

Supplementary Material

1 Supplementary Tables

Supplementary Table 1. Preparation of animal model and sample used.

Groups	Treatment	Proteomics	WB/PCR	
Sham	Sham	5	6/6	
	operation			
3dpo	SCT	5	6/0	
14dpo	SCT	5	6/0	
28dpo	SCT	5	6/6	

SCT: Spinal cord transection; dpo: day post-operation; IF: Immunofluorescent staining; WB: Western Blot.

Supplementary Table 2. Animal grouping and number in each test.

Groups	Treatment	BBB score	IF/WB
Sham	Sham operation	9	3/6
Negative-control	SCT+Lv-NC vector	9	3/6
PDXK ORF	SCT+ EX-Rn10146-Lv201	9	3/6

PDXK shRNA	SCT+ RSH051349-HIVmU6	9	3/6
miR-339 KO	miR-339 knock out	9	0/0

BBB: Basso, Beattie, and Bresnehan; NC: Negative-control; SCT: Spinal cord transection; PDXK: Pyridoxal kinase.

Supplementary Table 3. The details about the PDXK siRNA are showed as follows.

Name	Catalog No	Sense strand	Antisense strand
Si-r-PDXK_001	siG09102883915	5'GCAUGGUGGUGGAUAUCGU dTdT 3'	3'dTdT CGUACCACCACCUAUAGCA 5'
Si-r-PDXK_002	siG09102883902	5' GCAAACAAUGUCAACAAGU dTdT3'	3'dTdT CGUUUGUUACAGUUGUUCA 5'
Si-r-PDXK_003	siG09102883848	5'AGAACUCUCGACUCGUGUA dTdT 3'	3'dTdT UCUUGAGAGCUGAGCACAU 5'

PDXK: Pyridoxal kinas; No: Number; siRNA: small interference.

Supplementary Table 4. Primers used in this experiment

Primers				
PDXK-3UTR-F:5'				
CCGCTCGAGTGCCTTAGAGCCATGACTGAAAC 3'				
PDXK-3UTR-R:5' GAATGCGGCCGCCTGGTGGATACTGAAACTG				
3'				
m-PDXK-mut-F610: 5'				
GTTGGACA <u>CAGACTCA</u> AGGAGAGACAGAGGT 3'				
m-PDXK-mut-R632: 5'				

TTAAAAGG<u>TGAGTCTG</u>ACAGTGACCGCAT 3'

m-PDXK-mut-F1026:5'

TTGGACACAGACTCAAGGAGAGACAGAGGT 3'

PDXK-Mut-3

m-PDXK-mut-R1047:5'

TCTCTCCTTGAGTCTGTGTCCAACCCCCTGTG 3'

m-PDXK-mut-F610: 5'

GTTGGACA<u>CAGACTCA</u>AGGAGAGACAGAGGT 3'

PDXK-Mut-4

m-PDXK-mut-R1047:5'

TCTCTCCTTGAGTCTGTGTCCAACCCCCTGTG 3'

PDXK: Pyridoxal kinas.

Supplementary Table 5. Differential proteins identified by spectrum analysis.

Spots	Protein Name	Accessio n GI	PI/MW (Observed)	PI/MW (Calculate d)	Score	Sequence Coverage
1	Carbonic anhydrase 1	6264314 4	6.86/2828 2	6.05/2686 0	374	69%
3	Protein carboxyl methyl transferase	603467	7.14/2461 0	6.14/2212 0	167	46%
4	Rieske Fe-S protein percursor	206681	8.90/2767 1	6.05/2227 0	432	31%

5	NADH dehydrogenase	2766116 5	5.87/2395 5	5.39/1768 0	177	53%
6	Glutamine synthetase	121376	6.64/4224 0	6.35/3964 0	320	30%
7	Endoplasmic retuclum protein 29	1675884 8	6.23/2855 7	5.68/1501 0	254	38%
9	Peroxiredoxin 2	8394432	5.34/2177 0	5.39/1471 0	109	31%
10	α-GDP dissociation inhibitor	3198203 0	5.12/2339 3	5.38/2182 0	237	50%
11	Superoxide dismutase 2	8394331	8.96/2465 9	7.36/2827 0	377	49%
17	α-synuclein	9507125	5.74/1450 6	5.17/3900 0	363	45%
18	LIM and SH3 protein 1	1424913 0	8.96/2465 9	7.36/2827 0	237	50%
19	Glutamate dehydrogenase 1	6980956	8.05/6137 7	8.95/5812 0	182	21%
20	Glutamine synthetase	228136	6.38/4041 1	5.86/5145 0	301	24%
21	Dihydropyrimidinase-2	4025459 5	5.95/6223 9	5.72/6612 0	326	25%

