Supporting Information S1-S2 Figures and S1-S3 Tables

featuring the article

Model-based optimization of combination protocols for irradiationinsensitive cancers

by Beata Hat1, Joanna Jaruszewicz-Błońska1, and Tomasz Lipniacki1

¹ Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland

Scientific Reports 2020

S1 Figure. Detailed representation of the full model based on [S1]. Arrow-headed dashed lines indicate transcriptional regulation, arrow-headed solid lines—protein transformation, circle-headed solid lines—positive influence, hammer-headed dotted lines—ubiquitination by Mdm2 leading to protein degradation. The subscripts n or c denote either nuclear or cytoplasmic localization of Mdm2. Bold 'P' and non-bold 'U' denote phosphorylated and unphosphorylated states of given residues, respectively. Mdm2 inhibitor is represented with red circle; pro-survival and cycle-promoting proteins are represented with blue boxes, pro-apoptotic proteins with yellow boxes, proteins promoting cell cycle arrest with green boxes, while the remaining proteins and protein complexes are left in grey boxes.

S2 Figure. Relative resistance to irradiation: normal versus PTEN-cancer (**A**, **C**) and Wip1-cancer (**B**, **D**) cells based on the deterministic model simulations. The inhibitor dose is given in IC_{50} units per single administration with respect to cancer cells for which 3-fold higher (**A-B**) or equal (**C-D**) specificity (with respect to normal cells) is assumed. In each panel two protocols with highest IR_{crit} ratio are marked with color lines (see Legend). Grey lines correspond to the other analyzed protocols (shown in Fig. 4A).

All parameters, excluding parameters governing inhibitor dynamics, come from our previous study [S1]. All reactants levels are given in molecules/cell; such representation enables stochastic simulations. Parameters governing inhibitor dynamics where chosen to reproduce experimental data shown in Zhang et al. [S2]. The maximal level of inhibitor in blood is achieved at approximately 2 hours after oral inhibitor delivery. After next 10 hours the inhibitor level decreases approximately ten-fold (see Fig 4). For the sake of simplicity processes of cellular import of inhibitor from blood and its binding with Mdm2 are lumped together into a single reaction with rate k_a . Analogously, inhibitor:Mdm2 complex dissociation is lumped with inhibitor export from cell to blood and described by a single reaction with rate k_d . Oral inhibitor delivery is instantaneous. Technical realization of such delivery is following: inhibitor administration time is set equal 10 seconds and the single dose, denoted by INH, is administered with rate INH/10 s⁻¹. In the case of drip inhibitor delivery, a daily dose INH is given with rate INH/24 h⁻¹. We assume that at any given time point the fraction of inhibitor molecules bound to Mdm2 is small; accordingly we neglect depletion of inhibitor due to Mdm2 binding.

Supporting Tables

Symbol	Description
	Inhibitor dynamics
INH _{Mdm2_oral}	Mdm2 inhibitor administered orally
INH _{Mdm2_blood}	Mdm2 inhibitor level in blood
$Mdm2_{cyt_{0p}}$: $INH_{Mdm2blood}$	complex of INH_{Mdm2_blood} and cytoplasmic unphosphorylated Mdm2
$Mdm2_{cyt_{2p}}$: $INH_{Mdm2blood}$	complex of INH_{Mdm2_blood} and cyt. Mdm2 p'ylated at Ser166 and 186
<i>Mdm2</i> _{nuc_2p} : <i>INH</i> _{Mdm2blood}	complex of INH_{Mdm2_blood} and nuclear Mdm2 p'ylated at Ser166 and 186
$Mdm2_{nuc_{3p}}$: $INH_{Mdm2blood}$	complex of INH_{Mdm2_blood} and nuc. Mdm2 p'ylated at Ser166, 186 and 395
	Core module
DNA _{DSB}	DNA damage due to IR: double strand breaks (DSBs)
ATM_u	unphosphorylated kinase ATM
$ATM_{ m p}$	ATM phosphorylated at Ser1981 (upon DNA DSBs)
$Wip1_{gene_a}, Wip1_{gene_i}$	state of the Wip1 (PPM1D) gene: active(a)/inactive(i)
$Wip1_{mRNA}$	Wip1 transcript
Wip1	phosphatase Wip1
SIAH1 _u	unphosphorylated SIAH1
SIAH1 _p	SIAH1 phosphorylated at Ser19
HIPK2	kinase HIPK2
$p53_{0p}$	unphosphorylated p53
p53 _{ARRESTER}	p53 phosphorylated at Ser15, Ser20
p53 _{KILLER}	p53 phosphorylated at Ser15, Ser20 and additionally at Ser46
$p53_{s46}$	p53 phosphorylated at Ser46 only
$Mdm2_{gene}$ a, $Mdm2_{gene}$ i	state of the Mdm2 gene: active(a)/inactive(i)
$Mdm2_{mRNA}$	Mdm2 transcript
Mdm2 _{cyt 0p}	cytoplasmic, unphosphorylated Mdm2
$Mdm2_{\rm cyt} _{\rm 2p}$	cytoplasmic Mdm2 phosphorylated at Ser166 and Ser186
$Mdm2_{nuc 2p}$	nuclear Mdm2 phosphorylated at Ser166 and Ser186
$Mdm2_{nuc 3p}$	nuclear Mdm2 phosph. at Ser166, 186 and additionally at Ser395
PI3K	kinase PI3K
PTENgene_a, PTENgene_i	state of the PTEN gene: active(a)/inactive(i)
PTEN _{mRNA}	PTEN transcript
PIP2	bi-phosphatidylinositol
PIP3	tri-phosphatidylinositol

