

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

BMJ Open

Unfavourable sedentary and physical activity behaviour before and after retirement. A population-based cohort study

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-037659
Article Type:	Original research
Date Submitted by the Author:	11-Feb-2020
Complete List of Authors:	ter Hoeve, Nienke; Erasmus Univ, Rehabilitation Medicine Ekblom, Maria; Swedish School of Sport and Health Sciences Galanti, Maria; Karolinska Institutet Forsell, Yvonne; Karolinska Institutet, Nooijen, Carla; Swedish School of Sport and Health Sciences,
Keywords:	PUBLIC HEALTH, EPIDEMIOLOGY, PREVENTIVE MEDICINE

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

based cohort study	
Nienke ter Hoeve, N	/aria M. Ekblom, Rosaria Galanti, Yvonne Forsell, Carla F.J. Nooijen
Dr. Nienke ter Hoev Capri Cardiac Rehat The Department of Netherlands n.terhoeve@erasm	e vilitation, Rotterdam, the Netherlands Rehabilitation Medicine, Erasmus University Medical Center, Rotterdam, the usmc.nl
Dr. Maria M. Ekblon The Swedish School The Department of maria.ekblom@gih.	n of Sport and Health Sciences (GIH), Stockholm, Sweden Neuroscience, Karolinska Institutet, Stockholm, Sweden se
Prof. Rosaria Galant The Department of Centre for Epidemic Rosaria.galanti@ki	i Public Health Sciences, Karolinska Institutet, Stockholm, Sweden ology and Community Medicine, Stockholm County Council, Sweden se
Prof. Yvonne Forsell The Department of Centre for Epidemic Yvonne.Forsell@ki.	Public Health Sciences, Karolinska Institutet, Stockholm, Sweden ology and Community Medicine, Stockholm County Council, Sweden se
Dr. Carla F.J. Nooije The Swedish School The Department of carla.nooijen@gih.s	n (Corresponding author) of Sport and Health Sciences (GIH), Stockholm, Sweden Public Health Sciences, Karolinska Institutet, Stockholm, Sweden e
Corresponding auth Carla Nooijen Swedish School of S Lidingövägen 1 Box 5626 SE-114 86 Stockholr carla.nooijen@gih.s	or: port and Health Sciences (GIH) n e
<u>Acknowledgements</u> Carla Nooijen is sup Council for Health, V	ported by a grant from The Swedish Research Norking Life and Welfare: FORTE (2017-01385).

Abstract

<u>Background</u>: During transition to retirement there is often a re-arrangement of daily life which might provide a key opportunity for interventions to promote a non-sedentary and active lifestyle. To be able to design effective interventions, it is essential to know which sedentary and physical behaviour domains (e.g. at home or during leisure time) have potential to facilitate healthy aging during the retirement transition.

<u>Objective</u>: To determine whether unfavourable sedentary and physical activity behaviour before retirement predict unfavourable sedentary and physical activity behaviour after retirement.

Design: Population-based cohort

Setting and participants: Adults (n=3272) employed in 2010 but retired in 2014.

<u>Methods</u>: Self-reported pre-retirement job activity, sedentary leisure time, physical activity at home, walking-cycling and exercise, were assessed as predictors for unfavourable sedentary and physical activity behaviours after retirement using logistic regression. Unfavourable behaviours were defined based on the respective median of the cohort distribution. Furthermore, the odds ratio (OR) for having multiple unfavourable behaviours post-retirement was determined, based on the amount of unfavourable behaviours pre-retirement. All models were adjusted for gender and education.

<u>Results</u>: Unfavourable sedentary and physical activity in a certain domain before retirement was the strongest predictor of the same behaviour after retirement. Unfavourable job activity did not predict physical activity but did predict unfavourable sedentary behaviour after retirement (OR=1.66, 95% Confidence interval (CI)=1.41-1.96). Unfavourable exercise behaviour pre-retirement predicted unfavourable sedentary and physical activity post-retirement in all domains. With all behaviours being unfavourable pre-retirement, the OR of having at least 3 unfavourable behaviours post-retirement was 36.7 (95% CI=16.8-80.5).

<u>Conclusions</u>: Adults with a higher number of unfavourable pre-retirement physical activity and sedentary behaviours are likely to carry these unfavourable behaviours into retirement age. Pre-retirement exercise interventions may have great potential to improve physical activity and sedentary behaviours and thereby facilitate healthy aging.

Strengths and limitations of the study

- The study described a large longitudinal cohort investigating changes in sedentary behaviour and physical activity during retirement transition.
- Our methods are unique in studying a large variety of behaviours related to both sedentary behaviour and physical activity in different domains (e.g. at home, during leisure time) both before and after retirement.
- This study adds with valuable knowledge for public health researchers and policy makers that of all sedentary behaviour and physical activity domains, leisure time exercise seems to have the greatest potential in pre-retirement interventions that aim to facilitate healthy aging.
- Since there is no evidence for cut-off points for domain-specific physical activity and sedentary behaviour, we used the sample medians to distinguish between favourable and unfavourable behaviour.
- We did not have information on the exact time since retirement.

Funding statement

The work of Carla Nooijen was supported by The Swedish Research Council for Health, Working Life and Welfare grant number [FORTE (2017-01385)].

Competing interests: None declared.

Author's contribution

All authors contributed to the design, methodology, and to manuscript review. CFJN was responsible for data analysis. NtH and CFJN were responsible for drafting the manuscript. All authors read and approved the final manuscript.

