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1 Type 1 and Type 2 Sensitivity

To fit the models presented in this paper, we required an estimate of discrimination sensitivity

(d′) and metacognitive sensitivity (meta-d′) for each observer. Each participant completed a

threshold procedure to find the Gabor orientation that would yield a d′ of 1. We could have

used this for all analyses, however we sought to utilize all of the decisions made in the main

task to better estimate d′, as well as obtain a reasonable estimate of meta-d′. To achieve

this, we implemented a hierarchical Bayesian model that leveraged all possible sources of

information to yield a single estimate of d′ and meta-d′ for each participant. We computed

the empirical d′ for participant i in session j of the main task according to the standard

formula

d′ij = z(pHij)− z(pFAij), (S1)
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Figure S1: a) Depiction of example regions for the approximate meta-d′ calculation. Hatched
regions correspond to the probability of a high-confidence judgment for the four possible pair-
ings of stimulus and discrimination response. b) Example of greater sensitivity for perception
(Type 1) than confidence (Type 2). In the standard SDT model, this corresponds to an in-
wards shift of the distributions for confidence. c) Contrast of d′ and meta-d′ results. Each
data point is an observer, with 95% CIs derived from the posterior distribution of parameter
estimates. Marker color indicates best-fitting Type 2 model. Dashed equality line is also
shown for comparison.

where pH was the probability of selecting “right” when the stimulus was truly rightward

tilted, pFA was the probability of selecting “right” when the stimulus was leftward tilted,

and z refers to the standard z-transform. In a similar fashion, we approximated the meta-d′

from the lower and upper confidence criteria, k2− and k2+ respectively. These confidence

criteria can be empirically calculated as per the standard method for deriving a criterion in

Signal Detection Theory (SDT):

k2− =
1

2

[
z(pA) + z(pB)

]
(S2)

and

k2+ =
1

2

[
z(pC) + z(pD)

]
. (S3)

The corresponding regions A-D are best demonstrated graphically (Figure S1a). To compute

meta-d′, we used an average of two d′-like measurements, from the empirical upper and lower

confidence bounds respectively:

meta-d′ij =
1

2

[
z(pAij)− z(pBij) + z(pDij)− z(pCij)

]
. (S4)



The concept behind computing a separate sensitivity parameter for confidence is that ad-

ditional noise may have been applied to the internal measurement between the Type 1 and

Type 2 decisions (?). In the standard SDT framework, the variances of the distributions

are fixed, and so the additional noise is modeled as a shift in distributions means (see Fig-

ure S1b). As such, we use the confidence bounds to estimate the relative separation of

p(x|SL) and p(x|SR) with this additional metacognitive noise. These confidence bounds can

then be represented in the original Type 1 space by a simple transformation

meta-d′

d′
k2,space2 → k2,space1, (S5)

as explained by ? and illustrated in Figure S1b.

In the hierarchical Bayesian model, each observation j of d′ for participant i was assumed

to be drawn from a normally-distributed subject-specific prior,

d′ij ∼ N (d′i, σ
2
i ), (S6)

where d′i is the aggregate estimate of that participant’s d′ for our next stage in modeling, and

σ2
i is their sensitivity variance, capturing both noise in the calculation from a limited number

of samples and sessional changes in sensitivity (e.g., attention, motivation). Similarly, we

modeled the estimates of meta-d′ as

meta-d′ij ∼ N (meta-d′i, σ
2
i ). (S7)

Again, we have a subject-level estimate of sensitivity, meta-d′i, for our modeling. The same

variance parameter was used for both Type 1 and Type 2 estimates, because factors influenc-

ing noise in the observations are likely to be similar for both sensitivity measures. We also

incorporated hyperpriors for both sensitivity measures, leveraging additional information we

had about what to expect for these values. For d′, we used a normally-distributed hyperprior

with a mean of 1.

d′i ∼ N (1, σ2
Type1), (S8)



This decision was based on our expectations from the thresholding procedure, where the

stimulus was adjusted to find d′ = 1, and thus, on average, we expected this sensitivity

for the observers in the main task. The population variance was σ2
Type1. We also used the

following hyperprior for meta-d′:

meta-d′i ∼ N (0.8d′i, σ
2
Type2). (S9)

Based on previous results, we expected the meta-d′ of a participant to be, on average,

about 80% of their d′ sensitivity measure (?). Thus, the mean of the meta-d′ hyperprior was

adjusted on a per-subject basis. There was a shared variance parameter, σ2
Type2, representing

variations in meta-cognition across participants in the same manner as σ2
Type1. To ensure

good model behavior, all free parameters had reasonable bounds imposed via a uniform prior

either in addition to or in lieu of the other prior distributions described above: [0, 3] for d′i

and meta-d′i, and [0.1, 5] for σi, σType1, and σType2. The model was fit using custom-written

scripts in the R and RStan programming languages (?), which implemented an MCMC

fitting algorithm with 4000 iterations for each of 4 separate chains. The first half of the

iterations were discarded as warmup. Parameter estimates and confidence intervals were

calculated from the marginal posteriors (i.e., from the mean and percentile ranges of the

samples).