S1 Table. Notation guide.

Aktu	unphosphorylated AKT		
Akt _p	Akt phosphorylated at Thr308		
Apoptotic module			
$Bax_{gene_a}, Bax_{gene_i}$	state of the Bax gene: active(a)/inactive(i)		
Bax_{mRNA}	Bax transcript		
Bax	unbound form of Bax		
$Bclx_L$	unbound form of Bcl-x _L		
$Bax: Bclx_L$	complex of Bax and Bcl-x _L		
Bad_{u}	unbound, unphosphorylated Bad		
Bad_{p}	Bad: unbound, phosphorylated at Ser75 and Ser99		
$Bcl-x_L: Bad_u$	complex of Bcl-x _L and Bad _u		
14-3-3	unbound adapter protein 14-3-3		
Bad _p : 14-3-3	complex of Bad _p and 14-3-3		
proCasp	inactive caspase		
Casp	active caspase		
	Cell cycle arrest module		
$p21_{\text{gene_a}}, p21_{\text{gene_i}}$	state of the p21 gene: active(a)/inactive(i)		
$p21_{\rm mRNA}$	p21 transcript		
<i>p</i> 21	unbound p21		
CycE	unbound Cyclin E		
<i>p21: CycE</i>	complex of p21 and Cyclin E		
<i>Rb1</i> ^u	Rb1: unbound, unphosphorylated at Ser780		
<i>Rb1</i> _p	Rb1: unbound, phosphorylated at Ser780		
$Rb1_{u}: E2F1$	complex of unphosphorylated Rb1 and E2F1		

S2 Table. Model parameters.

Parameter	Symbol	Value	Remarks
Duration of the IR phase	IR _T	600 [s]	—
Inhibitor dose	INH _{dose}	as given	_
Irradiation dose	<i>IR</i> _{Gy}	as given	_
Number of DSBs per 1Gy of IR	DSB _{Gy}	10 [break/cell]	_
Maximal number of DSBs	DSB _{max}	10 ⁶ [break/cell]	—
Number of repair complexes	DSB _{rep}	20 [mlc/cell]	—
Total amount of SIAH1	SIAH1 _{tot}	10 ⁵ [mlc/cell]	$SIAH1_{tot} = SIAH1_{u} + SIAH1_{p}$
Total amount of ATM	ATM _{tot}	10 ⁵ [mlc/cell]	$ATM_{tot} = ATM_{u} + ATM_{p}$
Total amount of BclXL	BclXLtot	10 ⁵ [mlc/cell]	$Bclx_{Ltot} = Bclx_{L} + Bclx_{L}: Bad_{u} + Bclx_{L}: Bax$
Total amount of Bad	Bad _{tot}	6×10^4 [mlc/cell]	$Bad_{tot} = Bad_{u} + Bad_{p} + Bclx_{L}: Bad_{u} + Bad_{p}: 14-3-3$
Total amount of Rb1	<i>Rb1</i> tot	3×10^5 [mlc/cell]	$Rb1_{tot} = Rb1_p + Rb1_u + Rb1_u : E2F1$

Total amount of E2F1	E2F1 _{tot}	2×10^5 [mlc/cell]	$E2F1_{tot} = E2F1 + Rb1_u : E2F1$
Total amount of Akt	Akt _{tot}	10 ⁵ [mlc/cell]	$Akt_{tot} = Akt_u + Akt_p$
Total amount of PIP3 and PIP2	PIP _{tot}	10 ⁵ [mlc/cell]	$PIP_{tot} = PIP2 + PIP3$
Total amount of 14-3-3	14-3-3 _{tot}	2×10^5 [mlc/cell]	$14-3-3_{tot} = 14-3-3 + Bad_p: 14-3-3$

S3 Table. Reactions and reaction rate coefficients. All reactants levels are in molecules/cell.