Data sharing

Applications for access to data can be send to the Stockholm County Council https://www.folkhalsoguiden.se/halsa-stockholm/halsa-stockholm---for-forskare/

Patient and public involvement

Patients or the public were not involved in the design, or conduct, or reporting, or dissemination plans of our research

Introduction

An aging population and increasing life expectancy result in a growing number of adults spending a long time in retirement.¹ Sedentary behaviour and physical activity are two related and independent predictors of healthy aging.² More sedentary time and less physical activity are related to increased risk of diabetes, cardiovascular disease, and all-cause mortality.³⁻⁷ Studies in older adults have additionally shown that unfavourable sedentary and physical activity patterns increase the risk of functional limitations in the performance of activities of daily life such as walking and performing house chores.⁸

Elderly spend 65-80% of their waking hours sedentary and only a minority meets physical activity recommendations.^{9 10} During transition to retirement, daily life often undergoes a re-arrangement which might provide a key opportunity for interventions to stimulate a non-sedentary and active lifestyle. Lack of time is a frequently reported barrier to physical activity, which might not exist any longer after retirement.¹¹

There is a lack of well-conducted studies investigating changes in sedentary and physical activity behaviour during and after transition from working life to retirement. Results are inconsistent, with varying patterns of change being identified during the retirement transition dependent on study methodology. Most studies used single item questions and did not focus on different domains simultaneously (e.g. at work, during leisure time).¹² ¹³ With regard to sedentary behaviour, both decreases in total sitting time and an increase in sedentary leisure activities such as watching TV have been reported. ¹² With regard to physical activity, decreases were mainly seen in occupational physical activity and transport physical activity.¹⁴ The domain in which the sedentary and physical activity behaviour is performed is important since determinants and health effects may be different.^{15 16} To be able to design effective interventions, it is essential to know which sedentary and physical behaviour domains have potential to facilitate healthy aging during the retirement transition.

A previous study showed that changing from an active to a more sedentary occupation was compensated by exercising more during leisure time, and the other way around.¹⁷ It is therefore conceivable that persons who retire from a physically active occupation might compensate by being more active during leisure time activities after retirement. To get deeper insight into behaviours related to physical activity after retirement, research that simultaneously investigates sedentary and physical activity behaviour in different domains both before and after retirement is warranted.

Our aim was to determine which sedentary and physical activity behaviours are predictors of unfavourable sedentary and physical activity behaviour after retirement. We analysed whether sedentary and physical activity behaviour after retirement can be predicted by pre-retirement

sedentary behaviour and physical activity in different domains (at work, at home or during leisure time) in a large population-based cohort including persons who recently retired. We hypothesized that having a more sedentary occupation, unfavourable leisure physical activity or unfavourable leisure sedentary behaviour before retirement predicts higher levels of sedentary behaviour and lower levels of physical activity behaviour after retirement. This study will add with valuable knowledge for public health and policy makers on who to target and which physical activity and sedentary behaviour to target to improve healthy aging during the retirement transition.

Methods

Study population

We used data from the Stockholm Public Health Cohort (SPHC), a large population-based cohort in Stockholm County.¹⁸ Population samples were randomly selected from Statistics Sweden's Register of the total population, after stratification according to residential municipality. Every four years, participants from all three samples completed similar questionnaire-based surveys on a range of demographic- and health variables. Register data from Statistics Sweden have been linked to the self-reported information. The present study was approved by the Stockholm Regional Ethical Review Board (case number: 2016/749-32).

Of the participants who completed the survey in 2010, 67% completed the follow up survey in 2014.¹⁸ Participants who reported information on physical activity and sedentary behaviour in both 2010 (baseline) and 2014 (follow-up) were assessed for eligibility (N=49133). Mean age of the sample assessed for eligibility was 54 years (SD=16), 57% were women and 48% highly educated. Participants were excluded if they were confined to bed on both occasions (n=26). In the current study, those who were employed or self-employed in 2010 but retired in 2014 were included, resulting in an analytical sample of 3272 participants.

Physical activity and sedentary behaviour assessment

Physical activity and sedentary behaviour were assessed with the physical activity questionnaire (PAQ), which has shown to be valid for classification into physically active or sedentary.^{19 20} For all questions, participants were requested to answer on their average behaviour during the past 12 months, considering the week variability and seasonality.

Physical activity and sedentary in the following domains were assessed with this questionnaire: - *Job activity*

BMJ Open

With 6 answer categories: "mainly sedentary", "sitting approximately half of the time", "mainly standing", "walking mostly, lifting, carrying a little", "walking mainly, lifting, carrying a lot" or "heavy physical work".

- Sedentary leisure time

This includes leisure sitting time e.g. watching TV or reading. There were 7 response categories ranging from less than one hour per day to more than 6 hours per day.

- Physical activity at home

This included physical activity during home, household and gardening tasks. There were 6 response categories ranging from less than 1 hr per day to more than 5 hrs per day.

- Walking- and cycling activity

With 6 response categories for answering combined walking and cycling activity, ranging from hardly ever to more than 2 hrs per day.

- Exercise

A question was asked about hours of exercise per week, excluding daily walking and cycling. Participants chose one of seven options ranging from hardly ever to more than 5 hours per week.

Data analyses

The cohort median for all physical activity and sedentary behaviour variables was determined and used to dichotomize behaviours into more favourable vs unfavourable. The medians were determined separately at baseline and at follow-up surveys, since occupational activity only applied to baseline and therefore the distribution of physical activity and sedentary behaviour domains was naturally different at follow-up after retirement.²¹ Unfavourable sedentary behaviour at work (only baseline) was defined as mainly sedentary or sitting approximately half of the time. Unfavourable sedentary behaviour during leisure time at baseline was defined as 2-3 hours per day or more, and at follow-up as 3-4 hours per day or more. Physical activity at home was defined as unfavourable when less than 1 hr per day at baseline and less than 1-2 hours per day at follow-up. For both baseline and follow-up walking-and cycling activity were defined as unfavourable when performed for less than 20 minutes per day, and exercise when accumulating less than 1 hour per week.

