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SUPPLEMENTARY METHODS 

 

Pathogenicity score  

A combination of Mutation Taster [1], CHASM (breast) [2] and FATHMM [3] was used to define the 

potential functional effect of each missense SNV. Missense SNVs defined as non-deleterious/passenger 

by both MutationTaster [1] and CHASM (breast) [2] a combination of mutation function predictors shown 

to have a high negative predictive value [4], were considered likely passenger alterations. The remaining 

missense SNVs were defined as likely pathogenic if they were predicted to be “driver” and/or “cancer” by 

CHASM (breast classifier) and/or FATHMM [3] respectively, or affected cancer genes included in the 

cancer gene lists described by Kandoth et al. (127 significantly mutated genes) [5], the Cancer Gene 

Census [6] or Lawrence et al. (Cancer5000-S gene set) [7], or affected hotspot residues [8]. In-frame 

indels defined as “neutral” by MutationTaster [1] and PROVEAN [9] were defined as likely passengers. 

The remaining in-frame indels, as well as frameshift, splice-site and truncating mutations were considered 

likely pathogenic if they were targeted by loss of the wild-type allele (see below) or affected 

haploinsufficient genes or affected cancer genes [5-7] or affected hotspot residues [8]. Mutations that 

were neither likely pathogenic nor likely passenger were considered of indeterminate pathogenicity. 

 

Phylogenetic tree construction 

A starting tree was constructed using the Neighbor-joining method and Hamming distance and optimized 

using the parsimony ratchet method [10] implemented in the R package Phangorn [11]. Trees were 

rooted at the hypothetical normal where all somatic alterations are absent. Branch lengths were 

determined according to the ACCTRAN criterion as implemented in the Phangorn package and were 

drawn to scale. 
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