Reaction	Rate	Coeff.	Value	
Inhibitor dynamics				
$\emptyset \xrightarrow{INH} INH_{Mdm2_oral}$	INH _{dose} duration	duration	10 s (oral single administration) 24×3600 s (drip administration)	
$INH_{Mdm2_oral} \rightarrow INH_{Mdm2_blood}$	dr_1	dr_1	2.8×10^{-4} /s	
$INH_{Mdm2_blood} \rightarrow \emptyset$	dr_2	dr_2	$0.7 imes 10^{-4}$ /s	
$Mdm2_{cyt_0p} \xrightarrow{INH_{Mdm2_blood}} Mdm2_{cyt_0p}: INH_{Mdm2_blood}$				
$Mdm2_{cyt_2p} \xrightarrow{INH_{Mdm2_blood}} Mdm2_{cyt_2p} : INH_{Mdm2_blood}$		k _a	k _d	
$Mdm2_{nuc_2p} \xrightarrow{INH_{Mdm2_blood}} Mdm2_{nuc_2p} \xrightarrow{INH_{Mdm2_blood}} Mdm2_{nuc_2p} : INH_{Mdm2_blood}$	$k_a \cdot INH_{Mdm2_blood}$			
$Mdm2_{nuc_{3p}} \xrightarrow{INH_{Mdm2_blood}} Mdm2_{nuc_{3p}} : INH_{Mdm2_blood}$				
$Mdm2_{cyt_0p} \\ \leftarrow Mdm2_{cyt_0p}: INH_{Mdm2_blood}$		k _d	$4.6 imes 10^{-5}/s$	
$Mdm2_{cyt_2p} \\ \leftarrow Mdm2_{cyt_2p}: INH_{Mdm2_blood}$	k.			
$Mdm2_{nuc_2p} \leftarrow Mdm2_{nuc_2p}: INH_{Mdm2_{blood}}$	r _d			
$Mdm2_{nuc_{3p}} \leftarrow Mdm2_{nuc_{3p}}: INH_{Mdm2_{blood}}$				
$Mdm2_{cyt_2p}$: $INH_{Mdm2_{blood}}$ $\rightarrow Mdm2_{nuc_2p}$: $INH_{Mdm2_{blood}}$	i ₁	i ₁	10 ⁻³ /s	
$Mdm2_{nuc_{2p}}:INH_{Mdm2_{blood}}$ $\xrightarrow{ATM_{p}} Mdm2_{nuc_{3p}}:INH_{Mdm2_{blood}}$	$p_6 \cdot ATM_{ m p}$	p_6	10 ⁻⁸ /s	
$\frac{Mdm2_{nuc_2p}:INH_{Mdm2_{blood}}}{\underset{\longleftarrow}{\overset{Wip1}{\longleftarrow}}Mdm2_{nuc_3p}:INH_{Mdm2_{blood}}}$	$d_6 \cdot Wip1$	d_6	10 ⁻¹⁰ /s	