Binary logistic regression analyses were conducted using general linear models in order to derive odds ratios (OR) of unfavourable behaviour after retirement for: 1) sedentary time, 2) physical activity at home, 3) walking/cycling and 4) exercise. Predictors were unfavourable behaviours before retirement related to: a) job activity, b) sedentary leisure time, c) physical activity at home, d) walking/cycling, and e) exercise.

A similar additional logistic regression analysis was conducted for all behaviours considered together, i.e. estimating the amount of unfavourable behaviours after retirement based on the amount of unfavourable behaviours before retirement. To obtain a dichotomous variable, the median number of unfavourable behaviours after retirement was used, i.e. 3 or more unfavourable behaviours.

Education was used as an indicator of socioeconomic position, and all models were adjusted for education and gender

We checked for multicollinearity by assessing both correlations between the predictors and with VIF statistics and concluded that there were no indications of collinearity. All statistical analyses were performed in IBM SPSS Statistics version 24 (Armonk, NY: IBM Corp).

Results

Mean age of the analytical sample at baseline was 63 years (SD=2), 55% were women and 43% highly educated. The associations between pre-retirement and after-retirement behaviours are shown in table 1.

The results can be summarized as:

- Unfavourable sedentary and physical activity behaviour in a certain domain before retirement was the strongest predictor of the same behaviour in the same domain after retirement.

- Unfavourable job physical activity predicted unfavourable sedentary time after retirement, but not any other unfavourable physical activity behaviour.

- Unfavourable exercise behaviour before retirement predicted all unfavourable sedentary and physical activity behaviours after retirement.

The relation between multiple unfavourable behaviours before and after retirement is shown descriptively in Table 2. Among participants who presented with all unfavourable behaviours at baseline the adjusted OR of having three or more unfavourable behaviour after retirement (vs. 2 or less) was 36.7 (95% CI=16.8-80.5). The corresponding ORs for 4 unfavourable behaviours before retirement was 14.3 (95% CI=7.1-29.0); 6.6 (95% CI=3.3-13.2) for 3 unfavourable behaviours; 3.2 (95% CI=1.6-6.5) for 2 unfavourable behaviours and 1.7 (95% CI=0.8-3.6) for 1 unfavourable behaviour.

Discussion

This longitudinal study increases the understanding of sedentary and physical activity behaviour during the retirement transition. We found that unfavourable pre-retirement physical activity and sedentary

BMJ Open

behaviour at home or during leisure time were the strongest predictors of the same behaviour after retirement. Pre-retirement job activity did not predict low levels of physical activity but did predict sedentary behaviour after retirement. Furthermore, less than 1 hour exercise per week before retirement predicted all of the unfavourable behaviours after retirement. Moreover, the higher the number of unfavourable behaviours before retirement, the more likely it was that a person had multiple (at least three) unfavourable behaviours after retirement.

Contrary to our hypothesis, pre-retirement job activity did not seem to be related to post-retirement physical activity in this study, i.e. there was no hint that persons retiring from physically active jobs compensated the loss of this activity by increasing leisure time physical activity. A previous study showed that people changing job do compensate loss of job activity in their leisure time. ¹⁷ Retirement means a change to no job activity at all, potentially explaining why this compensation does not apply. Nevertheless, job activity did seem to predict sedentary behaviour after retirement in the anticipated direction. These results are in line with a previous study where decreases in occupational sedentary behaviour were compensated by increasing sitting time outside working hours.²²

A systematic review¹² suggested that pre-retirement physical activity and sedentary behaviour outside work may be stronger predictors of behaviour after retirement compared to job activity. This hypothesis is supported by our findings that unfavourable pre-retirement physical activity and sedentary behaviour at home or during leisure time were the strongest predictors of the same unfavourable behaviours after retirement. These results confirm that behaviours tend to be rather stable over the life course ²³, and this is probably true even after a major life change such as retirement. Furthermore, we found that unfavourable exercise behaviour before retirement seems to influence practically all unfavourable physical activity and sedentary behaviour after retirement. It is possible that regular exercise results in a higher physical fitness level, subsequently in a lower strain when performing physical activities, making it easier to maintain a favourable level even at older age. Therefore, interventions promoting exercise behaviour before retirement may potentially prevent unfavourable physical activity and sedentary behaviour after retirement unfavourable physical activity and sedentary behaviour before retirement may potentially prevent

Older adults often have unfavourable physical activity and sedentary behaviour ^{9 10} which negatively impacts healthy aging.³⁻⁸ Our results imply that adults with multiple unfavourable pre-retirement behaviours are at higher risk to hold this profile after retirement. This group should be thought of as a priority for preventive interventions targeting physical activity. Despite the paucity of studies of interventions during the retirement transition, a review concluded that different types of counselling programs, such as group sessions; individual training sessions; in-home exercise programmes or e-health programs can lead to positive effects in aging adults.²⁴ Our results carry a decisive suggestion

that future studies should evaluate the effectiveness of pre-retirement exercise interventions on overall post-retirement physical activity and sedentary behaviour.