The results of the model of Type 1 and Type 2 sensitivity are shown in Figure S1c.

In general, there was greater sensitivity at the Type 1 level than at the Type 2 level, as

expected (?). The ratio of Type 2 to Type 1 sensitivity, also known as the m-ratio in the

confidence literature (?), was 0.86±0.04 (mean±SEM). On average, participants’ variability

in d′ over sessions was σ̂i = 0.19 ± 0.02 (mean±SEM). Across participants, we saw a vari-

ability in Type 1 sensitivity of σ̂Type1 = 0.37 (95% CI: [0.23, 0.60] according to the posterior

distribution of parameter fits), and at the Type 2 level, σ̂Type2 = 0.12 (95% CI: [0.1, 0.35]).

2 Multinomial Decision Model

Model fitting was performed in three sequential steps: (1) fitting of d′ and meta-d′, (2) Type 1

models, and (3) Type 2 models. In each case, the best-fitting parameters (and the best-fitting



model in the Type 1 case) from one step were fixed while fitting models in the subsequent

step. Fitting d′ and meta-d′ was explained in the previous section.

For Type 1 fits, we chose a dense grid of parameters, bias (γ) and between zero and three

conservatism parameters (α), with which to calculate the likelihood. The likelihood was a

binomial across the two possible discrimination responses. We assumed a fixed lapse rate,

λ = 0.02, for all participants, so

P (data | θ) =
∏

stim∈{L,R}

∏
resp∈{“L”,“R”}

(
λ/2 + (1− λ) p(resp | stim, θ)

)Nresp,stim

, (S10)

whereNresp,stim is the number of trials in which that response was made for the discrimination

of that stimulus.

The probability of a response is given by the corresponding area under the normal distri-

bution, as in standard SDT. We fixed the variances of the internal response distributions to

be 1, and positioned them based on the participant’s sensitivity at locations ±d′/2. There-

fore, the probabilities for the correct responses, for example, were:

p(“L” |L) = Φ

(
γ + k1 +

d′

2

)
(S11)

and

p(“R” |R) = 1− Φ

(
γ + k1 −

d′

2

)
, (S12)

where Φ is the standard cumulative normal distribution. Note here that k1 is calculated

from d′ and α according to the Type 1 model.

The Type 2 fits inherited bias (γ) and various conservatism (α) parameters from the

Type 1 model fits. The d′ and meta-d′ values were inherited from the hierarchical d′ model

fit. Thus, the counterfactual criterion k∗1 was already fixed, and the Type 2 modeling involved

only a single free parameter, δ. Responses were modeled as a multinomial distribution with

four possible responses to each stimulus, defined by the combination of the discrimination

and confidence responses. We used the same lapse rate, but the probability of a particular



random response was now halved because there were twice as many possible outcomes:

P (data | δ) =
∏

stim∈{L,R}

∏
resp∈{“LH”,“LL”,“RH”,“RL”}

(
λ/4 + (1− λ) p(resp | stim, δ)

)Nresp,stim

.

(S13)

The probabilities of each response depend on the Type 2 criteria, for example:

p(“LH”|L) = Φ

(
k2− +

d′

2

)
(S14)

p(“LL”|L) = Φ

(
k1 +

d′

2

)
− Φ

(
k2− +

d′

2

)
(S15)

p(“RL”|R) = Φ

(
k2+ −

d′

2

)
− Φ

(
k1 −

d′

2

)
(S16)

p(“RH”|R) = 1− Φ

(
k2+ −

d′

2

)
(S17)

k2− and k2+ are the effective left and right confidence criteria respectively, and γ was left

out of these equations for readability. In the double-asymmetry conditions, it is possible for

an observer’s Type 1 criterion to be outside the intended symmetric bounds of the Type 2  criteria 

with a small enough δ, as in Figure 1f. In this case, the effective k2− is actually equal 101 to k1. 

Concretely, this would happen if an observer was highly confident that the stimulus 102 was right-

tilted, but the potential rewards are so asymmetric that they respond left-tilted 103

anyway. Because of the potential for these cases, k2− and k2+ were not simply k∗1 ± δ, but

rather

k2+ = max(k1, k
∗
1 + δ) (S18)

k2− = min(k1, k
∗
1 − δ). (S19)

We used flat priors on all parameters, so we calculated model evidence by marginalizing 

across each dimension of the posterior.

p(data|M) =

∫
p(data|θ,M)p(θ)dθ (S20)

To do this, we numerically integrated the posterior of our parameter grid with a rectangular 
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Figure S2: Checks on the fitted model parameters. a) Relationship between the bias in
perceived vertical (γ) and the proportion of “right-tilt” judgments. Red cross: results for
an unbiased observer. b) Relationship between the confidence criteria width parameter, δ,
and the proportion of “high confidence” judgments. Small δ leads to more high confidence
reports (over-confidence). This predicted relationship is supported by the data. Error bars:
95% CIs from the posterior.

approximation by summing the volume of each grid element:

p(data |M) ≈
∑
θ

p(data | θ,M) ∆xθ, (S21)

where ∆xθ is the product of step sizes for each dimension in the parameter grid. The model  

evidences for all models and all participants were used to compute the protected exceedance  

probability with the SPM12 Toolbox (Wellcome Trust Centre for Neuroimaging, London, 

UK) according to ?.