Core module				
$\emptyset \xrightarrow{IR} DNA_{DSB}$	$h_1 \cdot \frac{DSB_{Gy} \cdot IR_{Gy}}{IR_T} \cdot (DSB_{\max} - DNA_{DSB})$	h_1 DSB_{Gy} IB_{π}	$10^{-6}/s$ 10 10 × 60 s	
$\emptyset \xrightarrow{Casp} DNA_{DSB}$	$h_2 \cdot Casp \cdot (DSB_{\max} - DNA_{DSB})$	DSB_{max} h_2	$10^{-13}/s$	
$DNA_{DSB} \rightarrow \emptyset$	$\frac{rep}{DNA_{DSB} + DSB_{rep}}$	rep DNA _{DSB}	10 ⁻³ /s 20	
$ATM_{u} \xrightarrow{DSB} ATM_{p}$	$p_1 \cdot \frac{DNA^h_{DSB}}{M^h_1 + DNA^h_{DSB}}$	p ₁ h M ₁	3×10^{-4} /s 2 5	
$ATM_{u} \stackrel{Wip1}{\longleftarrow} ATM_{p}$	$d_1 \cdot Wip1$	d_1	10 ⁻⁸ /s	
$SIAH-1_{u} \xrightarrow{ATM_{p}} SIAH-1_{p}$	$p_2 \cdot ATM_p$	<i>p</i> ₂	10 ⁻⁸ /s	
SIAH-1u ← SIAH-1p	<i>d</i> ₂	<i>d</i> ₂	3×10^{-5} /s	
$\emptyset \rightarrow HIPK2$	<i>s</i> ₈	s ₈	30/s	
$HIPK2 \xrightarrow{Mdm2_{nuc_2p}, SIAH-1_u} \emptyset$	$g_7 \cdot (SIAH-1_u + Mdm2_{nuc_2p})^2$	g_7	$10^{-13}/s$	
$Wip1_{gene_i} \rightarrow Wip1_{gene_a}$	q_{0_Wip1}	$q_{0_{\rm Wip1}}$	10 ⁻⁵ /s	
$Wip1_{gene_i} \xrightarrow{p53_{ARRESTER}} Wip1_{gene_a}$	$q_{1_{Wip1}} \cdot p53^h_{ARRESTER}$	$q_{1_Wip1} \ h$	3×10^{-13} /s 2	
$Wip1_{gene_i} \leftarrow Wip1_{gene_a}$	<i>q</i> ₂	<i>q</i> ₂	$3 \times 10^{-3}/s$	
$\emptyset \xrightarrow{Wip1_{gene_a}} Wip1_{mRNA}$	$s_1 \cdot Wip1_{gene_a}$	<i>s</i> ₁	0.1/s	
$Wip1_{mRNA} \rightarrow \emptyset$	g_1	g_1	$3 \times 10^{-4}/s$	
$\emptyset \rightarrow Wip1$	$t_1 \cdot Wip 1_{ m mRNA}$	t_1	0.1/s	
$Wip1 \rightarrow \emptyset$	g_8	g_8	3×10^{-4} /s	
$\varnothing ightarrow p53_{0p}$	<i>S</i> ₆	<i>s</i> ₆	300/s	
$p53_{0p} \rightarrow \emptyset$				
$p53_{s46} \rightarrow \emptyset$, and the second s	~	10-5/2	
$p53_{ARRESTER} ightarrow \emptyset$	\mathcal{Y}_{101}	y_{101}	10 /8	
$p53_{ m KILLER} ightarrow \emptyset$				
$p53_{0p} \xrightarrow{Mdm2_{nuc_2p}} \emptyset$	$g_{11} \cdot Mdm2^2_{ m nuc_2p}$	g_{11}	$10^{-11}/s$	
$p53_{\text{ARRESTER}} \xrightarrow{Mdm2_{\text{nuc}}2p} \emptyset$				
$p53_{\text{KILLER}} \xrightarrow{Mdm2_{\text{nuc}2p}} \emptyset$	$g_{12} \cdot Mdm2^2_{ m nuc_2p}$	g_{12}	$10^{-13}/s$	
$p53_{s46} \xrightarrow{Mdm2_{nuc_2p}} \emptyset$				
$p53_{0p} \xrightarrow{ATM_p} p53_{ARRESTER}$	$p_3 \cdot ATM_p$	p_3	3×10^{-8} /s	
$\frac{p53_{s46} \longrightarrow p53_{KILLER}}{72}$				
$\frac{p53_{0p} \leftarrow p53_{\text{ARRESTER}}}{p53_{s46} \leftarrow p53_{\text{KILLER}}}$	d_3	d_3	$10^{-4}/s$	