When interpreting the results of the study it should be realized that we used the sample medians to distinguish between favourable and unfavourable behaviour. Since there is no evidence for cut-off points for domain-specific physical activity and sedentary behaviour, it is unclear whether the medians reflect a true border between favourable and unfavourable. For job activity, we defined favourable as being more active at work. However, a recent review indicates that high levels of job activity might have detrimental health consequences and therefore not necessarily be favourable.²⁵ Furthermore, we did not separate different leisure time sedentary activities (such as computer use, TV, reading etc.) whilst certain leisure sitting time might be more likely to be combined with other unfavourable health behaviour such as drinking alcohol and eating snacks.²⁶

Strengths and Limitations

To our knowledge, this is the largest cohort study that studied a variety of behaviours related to both physical activity and sedentary time in different domains both before and after retirement. However, there were also some limitations. First, all participants who retired in a time frame of 4 years were included in this study disregarding time since retirement, while this could have influenced behavioural adjustments. Second, we had no information on possible confounders of outcomes, such as comorbidities. Third, we included persons that completed two surveys, which might have led to a selection bias. A relatively large proportion of the included sample was highly educated, which is known to be related to more favourable exercise patterns and sedentary behaviour.²⁷⁻²⁹ Furthermore, a decrease in income after retirement might have potentially influenced retirement behaviours including physical activity and sedentary behaviour. Last, we cannot rule out misclassification of sedentary behaviour and physical activity since it is known that self-report measures often demonstrate restricted validity and reliability.³⁰

Conclusions

This study contributes to a deeper understanding of unhealthy aging with novel insights on unfavourable sedentary and physical activity behaviour after retirement. Despite the major life event of retirement, pre-retirement unfavourable behaviours seem likely to be carried into retirement age. Likewise, those with multiple unfavourable pre-retirement behaviours seem at a higher risk to hold the same unfavourable profile after retirement and should therefore be a priority target for preventive interventions. There was however no indication that persons retiring from physically active jobs compensated the loss of this activity by increasing leisure time physical activity. As unfavourable exercise behaviour before retirement predicted unfavourable sedentary and physical activity after

1 ว	
3	retirement in all domains, pre-retirement exercise interventions may have great potential to facilitate
4 5	healthy aging
6	
7	
o 9	
10	
11 12	
13	
14 15	
16	
17 19	
19	
20	
21 22	
23	
24 25	
26	
27 28	
29	
30 31	
32	
33 24	
34 35	
36	
37 38	
39	
40 41	
42	
43 44	
45	
46 47	
48	
49 50	
50	
52	
53 54	
55	
56 57	
58	
59 60	
00	
	10

Sedentary leisure time

Favourable

after retirement

n=1805

% (n)

59 (1042)

33 (588)

29 (522)

OR

1.66

4.19

1.32

95% CI

1.41-1.96

3.59-4.89

1.12-1.56

3
4
5
6
7
8
9
10
11
12
13
1/
15
16
10
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
32
37
25
22
30
3/
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
55
50
5/
58

1 2

Table 1. Baseline characteristics and predictors of more unfavourable sedentary and physical
activity behaviour after retirement

Unfavourable

after retirement

n=1441

% (n)

70 (988)

66 (933)

36 (512)

Predictors of unfavourable

Unfavourable job activity

time before retirement

after retirement*

before retirement

leisure time sedentary behaviour

Unfavourable sedentary leisure

Unfavourable activity at home

before retirement				
Unfavourable walking/cycling before retirement	72 (1029)	67 (1194)	1.17	0.99-1.38
Unfavourable exercise	48 (678)	40 (709)	1.29	1.10-1.50
before retirement				
*adjusted for gender and education	2			
	Physical activ	vity at home		
	Unfavourable	Favourable		
	after retirement	after retirement		
	n=1928	n=1302	_	
Predictors of unfavourable	% (n)	% (n)	OR	95% CI
home physical activity				
after retirement*				
Unfavourable job activity	66 (1252)	60 (769)	1.16	0.99-1.37
before retirement				
Unfavourable sedentary leisure	50 (957)	44 (562)	1.35	1.16-1.58
time before retirement				
Unfavourable activity at home	44 (837)	15 (188)	3.92	3.26-4.72
before retirement				
Unfavourable walking/cycling	71 (1359)	66 (850)	1.06	0.90-1.25
before retirement				
Unfavourable exercise	46 (878)	39 (503)	1.23	1.05-1.44
before retirement				
*adjusted for gender and education				

	Walking/cycling			
	UnfavourableFavourableafter retirementafter retirement		_	
	n=1923	n=1313	_	
Predictors of unfavourable walking/cycling after retirement*	% (n)	% (n)	OR	95% CI
Unfavourable job activity before retirement	66 (1240)	61 (787)	1.07	0.91-1.26
Unfavourable sedentary leisure time before retirement	47 (902)	48 (620)	0.99	0.84-1.15
Unfavourable activity at home before retirement	34 (651)	29 (374)	1.04	0.88-1.23
Unfavourable walking/cycling before retirement	81 (1537)	53 (681)	3.74	3.18-4.41
Unfavourable exercise before retirement	48 (911)	37 (474)	1.43	1.22-1.66
*adjusted for gender and education	6			
	Exer	rcise		
	Unfavourable after retirement	Favourable after retirement	_	
	n-1/1/	n-1922	_	

	Exer	cise		
	Unfavourable after retirement	Favourable after retirement	_	
	n=1414	n=1833	_	
Predictors of unfavourable exercise after retirement*	% (n)	% (n)	OR	95% CI
Unfavourable job activity before retirement	65 (896)	63 (1134)	1.07	0.91-1.26
Unfavourable sedentary leisure time before retirement	52 (731)	44 (791)	1.36	1.17-1.59
Unfavourable activity at home before retirement	35 (483)	30 (547)	1.05	0.89-1.24
Unfavourable walking/cycling before retirement	73 (1021)	67 (1205)	1.15	0.97-1.36
Unfavourable exercise before retirement	64 (900)	26 (478)	4.92	4.21-5.75