22	Pridoxa kinase	1392908 2	6.32/3488 6	5.69/3930 0	258	31%
23	Aldose reductase 1	6978491	6.26/3577 4	5.81/4093 0	258	27%
24	Annexin V	1421099	4.97/3540 1	5.27/3516 0	394	40%
25	Pyruvate kinase	1675799 4	6.63/5778 1	5.93/6552 0	292	26%
28	4-aminobutyrate aminotransferase	1220651 91	8.15/5641 9	6.11/5560 0	200	20%
29	Aconitase 2	4053886 0	7.87/8538 0	7.16/7545 0	290	18%
30	3-oxoacid coa transferase 1	1094660 92	8.70/5616 8	7.07/6152 0	349	29%
31	Transferrin	6155698 6	7.14/7634 6	6.99/7515 0	60	12%
32	Purine-nucleoside phosphorylase	3486968 3	6.46/3228 1	5.81/3086 0	283	44%
33	Synapsin I 1	3335705 1	6.22/3501 4	5.91/6138 0	62	7%
34	Malate dehydrogenase 1	1510017 9	6.16/3646 0	5.62/4108 0	164	12%

35	Actin binding protein 1A	1842683 4	6.05/5103 3	5.75/6360 0	49	8%
36	β-Guanine nucleotide- binding protein	1393739 1	5.60/3730 7	5.50/3916 0	87	12%
37	Aconitase 2	4053886 0	7.87/8538 0	7.16/7546 0	245	16%

6 and 20 are the same protein, 29 and 37 are the same protein that was identified in different gel which indicate that tandem mass spectrometry identification technology is reliable in this experiment.

Supplemental mass spectrum data 1

PMF

MSMS

Mass Spectrometry information of PDXK (NO.22 spot)

Table S6 list the potential protein that identified by Mass Spectrometry on 4700 Proteomics Analyzer. Pyridoxal kinase (PDXK), which the Probability Based Mowse Score was 258 (greater than 56 means significant), was accepted; Table S7 shows 12 peptides of PDXK were identified by Mass Spectrometry. The peptide mass fingerprinting (PMF) is as follows. Matched and no matched peaks are also listed in Table S6. Tandem mass spectrometry (MS/MS) confirmed the "2300.33" peptide (140-160), "1882.02" peptide (162-177), "1780.99" peptide (276-292), "1297.66" peptide (195-206) and 1250.65 peptide (77-86); and the ions score is 56, 40, 28, 23, 29, respectively. For each PMF and MS/MS picture, we could use mouse to drag the pictures to their clearly size.

Supplementary Table 6. List of potential protein (No.1 was accepted).

NO	Accession	Mass	Score

Description

1	gi 13929082	34886	258	pyridoxal (pyridoxine, vitamin B6) kinase
2	gi 62665802	34890	255	PREDICTED: similar to pyridoxal (pyridoxine, vitamin B6) kinase
3	gi 9506507	53811	38	coronin, actin-binding protein, 1B
4	gi 28381370	11564	37	Protein KIAA1688 homolog (Preoptic regulatory factor 2) (PORF-2)
5	gi 539953	21207	32	enhancer factor I chain A-D
6	gi 559637	4391	30	nuclear orphan receptor HZF- 1=glucocorticoid/mineralocorticoid receptor homolog
7	gi 11321107	5912	28	p53 tumor suppressor
8	gi 66730402	10119	28	p300/CBP-associated factor
9	gi 8307696	20817	27	alpha-2u globulin
10	gi 57528321	62681	27	RIO kinase 2

Supplementary Table 7. The details about the PDXK are showed as follows.

