exact Exchange. *J. Chem. Phys.* **1993**, 98, 5648-5652.

5. Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. *Physical Review B.* **1988**, 37, 785-789.

 $\begin{array}{c} \textbf{4.84} \hspace{0.1cm} \textbf{4.82} \hspace{0.1cm} \textbf{4.80} \hspace{0.1cm} \textbf{4.78} \hspace{0.1cm} \textbf{4.76} \hspace{0.1cm} \textbf{4.74} \hspace{0.1cm} \textbf{4.72} \hspace{0.1cm} \textbf{4.70} \hspace{0.1cm} \textbf{4.68} \hspace{0.1cm} \textbf{4.66} \hspace{0.1cm} \textbf{4.62} \hspace{0.1cm} \textbf{4.60} \hspace{0.1cm} \textbf{4.58} \hspace{0.1cm} \textbf{4.56} \hspace{0.1cm} \textbf{4.52} \hspace{0.1cm} \textbf{4.50} \hspace{0.1cm} \textbf{4.48} \hspace{0.1cm} \textbf{4.46} \hspace{0.1cm} \textbf{4.44} \hspace{0.1cm} \textbf{4.42} \hspace{0.1cm} \textbf{4.40} \hspace{0.1cm} \textbf{4.38} \\ \textbf{f1} \hspace{0.1cm} (\texttt{ppm}) \\ \textbf{s_{30}} \end{array}$

. 02 5. 00 4. 98 4. 96 4. 94 4. 92 4. 90 4. 88 4. 86 4. 84 4. 82 4. 80 4. 78 4. 76 4. 74 4. 72 4. 70 4. 68 4. 66 4. 64 4. 62 4. 60 4. 58 4. 56 4. 54 4. 52 4. 50 f1 (ppm)

¹H HOMODEC, 600 MHz, CDCl₃ Decoupled on H3 and H4 J(H2-H5) = 4.2 Hz

¹H HOMODEC, 600 MHz, CDCl₃ Decoupled on H3 and H4 J(H2-H5) = 5.5 Hz

T 79 4.77 f1 (ppm) **S44** 93 4.91 4.89 4.87 4.83 4.79 4.73 4.71 4.69 4.85 4.81 4.75 4.67 4.65 4.63