*adjusted for gender and education

3
4
5
6
7
/
8
9
10
11
12
13
14
15
15
16
17
18
19
20
21
22
~~ 72
∠3 24
24
25
26
27
28
29
30
21
21
32
33
34
35
36
37
38
20
39
40
41
42
43
44
45
46
<u>4</u> 7
т/ ЛО
40
49
50
51
52
53
54
55
55
50
5/
58
59

			Number of	unfavourable	e behaviours	
			afte	er retirement	: (n=3092)	
	% (n)	All	3	2	1	None
		10 (309)	24 (755)	35 (1087)	24 (732)	7 (209)
	All	43 (68)	35 (55)	18 (28)	4 (6)	0 (0)
viours ent	4	22 (109)	36 (182)	32 (160)	10 (50)	1 (4)
ber of e beha tireme	3	9 (83)	30 (282)	39 (369)	19 (183)	3 (32)
Numb urable ore re	2	4 (40)	19 (170)	37 (340)	31 (286)	8 (74)
unfavo bef	1	2 (9)	12 (56)	35 (163)	35 (163)	16 (74)
2	None	0 (0)	9 (10)	26 (27)	42 (44)	24 (25)

13

References

- 1. Organization WH. Global Health and Aging. Geneva: World Health Organization, 2011.
- Dogra S, Stathokostas L. Sedentary behavior and physical activity are independent predictors of successful aging in middle-aged and older adults. J Aging Res 2012;2012:190654. doi: 10.1155/2012/190654 [published Online First: 2012/09/22]
- 3. Chau JY, Grunseit AC, Chey T, et al. Daily sitting time and all-cause mortality: a meta-analysis. *Plos One* 2013;8(11):e80000. doi: 10.1371/journal.pone.0080000

PONE-D-13-19234 [pii] [published Online First: 2013/11/16]

- 4. Wilmot EG, Edwardson CL, Achana FA, et al. Sedentary time in adults and the association with diabetes, cardiovascular disease and death: systematic review and meta-analysis. *Diabetologia* 2012;55(11):2895-905. doi: 10.1007/s00125-012-2677-z
- 5. Biswas A, Oh PI, Faulkner GE, et al. Sedentary time and its association with risk for disease incidence, mortality, and hospitalization in adults: a systematic review and meta-analysis. *Annals of internal medicine* 2015;162(2):123-32. doi: 10.7326/M14-1651
- 6. Bayan-Bravo A, Perez-Tasigchana RF, Lopez-Garcia E, et al. The association of major patterns of physical activity, sedentary behavior and sleeping with mortality in older adults. *J Sports Sci* 2018:1-10. doi: 10.1080/02640414.2018.1504617 [published Online First: 2018/08/02]
- 7. de Rezende LF, Rey-Lopez JP, Matsudo VK, et al. Sedentary behavior and health outcomes among older adults: a systematic review. *BMC Public Health* 2014;14:333. doi: 1471-2458-14-333 [pii]
- 10.1186/1471-2458-14-333 [published Online First: 2014/04/10]
- Gennuso KP, Gangnon RE, Matthews CE, et al. Sedentary behavior, physical activity, and markers of health in older adults. *Med Sci Sports Exerc* 2013;45(8):1493-500. doi: 10.1249/MSS.0b013e318288a1e5 [published Online First: 2013/03/12]
- 9. Harvey JA, Chastin SF, Skelton DA. How Sedentary are Older People? A Systematic Review of the Amount of Sedentary Behavior. *J Aging Phys Act* 2015;23(3):471-87. doi: 2014-0164 [pii]
- 10.1123/japa.2014-0164 [published Online First: 2014/11/12]
- 10. Godfrey A, Lord S, Galna B, et al. The association between retirement and age on physical activity in older adults. *Age Ageing* 2014;43(3):386-93. doi: aft168 [pii]
- 10.1093/ageing/aft168 [published Online First: 2013/11/01]
- Reichert FF, Barros AJ, Domingues MR, et al. The role of perceived personal barriers to engagement in leisure-time physical activity. *Am J Public Health* 2007;97(3):515-9. doi: 10.2105/AJPH.2005.070144 [published Online First: 2007/02/03]
- 12. Sprod J, Ferrar K, Olds T, et al. Changes in sedentary behaviours across the retirement transition: a systematic review. *Age Ageing* 2015;44(6):918-25. doi: afv140 [pii]
- 10.1093/ageing/afv140 [published Online First: 2015/10/28]
- Barnett I, van Sluijs EM, Ogilvie D. Physical activity and transitioning to retirement: a systematic review. *Am J Prev Med* 2012;43(3):329-36. doi: S0749-3797(12)00394-7 [pii] [published Online First: 2012/08/18]
- 14. Barnett I, van Sluijs E, Ogilvie D, et al. Changes in household, transport and recreational physical activity and television viewing time across the transition to retirement: longitudinal evidence from the EPIC-Norfolk cohort. *J Epidemiol Community Health* 2014;68(8):747-53. doi: jech-2013-203225 [pii]
- 10.1136/jech-2013-203225 [published Online First: 2013/12/05]
- 15. Rhodes RE, Mark RS, Temmel CP. Adult sedentary behavior: a systematic review. *Am J Prev Med* 2012;42(3):e3-28. doi: 10.1016/j.amepre.2011.10.020