Observed	Mr(expt)	Mr(calc)	Delta	Start - End	Miss	Ions	Peptide (Matched peptides shown in Bold Red)	N ma
1137.71	1136.70	1136.67	0.04	7-16	0		R.VLSIQSHVVR.G	Y
1250.65	1249.64	1249.60	0.04	77-86	0	29	K.YDYVLTGYTR.D	

								Supplementary Material	
-	1250.65	1249.64	1249.60	0.04	77-86	0		K.YDYVLTGYTR.D	Y
	1269.72	1268.71	1268.67	0.04	259-269	0		K.TVSAMQHVLQR.T	YES
	1297.66	1296.66	1296.61	0.04	195-206	0	23	K.GSDYLMALGSQR.M	
	1297.66	1296.66	1296.61	0.04	195-206	0		K.GSDYLMALGSQR.M	Y
	1780.99	1779.99	1779.91	0.07	276-292	0	28	K.AEAGEGQKPSPAQLELR.M	
	1780.99	1779.99	1779.91	0.07	276- 292	0		K.AEAGEGQKPSPAQLELR.M	Y
	1882.02	1881.01	1880.92	0.09	162-177	0	40	K.IHSQEEAFAVMDVLHR.M	
	1882.02	1881.01	1880.92	0.09	162-177	0		K.IHSQEEAFAVMDVLHR.M	Y
	2300.33	2299.33	2299.19	0.14	140-160	0	56	K.VVPMADIITPNQFEAELLSGR	
	2300.33	2299.33	2299.19	0.14	140-160	0		K.VVPMADIITPNQFEAELLSGR.K	Y

PDXK: Pyridoxal kinas;

No match to: 793.41, 804.31, 805.54, 823.34, 832.34, 861.10, 916.51, 1010.59, 1393.75, 1549.75

2 Supplementary Figures

Supplementary Figure 1. PDXK-ORF/shRNA Lentivirus construction and Packaging. (A) Lentivirus plasmid information of EX-Rn10146-Lv201, including ORF sequence and restriction enzyme sites. CMV is the promoter of SNCA and EGFP is reporter gene. Puromycin and ampicillin are stable selection marker. **(B)** EX-Rn10146-Lv201 plasmid was digested by EcoRI and XhoI restriction enzyme and run on 1.0% agarose gel. Lane1: DNA Ladder 6000. Lane2: EX-Rn10146-Lv201 plasmids. Lane3: EX-Rn10146-Lv201 plasmids were digested by EcoRI and XhoI. There are two expected bands (~1578/7963bp). Lane4: DNA ladder 3000. Lane5: DNA ladder 15000.C Lentivirus plasmid information of RSH051349-HIVmU6 and its interference sequence. CMV is the promoter and mcherryFP is reporter gene. Puromycin and ampicillin are stable selection marker. (**D**) The interference effectiveness of PDXK-siRNA was verified by RT-PCR in PC12 cells. N normal cells, R add transfection reagent into culture medium, NC random sequence added into culture medium, F1-3, add transfection reagent and one of three PDXK-siRNA fragment. The expression of PDXK was analyzed by Image J software and quantified, which suggested that F1 PDXK-siRNA was the most effective. Data were presented as mean \pm SEM. *p<0.05 vs. normal. (**E**) EGFP (PDXK-ORF) and mcherryFP (PDXK-shRNA) are visualized under fluorescent microscope indicating successful packging in 293T α cells. Scale bar= 50µm.