3 Model Checks and Fits for All Subjects

Two of the model parameters make clear predictions about behavior. The fitted response  bias 

parameter, γ, should be negatively correlated with the total proportion of trials the participants 

responded “right.” Positive γ values indicate a rightward tilted line is perceived as vertical, 

leading to fewer rightward responses overall. Figure S2a confirms this relationship (r = −0.995, p 

< .0001). The average bias is γ = .04 ± .06, with 70% of participants significantly biased 

according to the posterior parameter distribution. Also, δ, half of the



distance between the Type 2 criteria, should be inversely correlated with the proportion  of “high 

confidence” reports; larger values of δ expand the low-confidence region (compare  Figures 1e and 

f). This predicted relationship was obtained (Figure S2b; r = −0.986, p <  .0001; δ = 1.00±0.13). 

These predictions are not trivial: idiosyncratic biases in one condition  may disappear or reverse on 

a subsequent day in the inverse condition. Nevertheless, we find 

that the γ and δ parameters are meaningfully capturing patterns of behavior.

The following figures show the results of all subjects in the style of Figures 4 and 5 of

the main paper.



R
a
w
D
a
ta

ΩΩ Ω
2
,a
c
c

ΩΩ Ω
2
,a
c
c
+
c
o
n
s

ΩΩ Ω
2
,g
a
in

ΩΩ Ω
2
,g
a
in
+
c
o
n
s

ΩΩ Ω
2
,n
e
u

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

Figure S3: Raw and predicted response rates for participants 1-5. Grids are formed from
the seven conditions (rows) and the eight possible stimulus-response-confidence combinations
(columns). Condition order: (1) full symmetry, (2) single asymmetry (p(R) = .75), (3) single
asymmetry (p(R) = .25), (4) single asymmetry (VR : VL = 4 : 2), (5) single asymmetry
(VR : VL = 2 : 4), (6) double asymmetry (p(R) = .75, VR : VL = 2 : 4), (7) double asymmetry
(p(R) = .25, VR : VL = 4 : 2). Fill: proportion of trials for that condition and stimulus that
have that combination of response and confidence. Top row: Raw response rates. Subsequent
rows: difference between raw and predicted response rates as per each model. Green boxes:
winning models.
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Figure S4: Raw proportions of subjects 6-10 in the style of Figure S3.
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Figure S5: Comparison of the empirical and predicted k1 and k∗1 for participants 1-5. Top
row: empirical criteria. k∗1 was calculated as the midpoint between the two empirical k2 (see
Figure S1 for k2 calculation details). Left column: predicted relationship between the Type 1
and Type 2 criteria (d′ = 1; all Ω1,1α with α = 0.5). Grey and square symbols: symmetry
conditions. Triangles: prior asymmetry. Blue symbols: payoff asymmetry. Polar plots:
residuals between empirical data and model prediction based on best-fitting parameters,
plotted as vectors. Arrowheads: residuals greater than plot bounds.
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Figure S6: Comparison of k1 and k∗1 for participants 6-10 in the style of Figure S5.



4 Gains-Accuracy Trade-off Strategy and Conservatism 

Here, we show how the gain-accuracy trade-off strategy of ? is equivalent to the Ω1,2α

model. The gain-accuracy trade-off strategy can be expressed mathematically as a weighted 

sum between the gain-maximizing criterion, kopt, and the accuracy-maximizing criterion, kp,

with weight w (0 ≤ w ≤ 1). We also applied a single general conservatism parameter in  this 

weighting strategy, which can be thought of as acting on each separate component or 

equivalently to the sum of the components. A simple rearrangement shows how these two 

models are equivalent:

αvkv + αpkp = wαkopt + (1− w)αkp

= α(wkv + wkp + kp − wkp)

= α(wkv + kp)

= αwkv + αkp

(S22)

Therefore, we find that different degrees of conservatism for priors than payoffs can arise as  a 

result of weight values less than 1. Specifically, the weight value contributes to an increase  in a 

general level of conservatism, αv = αw and αp = α, where the constraint w ≤ 1 ensures 

that αv ≤ αp. If w = 1, then αv = αp = α, which is the single conservatism model Ω1,1α.
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