- 16. Ekelund U, Steene-Johannessen J, Brown WJ, et al. Does physical activity attenuate, or even eliminate, the detrimental association of sitting time with mortality? A harmonised metaanalysis of data from more than 1 million men and women. *Lancet* 2016;388(10051):1302-10. doi: 10.1016/S0140-6736(16)30370-1
- Nooijen CFJ, Del Pozo-Cruz B, Nyberg G, et al. Are changes in occupational physical activity level compensated by changes in exercise behavior? *Eur J Public Health* 2018 doi: 10.1093/eurpub/cky007
- 18. Svensson AC, Fredlund P, Laflamme L, et al. Cohort profile: The Stockholm Public Health Cohort. International journal of epidemiology 2013;42(5):1263-72. doi: 10.1093/ije/dys126
- Orsini N, Bellocco R, Bottai M, et al. Validity of self-reported total physical activity questionnaire among older women. *European journal of epidemiology* 2008;23(10):661-7. doi: 10.1007/s10654-008-9273-z
- 20. Norman A, Bellocco R, Bergstrom A, et al. Validity and reproducibility of self-reported total physical activity--differences by relative weight. *International journal of obesity and related metabolic disorders : journal of the International Association for the Study of Obesity* 2001;25(5):682-8. doi: 10.1038/sj.ijo.0801597
- 21. Olds T, Burton NW, Sprod J, et al. One day you'll wake up and won't have to go to work: The impact of changes in time use on mental health following retirement. *PLoS One* 2018;13(6):e0199605. doi: 10.1371/journal.pone.0199605
- 22. Mansoubi M, Pearson N, Biddle SJ, et al. Using Sit-to-Stand Workstations in Offices: Is There a Compensation Effect? *Med Sci Sports Exerc* 2016;48(4):720-5. doi: 10.1249/MSS.00000000000802
- 23. Nooijen CFJ, Kallings LV, Blom V, et al. Common Perceived Barriers and Facilitators for Reducing Sedentary Behaviour among Office Workers. Int J Environ Res Public Health 2018;15(4) doi: 10.3390/ijerph15040792
- 24. Baxter S, Johnson M, Payne N, et al. Promoting and maintaining physical activity in the transition to retirement: a systematic review of interventions for adults around retirement age. *Int J Behav Nutr Phys Act* 2016;13:12. doi: 10.1186/s12966-016-0336-3
- 25. Coenen P, Huysmans MA, Holtermann A, et al. Do highly physically active workers die early? A systematic review with meta-analysis of data from 193 696 participants. *Br J Sports Med* 2018;52(20):1320-26. doi: 10.1136/bjsports-2017-098540
- 26. Nooijen CFJ, Moller J, Forsell Y, et al. Do unfavourable alcohol, smoking, nutrition and physical activity predict sustained leisure time sedentary behaviour? A population-based cohort study. *Prev Med* 2017;101:23-27. doi: S0091-7435(17)30182-2 [pii]
- 10.1016/j.ypmed.2017.05.019 [published Online First: 2017/05/23]
- 27. Chung S, Domino ME, Stearns SC, et al. Retirement and physical activity: analyses by occupation and wealth. *Am J Prev Med* 2009;36(5):422-8. doi: S0749-3797(09)00093-2 [pii]
- 10.1016/j.amepre.2009.01.026 [published Online First: 2009/03/10]
- 28. Shaw BA, Spokane LS. Examining the association between education level and physical activity changes during early old age. *J Aging Health* 2008;20(7):767-87. doi: 0898264308321081 [pii]
- 10.1177/0898264308321081 [published Online First: 2008/06/19]
- 29. Chad KE, Reeder BA, Harrison EL, et al. Profile of physical activity levels in community-dwelling older adults. *Med Sci Sports Exerc* 2005;37(10):1774-84. doi: 00005768-200510000-00019 [pii] [published Online First: 2005/11/02]
- 30. Prince SA, Adamo KB, Hamel ME, et al. A comparison of direct versus self-report measures for assessing physical activity in adults: a systematic review. *Int J Behav Nutr Phys Act* 2008;5:56. doi: 10.1186/1479-5868-5-56 [published Online First: 2008/11/08]

BMJ Open

BMJ Open

Unfavourable sedentary and physical activity behaviour before and after retirement. A population-based cohort study

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-037659.R1
Article Type:	Original research
Date Submitted by the Author:	03-May-2020
Complete List of Authors:	ter Hoeve, Nienke; Erasmus Univ, Rehabilitation Medicine Ekblom, Maria; Swedish School of Sport and Health Sciences Galanti, Maria; Karolinska Institutet Forsell, Yvonne; Karolinska Institutet, Nooijen, Carla; Swedish School of Sport and Health Sciences,
Primary Subject Heading :	Public health
Secondary Subject Heading:	Epidemiology
Keywords:	PUBLIC HEALTH, EPIDEMIOLOGY, PREVENTIVE MEDICINE

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

based coho	rt study
Nienke ter I	Hoeve, Maria M. Ekblom, Rosaria Galanti, Yvonne Forsell, Carla F.J. Nooijen
Dr. Nienke t	er Hoeve
Capri Cardia	ac Rehabilitation, Rotterdam, the Netherlands
The Depart	ment of Rehabilitation Medicine, Erasmus University Medical Center, Rotterdam, the
Netherland	s
n.terhoeved	@erasmusmc.nl
Dr. Maria M	I. Ekblom
The Swedisl	n School of Sport and Health Sciences (GIH), Stockholm, Sweden
The Departi	ment of Neuroscience, Karolinska Institutet, Stockholm, Sweden
maria.ekblo	m@gih.se
Prof. Rosari	a Galanti
The Depart	ment of Global Public Health, Karolinska Institutet, Stockholm, Sweden
Centre for E	pidemiology and Community Medicine, Stockholm County Council, Sweden
Rosaria.gal	anti@ki.se
Prof. Yvonn	e Forsell
The Depart	ment of Global Public Health, Karolinska Institutet, Stockholm, Sweden
Centre for E	pidemiology and Community Medicine, Stockholm County Council, Sweden
Yvonne.For	sell@ki.se
Dr. Carla F.J	. Nooijen (Corresponding author)
The Swedisl	n School of Sport and Health Sciences (GIH), Stockholm, Sweden
The Depart	ment of Global Public Health, Karolinska Institutet, Stockholm, Sweden
carla.nooije	n@gih.se
Correspond Carla Nooije Swedish Sch Lidingöväge Box 5626 SE-114 86 S carla.nooije	ing author: en hool of Sport and Health Sciences (GIH) en 1 tockholm <u>n@gih.se</u>
Acknowled Carla Nooije	gements en is supported by a grant from The Swedish Research Health, Working Life and Welfare: EORTE (2017-01385)

