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We adopted the transfer learning to fine-tune a deep learning classification network based on a pre-
trained VGG16 model for learning discriminative features from individual 2D ultrasound images and 
estimating instance-level classification scores. The VGG16 deep learning model consists of 13 
convolutional (conv) layers with a receptive field of 3×3.1 The stack of convolutional layers is 
followed by 3 fully connected (FC) layers, each of the first two layers having 4096 channels and the 
third layer performing 1000-way classification. The final layer is a softmax layer.  

The VGG16 model was modified for CAKUT diagnosis at an instance-level, as illustrated by 
Supplementary Figure  1. First, we modified the last 3 convolution layers into 3 atrous convolutional 
layers to obtain a denser feature extraction 2. The atrous convolution stride is 2 and the convolution 
filter size is 3*3. Second, we modify the first two FC layers as 1 FC layers with the 256 channels to 
reduce the memory size. Third, the last output classification FC layer is modified as a 2-way output 
for the CAKUT diagnosis problem. Given a 2D US image 𝑥𝑖, the deep learning model yields 𝑝𝑖 and 
1 − 𝑝𝑖 , enooding proaaaility valees oor the image to have a positive laael iieee, AKUU)  and a 
negative laael iieee, oontrol , respeotivelye 

We trained the deep learning model by refining parameters of a pretrained VGG16 model.2 
Particularly, the first 10 convolution layers (denoted as VGG16 conv block) and the three atrous 
convolution were initialized by adopting parameters of the pretrained VGG16 model, and the FC 
layers were randomly initialized using Glorot enioorm initializatione3 The model was trained using 
instance-level softmax loss function. All kidney images of the same individual had the same class 
label as the individual. In other words, all kidney images of children with CAKUT had a class label 
of +1, and all images of controls had a class label of -1. Applying the trained model to a 2D kidney 
image will yield a probability score of CAKUT.   

We adopted the commonly used mean pooling operator to compute an overall bag-level 
classification score and also compared it with the max pooling operator. Particularly, the mean and 
max pooling operators are defined as 
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where 𝑝𝑖 is the classification score of an image 𝑥𝑖 , 𝑖 = 1, … , 𝐼, belonging to the same individual.  

We evaluated the classification performance of the MIL models that were built on images in the 
sagittal view, the transverse view, or both views. We also compared the MIL models built using the 
mean and max pooling operators. Supplementary Table 1 summarizes all evaluation in terms of 
classification models trained and tested using images in different views. 

Supplementary Table 2 summarizes AUC values of different MIL models on testing datasets 
obtained using mean pooling and max pooling operators. The AUC values obtained using the max 
pooling operator were close to 0.94, while those obtained using the mean pooling operator were 
larger than 0.96, indicating that the mean pooling operator could yield better classification 
performance.  

We also obtained classification models using pre-trained deep learning models: ResNet V2 101 
version for the ResNet and Inception-ResNet-v2 version for the Inception network, all from the 
TensorFlow-Slim image classification model library.4 We used the same 5-fold cross-validation 
method to estimate their performance. Mean pooling was used to obtained MIL classifiers.  

https://arxiv.org/abs/1603.05027
http://arxiv.org/abs/1602.07261


Supplementary Figure 2 and Supplementary Figure 3 show class activation mapping results of 
representative images obtained by different classification models. Supplementary Figure 4 shows 
representative CAKUT images misclassified by the classification models trained with the VGG16 
model. 
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Supplementary Figure Legends: 

Supplementary Figure 1. Deep learning for CAKUT diagnosis at an instance level. 

Supplementary Figure 2. Class activation mapping results of randomly selected CAKUT and control 
kidney images obtained by different deep learning models trained on images in sagittal view. 
Regions in warm color contributed more to the classification than those in cold color.  

Supplementary Figure 3. Class activation mapping results of randomly selected CAKUT and control 
kidney images obtained by different deep learning models trained on images in transverse view. 
Regions in warm color contributed more to the classification than those in cold color.  

Supplementary Figure 4. Representative CAKUT images that were misclassified by the deep 
leaning classifiers.  

 