Scor	е		Expect	Identities	Gaps	Strand
4460	bits(2	415)	0.0	2417/2418(99%)	0/2418(0%) Plus/Plus
Query Sbjot	1 75	TGCCTTAGAGCO TGCCTTAGAGCO	CATGACTGAAACT CATGACTGAAACT	ICGACATCCGTGTTCCTTCCCGAGAGTC	GGGTCTCAG 60) 34
Query	61		CGTGAAAAATGT(GCCATTGTGCTAttttttAAAAAATGA	CAAAGCCGT 12	20
Sbjet Queru	135	CGTAGAAATGTO	GIGAAAAAIGI TGATTCACAAC	GUAIIGIGUIAIIIIIIAAAAAAIGA	CTCTGACTG 18	24 30
Sbjet	195	CGTAGAAATGT	TGATTCACAAC	CATGGTCCCTTCCCCAAAGGCCCTGGG	CTCTGACTG 25	54
Query	181	CCTCATGTTGC	TCATAGGTATG	IGGAAGGTAGGTGGAGGAGACCAGCCTG	CTGCCTCTG 24	10
Sbjøt	255	CCTCATGTTGC	CTCATAGGTATG	IGGAAGGTAGGTGGAGGAGACCAGCCTG	CTGCCTCTG 31	4
Query	241	GACCTTTCTGTT	GGTCACTGGCT	GCCATTGCCCCCTGTGTATGTATACACA	GTCCTGATT 30	10
Sbjet	315	GACCTTTCTGTT	IGGTCACTGGCT(GCCATTGCCCCCTGTGTATGTATACACA	GTCCTGATT 37	24
Query Shict	301	GTGTATAGALTU	TGCCTGTGTCGC	GUGUTGTUTTTAAAATGGGGTTAGGTUT 	TAALUGTIG 36 TAACCGTIG 43	5U 34
Query	361	GCATTGGAAGA	TTATGCCAAAT	ATCTTCTTTGCCATTCTGGTCTTTCCCT	TGTTCCTGC 42	20
Sbjet	435	GCATTGGAAGA	ATTATGCCAAAT	ATCTTCTTTGCCATTCTGGTCTTTCCCT	TGTTCCTGC 49	4
Query	421	ATTAGAGTTTC	GTGTCTCTGCT	GCTCTTTGGGTGGTGTCCCAGAATGTCA	GACGAATGC 48	0
Sbjøt	495	ATTAGAGTTTC	GIGICICICIC	GCTCTTTGGGTGGTGTCCCAGAATGTCA	GACGAATGC 55	4
Query	481	AGCTGCTGGTCT	[GEGAGGGAAGG]	TTCATATCCCCGTGCTTGCACAAGCAT	GEGGTEACT 54	.0
Sbjet	555	AGUTGUTGGTUT	GUGAGGGAAGG	TTEATATEEEGTGETTGEACAAGEAT	GUGGTUAUT 61	4
Sbict	615	GTGACAGGGAC	TTTTAAGGAAC	GGAACATTCCAGGACATCTGCAAGCCG	TCTGGGTGT 67	74
Query	601	CTGCAGGGTCT	CTGTAACTCTG	GAGETGAGTGEAGGGEAGETTGGGAATI	CAGGGAAGT 66	0
Sbjet	675	CTGCAGGGTCT	CTGTAACTCTG	GAGCTGAGTGCAGGGCAGCTTGGGAATT	CAGGGAAGT 73	34
Query	661	TTGCCTCACTG	GC t t t t t t t t t t	tttttggttttggttttggttttgattt	ttCAAGACA 72	20
Shint	735	TTACCTCACTC		TTTTCCTTTTCCTTTTCCTTTTCATT	TTC & & C & 70	и

Supplementary Figure 2. The matching rate of PDXK 3 'UTR sequence and the sequencing results was 99% by using blast software, which indicated the recombination of hRluc-PDXK 3 'UTR

plasmid is successful. These experiments and data analysis were performed by Shanghai Biotechnology Co., Ltd. (Shanghai, China).

Supplementary Figure 3. Verification of PDXK 3 'UTR mutant vector. (A) The vector of PDXK 3 'UTR mutant. (B) The electrophoresis of PDXK. M: marker 5000. (C) Validation of plasmid enzyme digestion. M: marker 5000

Supplementary Figure 4. The sequencing mapping of PDXK 3 'UTR mutant. (A) The sequencing mapping of PDXK 3 'UTR -Mut-2. **(B)** The sequencing mapping of PDXK 3 'UTR -Mut-3. **(C, D)** The sequencing mapping of PDXK3 'UTR -Mut-4

Supplementary Figure 5. The role of miR-339 knock-out in the functional recovery after SCT in rats and bioinformatics prediction with GAP43. (A) The locomotor function was assessed by BBB score between control group and miR-339 knock out group at 3 d, 7 d, 14 d and 28 d after SCT. Data were exhibited as mean \pm SD. **P* < 0.05, ***P* < 0.01. (B) PDXK is associated with GAP43 in SCT rats. The potential relation between PDXK and GAP43 was predicted by GeneMANIA (http://genemania.org/). Bioinformatics prediction revealed that there is a co-expression and direct relation between PDXK and GAP43. BBB=Basso, Beattie, and Bresnehan. KO = knock out. PDXK = Pyridoxal kinase. GAP43 = Growth associated protein-43. d = Day.