2 3 4	1	Abstract
5	2	Background: During transition to retirement there is often a re-arrangement of daily life which might
7	3	provide a key opportunity for interventions to promote a non-sedentary and active lifestyle. To be able
8 9	4	to design effective interventions, it is essential to know which sedentary and physical behaviour
10 11	5	domains (e.g. at home or during leisure time) have potential to facilitate healthy aging during the
12 13	6	retirement transition.
14 15	7	Objective: To determine whether unfavourable sedentary and physical activity behaviour before
16	8	retirement predict unfavourable sedentary and physical activity behaviour after retirement.
17 18 19	9	Design: Population-based cohort
20 21 22	10	Setting and participants: Adults (n=3272) employed in 2010 but retired in 2014.
23 24	11	Methods: Self-reported pre-retirement job activity, sedentary leisure time, physical activity at home,
24	12	walking-cycling and exercise, were assessed as predictors for unfavourable sedentary and physical
26 27	13	activity behaviours after retirement using logistic regression. Unfavourable behaviours were defined
28 29	14	based on the respective median of the cohort distribution. Furthermore, the odds ratio (OR) for having
30	15	multiple unfavourable behaviours post-retirement was determined, based on the amount of
31 32 33	16	unfavourable behaviours pre-retirement. All models were adjusted for gender and education.
34	17	Results: Unfavourable pre-retirement physical activity and sedentary behaviour at home or during
35 36	18	leisure time were the strongest predictors of the same behaviours after retirement. Unfavourable job
37 38	19	activity did not predict physical activity but did predict unfavourable sedentary behaviour after
39	20	retirement (OR=1.66, 95% Confidence interval (CI)=1.41-1.96). Unfavourable exercise behaviour pre-
40 41	21	retirement predicted unfavourable sedentary and physical activity post-retirement in all domains.
42 43	22	With all behaviours being unfavourable pre-retirement, the OR of having at least 3 unfavourable
44 45	23	behaviours post-retirement was 36.7 (95% CI=16.8-80.5).
46 47	24	Conclusions: Adults with a higher number of unfavourable pre-retirement physical activity and
48	25	sedentary behaviours are likely to carry these unfavourable behaviours into retirement age.
49 50	26	Interventions should target those with more unfavourable pre-retirement physical activity and
51 52	27	sedentary behaviours pre-retirement, and those interventions focusing on exercise might have
53	28	greatest potential
54 55 56 57 58 59	29	
60		

1		
2		
3	30	Strengths and limitations of the study
4		
6	31	• The study described a large longitudinal cohort investigating changes in sedentary behaviour and
7	32	physical activity during retirement transition.
8	33	• The used instrument (PAQ guestionnaire) takes into account both physical activity and sedentary
9	34	behaviour in different domains (e.g. at work, during leisure time).
10	35	• This study provides valuable knowledge for public health researchers and policy makers
11	36	indicating that interventions preferably focussing on exercise should target individuals with
12	37	unfavourable physical activity and sedentary behaviours pre-retirement
13	20	We did not have information on the exact time cince retirement
14	20	• We did not have information on the exact time since retirement.
15	~~	
16	39	
17 10		
10	40	Funding statement
20	4.4	The work of Code Neelling on a stad by The Coundide Descende
20	41	The work of Carla Nooijen was supported by The Swedish Research
22	42	Council for Health, Working Life and Welfare grant number [FORTE (2017-01385)].
23	43	
24	4 5 ЛЛ	Compating interacts: None declared
25	44	competing interests. None declared.
26	45	
27	16	Author's contribution
28	40	Author's contribution
29	47	NtH and CN planned the study. NtH, ME, RG, YF, CN contributed to design and methodology of the
30	48	manuscript, CN was responsible for data analysis and data interpretation. NtH, ME, RG, YF
31	10	contributed to interpreting the data. NtH was responsible for drafting the manuscript and revision of
32	49	the resource interpreting the data. With was responsible for drafting the manuscript and revision of
33 24	50	the manuscript after review. All authors read and approved the final manuscript.
24 25	51	
36	51	Data charing
37	52	Data sharing
38	53	Applications for access to data can be send to the Stockholm County Council
39	54	https://www.folkhalsoguiden.se/halsa-stockholm/halsa-stockholmfor-forskare/
40	51	
41	55	
42	56	Patient and public involvement
43	57	Patients or the public were not involved in the design, or conduct, or reporting, or dissemination
44	58	plans of our research
45		
46		
4/		
48		
49		
50		
52		
53		
54		
55		
56		
57		
58		
59		
60		

59 Introduction

An aging population and increasing life expectancy result in a growing number of adults spending a long time in retirement.¹ Sedentary behaviour and physical activity are two related and independent predictors of healthy aging.² More sedentary time and less physical activity are related to increased risk of diabetes, cardiovascular disease, and all-cause mortality.³⁻⁷ Studies in older adults have additionally shown that unfavourable sedentary and physical activity patterns increase the risk of functional limitations in the performance of activities of daily life such as walking and performing house chores.⁸