$p53_{0p} \xrightarrow{HIPK2} p53_{s46}$	n. • HIPK2	n.	10^{-10} /s
$p53_{\mathrm{ARRESTER}} \xrightarrow{HIPK2} p53_{\mathrm{KILLER}}$	<i>P</i> 4 <i>m n</i> 2	P4	10 /5
$p53_{0p} \stackrel{Wip1}{\longleftarrow} p53_{s46}$	$d_{A} \cdot Wip1$	d_{A}	10^{-10} /s
$p53_{ m ARRESTER} \stackrel{Wip1}{\longleftarrow} p53_{ m KILLER}$		т	
$Mdm2_{gene_i} \rightarrow Mdm2_{gene_a}$	$q_{0_{\rm Mdm2}}$	q _{0_Mdm2}	$10^{-4}/s$
$Mdm2_{gene_i} \xrightarrow{p53_{ARRESTER}} Mdm2_{gene_a}$	$q_{1_Mdm2} \cdot p53^h_{ARRESTER}$	$q_{1_{Mdm2}}$ h	3×10^{-13} /s 2
$Mdm2_{gene_i} \leftarrow Mdm2_{gene_a}$	<i>q</i> ₂	<i>q</i> ₂	3×10^{-3} /s
$\emptyset \xrightarrow{Mdm2_{gene_a}} Mdm2_{mRNA}$	$s_3 \cdot Mdm2_{gene_a}$	<i>S</i> ₃	0.1/s
$Mdm2_{mRNA} \rightarrow \emptyset$	g_3	g_3	$3 imes 10^{-4}$ /s
$\emptyset \rightarrow Mdm2_{cyt_0p}$	$t_3 \cdot Mdm2_{ m mRNA}$	t ₃	0.1/s
$Mdm2_{cyt_0p} \xrightarrow{AKT_p} Mdm2_{cyt_2p}$	$p_5\cdot Akt_{ m p}$	p_5	10 ⁻⁸ /s
$Mdm2_{cyt_0p} \leftarrow Mdm2_{cyt_2p}$	d_5	d_5	$10^{-4}/s$
$Mdm2_{cyt_2p} \rightarrow Mdm2_{nuc_2p}$	i ₁	<i>i</i> ₁	10 ⁻³ /s
$Mdm2_{nuc_2p} \xrightarrow{ATM_p} Mdm2_{nuc_3p}$	$p_6 \cdot ATM_p$	p_6	10 ⁻⁸ /s
$Mdm2_{nuc_2p} \stackrel{Wip1}{\longleftarrow} Mdm2_{nuc_3p}$	$d_6 \cdot Wip1$	d_6	$10^{-10}/s$
$Mdm2_{cyt_0p} \rightarrow \emptyset$	g_{14}	g_{14}	$10^{-4}/s$
$\frac{Mdm2_{cyt_2p} \rightarrow \emptyset}{Mdm2_{cyt_2p} \rightarrow \emptyset}$	g_{15}	g_{15}	$3 \times 10^{-5}/s$
$Mdm2_{nuc_{2p}} \rightarrow \emptyset$			10-4/
$Mam Z_{nuc_{3p}} \rightarrow \emptyset$	<i>g</i> ₁₆	g_{16}	10 ⁻⁴ /s
$\frac{PIEN_{gene_i} \rightarrow PIEN_{gene_a}}{2}$	<i>q</i> ₀_ <i>pten</i>	q _{0_PTEN}	$10^{-3/8}$
$PTEN_{gene_i} \xrightarrow{p_{53_{KILLER}}} PTEN_{gene_a}$	$q_{1_PTEN} \cdot p53^h_{\mathrm{KILLER}}$	q_{1_PTEN} h	3 × 10 ⁻²⁵ /s
$PTEN_{gene_i} \leftarrow PTEN_{gene_a}$	<i>q</i> ₂	q_2	3×10^{-3} /s
$\emptyset \xrightarrow{PTEN_{gene_a}} PTEN_{mRNA}$	$s_2 \cdot PTEN_{gene_a}$	<i>s</i> ₂	0.03/s
$PTEN_{mRNA} \rightarrow \emptyset$	<i>g</i> ₂	g_2	3×10^{-4} /s
$\emptyset \rightarrow PTEN$	$t_2 \cdot PTEN_{mRNA}$	<i>t</i> ₂	0.1/s
$\underline{PTEN} \rightarrow \emptyset$	g_6	g_6	3×10^{-5} /s
$PIP2 \xrightarrow{PI3K} PIP3$	$p_8 \cdot PI3K$	p_8	$3 \times 10^{-9}/s$
$PIP2 \stackrel{PTEN}{\longleftarrow} PIP3$	$d_7 \cdot PTEN$	d_7	3×10^{-7} /s
$Akt_{\mathrm{u}} \xrightarrow{PIP3} Akt_{\mathrm{p}}$	$p_{12} \cdot PIP3$	<i>p</i> ₁₂	10 ⁻⁹ /s
$Akt_{u} \leftarrow Akt_{p}$	d_8	d_8	10 ⁻⁴
	Apoptotic module		
$Bax_{gene_i} \rightarrow Bax_{gene_a}$	q_{0_Bax}	q_{0_Bax}	10 ⁻⁵ /s

$Bax_{gene_i} \xrightarrow{p53_{KILLER}} Bax_{gene_a}$	$q_{1_Bax} \cdot p53^h_{\mathrm{KILLER}}$	q_{1_Bax} h	3×10^{-13} /s 2
$Bax_{gene_i} \leftarrow Bax_{gene_a}$	q_2	<i>q</i> ₂	3×10^{-3} /s
$\emptyset \xrightarrow{Bax_{gene_a}} Bax_{mRNA}$	$s_4 \cdot Bax_{gene_a}$	<i>S</i> ₄	0.03/s
$Bax_{mRNA} \rightarrow \emptyset$.g.,	.g ₄	3×10^{-4} /s
$\emptyset \rightarrow Bax$	$t_4 \cdot Bax_{mRNA}$	t_4	0.1/s
$Bax \rightarrow \emptyset$	<i>g</i> ₉	<i>g</i> ₉	$10^{-4}/s$
$Bax + Bclx_{L} \rightarrow Bax: Bclx_{L}$	<i>b</i> ₁	<i>b</i> ₁	$3 \times 10^{-5}/s$
$Bax + Bclx_{L} \leftarrow Bax: Bclx_{L}$	<i>u</i> ₁	<i>u</i> ₁	10 ⁻³ /s
$Bax: Bclx_{L} \rightarrow Bclx_{L}$	g_{16}	g_{16}	$10^{-4}/s$
$Bclx_{L} + Bad_{u} \rightarrow Bclx_{L}: Bad_{u}$	<i>b</i> ₂	<i>b</i> ₂	$3 \times 10^{-3}/s$
$Bclx_{L} + Bad_{u} \leftarrow Bclx_{L} : Bad_{u}$	<i>u</i> ₂	<i>u</i> ₂	$10^{-3}/s$
$Bclx_{L}: Bad_{u} \xrightarrow{Akt_{p}} Bclx_{L}$	$p_7\cdot Akt_{ m p}$	p_7	3×10^{-9} /s
$Bad_{u} \xrightarrow{AKT_{p}} Bad_{p}$	$p_7\cdot Akt_{ m p}$	p_7	3×10^{-9} /s
$Bad_{u} \leftarrow Bad_{p}$			0 10 F /
$Bad_{u} + 14-3-3 \leftarrow Bad_{p} + 14-3-3$	d_9	d_9	$3 \times 10^{-5}/s$
$Bad_{p} + 14-3-3 \rightarrow Bad_{p}: 14-3-3$	<i>b</i> ₃	<i>b</i> ₃	3×10^{-3} /s
$Bad_{p} + 14-3-3 \leftarrow Bad_{p}: 14-3-3$	<i>u</i> ₃	<i>u</i> ₃	10 ⁻³ /s
$\emptyset \rightarrow proCasp$	<i>S</i> ₇	<i>S</i> ₇	30/s
$proCasp \xrightarrow{Bax, Casp} Casp$	$a_1 \cdot Bax + a_2 \cdot Casp^2$	$a_1 \\ a_2$	$3 \times 10^{-10}/s$ $10^{-12}/s$
$proCasp \rightarrow \emptyset$			2 × 10-4/
$Casp \rightarrow \emptyset$	$g_{_{17}}$	g_{17}	3 × 10 ⁻⁷ /s
	Cell cycle arrest module		
$p21_{gene_i} ightarrow p21_{gene_a}$	$q_{0_{-}p21}$	$q_{0_{-}p21}$	10 ⁻⁵ /s
$p_{21_{\text{conc}}} \xrightarrow{p_{53_{\text{ARRESTER}}}} p_{21_{\text{conc}}} = p_{12_{\text{conc}}}$			
r – gene_i r – gene_u	$q_{1_p21} \cdot p53^h_{\mathrm{ARRESTER}}$	$q_{1_p21} \ h$	3×10^{-13} /s 2
$\frac{p - gene_i}{p 21_{gene_i} \leftarrow p 21_{gene_a}}$	$q_{1_p21} \cdot p53^h_{ARRESTER}$ q_2	$\begin{array}{c} q_{1_p_{21}} \\ h \\ q_2 \end{array}$	$3 \times 10^{-13}/s$ 2 $3 \times 10^{-3}/s$
$\frac{p21_{gene_i} \leftarrow p21_{gene_a}}{\emptyset \xrightarrow{p21_{gene_a}} p21_{mRNA}}$	$q_{1_p21} \cdot p53^h_{\text{ARRESTER}}$ q_2 $s_5 \cdot p21_{gene_a}$	$\begin{array}{c} q_{1_p21} \\ h \\ \hline q_2 \\ \hline s_5 \end{array}$	$ \begin{array}{r} 3 \times 10^{-13} / s \\ 2 \\ 3 \times 10^{-3} / s \\ 0.1 / s \end{array} $
$\frac{p21_{gene_i} \leftarrow p21_{gene_a}}{\emptyset \xrightarrow{p21_{gene_a}} p21_{mRNA}}$	$q_{1_p21} \cdot p53^h_{\text{ARRESTER}}$ q_2 $s_5 \cdot p21_{gene_a}$ g_5	$ \begin{array}{c} q_{1_{1}p_{21}} \\ h \\ q_{2} \\ s_{5} \\ g_{5} \\ \end{array} $	$ \begin{array}{r} 3 \times 10^{-13}/\text{s} \\ 2 \\ 3 \times 10^{-3}/\text{s} \\ \hline 0.1/\text{s} \\ 3 \times 10^{-4}/\text{s} \end{array} $
$ \begin{array}{c} p = -gene_{1} & p = -gene_{a} \\ \hline p = 21_{gene_{i}} \leftarrow p = 21_{gene_{a}} \\ \hline & \emptyset \xrightarrow{p = 21_{gene_{a}}} p = 21_{mRNA} \\ \hline & p = 21_{mRNA} \rightarrow \emptyset \\ \hline & \emptyset \rightarrow p = 21 \end{array} $	$q_{1_p21} \cdot p53^h_{\text{ARRESTER}}$ q_2 $s_5 \cdot p21_{gene_a}$ g_5 $t_5 \cdot p21_{\text{mRNA}}$	$\begin{array}{c c} q_{1_{1}p21} \\ h \\ \hline q_{2} \\ \hline s_{5} \\ g_{5} \\ \hline g_{5} \\ t_{5} \\ \end{array}$	$ \begin{array}{r} 3 \times 10^{-13}/\text{s} \\ 2 \\ 3 \times 10^{-3}/\text{s} \\ \hline 0.1/\text{s} \\ 3 \times 10^{-4}/\text{s} \\ \hline 0.1/\text{s} \\ \end{array} $
$p21_{gene_i} \leftarrow p21_{gene_a}$ $p21_{gene_i} \leftarrow p21_{gene_a}$ $0 \xrightarrow{p21_{gene_a}} p21_{mRNA}$ $p21_{mRNA} \rightarrow \emptyset$ $0 \rightarrow p21$ $p21 \rightarrow \emptyset$	$q_{1_p21} \cdot p53^h_{\text{ARRESTER}}$ q_2 g_5 g_5 $t_5 \cdot p21_{\text{mRNA}}$ g_{19}	$\begin{array}{c c} q_{1_{1}p21} \\ h \\ \hline q_{2} \\ \hline s_{5} \\ g_{5} \\ \hline f_{5} \\ g_{19} \\ \end{array}$	$ \begin{array}{r} 3 \times 10^{-13}/s \\ 2 \\ 3 \times 10^{-3}/s \\ 0.1/s \\ 3 \times 10^{-4}/s \\ 0.1/s \\ 3 \times 10^{-4}/s \\ \end{array} $
$p = -gene_{1} \qquad p = -gene_{2} $ $p = 1 - gene_{2} $ $g = 1 - gene_{2} $	$q_{1_p21} \cdot p53^h_{\text{ARRESTER}}$ q_2 g_5 g_5 $t_5 \cdot p21_{\text{gene}_a}$ g_1 g_{19} $S_9 \cdot \frac{E2F1^h}{M_3^h + E2F1^h}$	$\begin{array}{c c} q_{1_{1}p21} \\ h \\ \hline q_{2} \\ \hline s_{5} \\ \hline g_{5} \\ \hline t_{5} \\ \hline g_{19} \\ \hline s_{9} \\ h \\ M_{3} \\ \end{array}$	$\begin{array}{c} 3 \times 10^{-13} / \text{s} \\ 2 \\ \hline 3 \times 10^{-3} / \text{s} \\ \hline 0.1 / \text{s} \\ \hline 3 \times 10^{-4} / \text{s} \\ \hline 0.1 / \text{s} \\ \hline 3 \times 10^{-4} / \text{s} \\ \hline 30 / \text{s} \\ 2 \\ 2 \times 10^{5} \end{array}$
$p21_{gene_i} \leftarrow p21_{gene_a}$ $p21_{gene_i} \leftarrow p21_{gene_a}$ $p21_{mRNA} \rightarrow \emptyset$ $p21_{mRNA} \rightarrow \emptyset$ $0 \rightarrow p21$ $p21 \rightarrow \emptyset$ $\emptyset \stackrel{E2F1}{\longrightarrow} CycE$ $\emptyset \rightarrow CycE$	$q_{1_p21} \cdot p53^h_{\text{ARRESTER}}$ q_2 g_5 $f_5 \cdot p21_{gene_a}$ g_5 $f_5 \cdot p21_{\text{mRNA}}$ g_{19} $s_9 \cdot \frac{E2F1^h}{M_3^h + E2F1^h}$ s_{10}	$\begin{array}{c c} q_{1_p21} \\ h \\ \hline q_2 \\ \hline s_5 \\ \hline g_5 \\ \hline t_5 \\ \hline g_{19} \\ \hline s_9 \\ h \\ M_3 \\ \hline s_{10} \\ \hline \end{array}$	$\begin{array}{c} 3 \times 10^{-13}/\text{s} \\ 2 \\ \hline 3 \times 10^{-3}/\text{s} \\ \hline 0.1/\text{s} \\ \hline 3 \times 10^{-4}/\text{s} \\ \hline 0.1/\text{s} \\ \hline 3 \times 10^{-4}/\text{s} \\ \hline 30/\text{s} \\ 2 \\ 2 \times 10^{5} \\ \hline 3/\text{s} \end{array}$
$p=-gene_{1}$ $p=-gene_{1}$ $p=-gene_{1}$ $p=-gene_{1}$ $p=21_{gene_{a}}$ $p=21_{mRNA} \rightarrow \emptyset$ $0 \rightarrow p=21$ $p=21 \rightarrow \emptyset$ $\emptyset \xrightarrow{E2F1} CycE$ $\emptyset \rightarrow CycE$ $p=21 + CycE \rightarrow p=21: CycE$	$\begin{array}{c} q_{1_{p21}} \cdot p53^{h}_{\text{ARRESTER}} \\ \hline q_{2} \\ \hline s_{5} \cdot p21_{gene_a} \\ \hline g_{5} \\ \hline t_{5} \cdot p21_{\text{mRNA}} \\ \hline g_{19} \\ \hline s_{9} \cdot \frac{E2F1^{h}}{M_{3}^{h} + E2F1^{h}} \\ \hline s_{10} \\ \hline b_{5} \\ \hline \end{array}$	$\begin{array}{c c} q_{1_{1}p21} \\ h \\ \hline q_{2} \\ \hline s_{5} \\ \hline g_{5} \\ \hline t_{5} \\ \hline g_{19} \\ \hline s_{9} \\ h \\ M_{3} \\ \hline s_{10} \\ \hline b_{5} \\ \end{array}$	$\begin{array}{c} 3 \times 10^{-13}/\text{s} \\ 2 \\ 3 \times 10^{-3}/\text{s} \\ \hline 0.1/\text{s} \\ 3 \times 10^{-4}/\text{s} \\ \hline 0.1/\text{s} \\ 3 \times 10^{-4}/\text{s} \\ \hline 30/\text{s} \\ 2 \\ 2 \times 10^{5} \\ \hline 3/\text{s} \\ 10^{-5}/\text{s} \\ \end{array}$
$p=-gene_{1}$ $p=-gene_{1}$ $p=-gene_{1}$ $p=-gene_{1}$ $p=21_{gene_{a}}$ $p=21_{mRNA} \rightarrow \emptyset$ $0 \rightarrow p=21$ $p=21 \rightarrow \emptyset$ $\emptyset \xrightarrow{E2F1} CycE$ $\emptyset \rightarrow CycE$ $p=21 + CycE \rightarrow p=21: CycE$ $p=21 + CycE \leftarrow p=21: CycE$	$ \begin{array}{c} q_{1_{p21}} \cdot p53^{h}_{\text{ARRESTER}} \\ \hline q_{2} \\ s_{5} \cdot p21_{gene_a} \\ \hline g_{5} \\ t_{5} \cdot p21_{\text{mRNA}} \\ \hline g_{19} \\ \hline s_{9} \cdot \frac{E2F1^{h}}{M_{3}^{h} + E2F1^{h}} \\ \hline s_{10} \\ \hline b_{5} \\ \hline u_{6} \\ \end{array} $	$\begin{array}{c c} q_{1_{1}p21} \\ h \\ \hline q_{2} \\ \hline s_{5} \\ g_{5} \\ \hline f_{5} \\ \hline g_{19} \\ \hline s_{9} \\ h \\ M_{3} \\ \hline s_{10} \\ \hline b_{5} \\ \hline u_{6} \\ \hline \end{array}$	$\begin{array}{c} 3 \times 10^{-13}/\text{s} \\ 2 \\ 3 \times 10^{-3}/\text{s} \\ \hline 0.1/\text{s} \\ 3 \times 10^{-4}/\text{s} \\ \hline 0.1/\text{s} \\ 3 \times 10^{-4}/\text{s} \\ \hline 30/\text{s} \\ 2 \\ 2 \times 10^5 \\ \hline 3/\text{s} \\ 10^{-5}/\text{s} \\ 10^{-4}/\text{s} \\ \end{array}$

$Rb1_{u} \xrightarrow{CycE} Rb1_{p}$	$p_9 \cdot CycE$	p_9	$3 \times 10^{-6}/s$
$Rb1_{u} \leftarrow Rb1_{p}$	$\frac{d_{12}}{M_2 + Rb1_p}$	d ₁₂ M ₂	10 ⁴ /s 10 ⁵
$Rb1_{u} + E2F1 \rightarrow Rb1_{u}: E2F1$	b_4	b_4	10 ⁻⁵ /s
$Rb1_{u} + E2F1 \leftarrow Rb1_{u}: E2F1$	u_5	u_5	$10^{-4}/s$
$Rb1_{u}: E2F1 \xrightarrow{CycE} Rb1_{p} + E2F1$	$p_{10} \cdot CycE$	p_{10}	3×10^{-6} /s

Supplementary references

- S1. Hat B, Kochańczyk M, Bogdał MN, Lipniacki T. Feedbacks, Bifurcations, and Cell Fate Decision-Making in the p53 System. Meier-Schellersheim M, editor. PLoS Comput Biol. 2016;12: e1004787. doi:10.1371/journal.pcbi.1004787
- S2. Zhang F, Tagen M, Throm S, Mallari J, Miller L, Guy RK, et al. Whole-Body Physiologically Based Pharmacokinetic Model for Nutlin-3a in Mice after Intravenous and Oral Administration. Drug Metab Dispos. 2011;39: 15–21. doi:10.1124/dmd.110.035915