Elderly spend 65-80% of their waking hours sedentary and only a minority meets physical activity
recommendations.^{9 10} During transition to retirement, daily life often undergoes a re-arrangement
which might provide a key opportunity for interventions to stimulate a non-sedentary and active
lifestyle. Lack of time is a frequently reported barrier to physical activity, which might not exist any
longer after retirement.¹¹

Results of previous studies investigating changes in sedentary and physical activity behaviour during transition from working life to retirement identified varying patterns of change dependent on study methodology. Most studies used single item questions and did not focus on different domains simultaneously (e.g. at work, during leisure time).^{12 13} With regard to sedentary behaviour, both decreases in total sitting time and an increase in sedentary leisure activities such as watching TV have been reported. ^{12 14 15} With regard to physical activity, decreases were mainly seen in occupational physical activity and transport physical activity¹⁴¹⁶, while increases were reported in time spent in leisure time physical activity and walking^{15 17-19} The domain in which the sedentary and physical activity behaviour is performed is important since determinants and health effects may be different.²⁰²¹ To be able to design effective interventions, it is essential to know which sedentary and physical behaviour domains have potential to facilitate healthy aging during the retirement transition.

A previous study showed that changing from an active to a less active occupation was compensated by exercising more during leisure time, and the other way around.²² It is therefore conceivable that persons who retire from a physically active occupation might compensate by being more active during leisure time activities after retirement. In line with this hypothesis, it has been suggested that persons with a high occupational sitting time and low levels of physical activity before retirement are at risk for adverse sedentary behaviour outcomes after retirement.¹⁴ Furthermore, a large cohort study found a relation between increased walking time and decreasing sedentary leisure time after retirement.¹⁹ On the contrary, in another cohort study, no relations were found between changes in time spent in different physical activity and sedentary behaviours during retirement.¹⁵ To get deeper insight into

behaviours related to sedentary behaviour and physical activity after retirement, more large-scale research that simultaneously investigates the relation between sedentary and physical activity behaviour in different domains both before and after retirement is warranted.

Our aim was to determine which sedentary and physical activity behaviours are predictors of unfavourable sedentary and physical activity behaviour after retirement. We analysed whether sedentary and physical activity behaviour after retirement can be predicted by pre-retirement sedentary behaviour and physical activity in different domains (at work, at home or during leisure time) in a large population-based cohort including persons who recently retired. We hypothesized that having a more sedentary occupation, unfavourable leisure physical activity or unfavourable leisure sedentary behaviour before retirement predicts higher levels of sedentary behaviour and lower levels of physical activity behaviour after retirement. This study will add with valuable knowledge for public health and policy makers on who to target and which physical activity and sedentary behaviour to target to improve healthy aging during the retirement transition.

Methods

Study population

We used data from the Stockholm Public Health Cohort (SPHC), a large population-based cohort in Stockholm County.²³ Population samples were randomly selected from Statistics Sweden's Register of the total population, after stratification according to residential municipality. Every four years, participants from all three samples completed similar questionnaire-based surveys on a range of demographic- and health variables. Register data from Statistics Sweden have been linked to the self-reported information. The present study was approved by the Stockholm Regional Ethical Review Board (case number: 2016/749-32).

Of the participants who completed the survey in 2010, 67% completed the follow up survey in 2014.²³ Participants who reported information on physical activity and sedentary behaviour in both 2010 (baseline) and 2014 (follow-up) were assessed for eligibility (N=49133). Mean age of the sample assessed for eligibility was 54 years (SD=16), 57% were women and 48% highly educated. Participants were excluded if they were confined to bed on both occasions (n=26). In the current study, those who were employed or self-employed in 2010 but full-time retired in 2014 were included, resulting in an analytical sample of 3272 participants. See Figure 1.

Physical activity and sedentary behaviour assessment

Page 7 of 20

BMJ Open

1 2		
3 4 5 6 7 8 9 10 11	125	Physical activity and sedentary behaviour were assessed with the physical activity questionnaire (PAQ),
	126	which has shown to be valid for classification into physically active or sedentary. ^{24 25} For all questions,
	127	participants were requested to answer on their average behaviour during the past 12 months,
	128	considering the week variability and seasonality.
	129	
11 12	130	Physical activity and sedentary in the following domains were assessed with this questionnaire:
13 14 15 16 17	131	- Job activity
	132	With 6 answer categories: "mainly sedentary", "sitting approximately half of the time", "mainly
	133	standing", "walking mostly, lifting, carrying a little", "walking mainly, lifting, carrying a lot" or "heavy
18 10	134	physical work".
20	135	- Sedentary leisure time
21 22	136	This includes leisure sitting time e.g. watching TV or reading. There were 7 response categories ranging
23 24 25 26 27 28 29	137	from less than one hour per day to more than 6 hours per day.
	138	- Physical activity at home
	139	This included physical activity during home, household and gardening tasks. There were 6 response
	140	categories ranging from less than 1 hr per day to more than 5 hrs per day.
30	141	- Walking- and cycling activity
31 32	142	With 6 response categories for answering combined walking and cycling activity, ranging from hardly
33 34	143	ever to more than 2 hrs per day.
35	144	- Exercise
36 37	145	A question was asked about hours of exercise per week, excluding daily walking and cycling.
38 39	146	Participants chose one of seven options ranging from hardly ever to more than 5 hours per week.
40	147	
41 42	148	Data analyses
43 44	149	The cohort median for all physical activity and sedentary behaviour variables was determined and used
45	150	to dichotomize behaviours into more favourable vs unfavourable. The medians were determined
46 47	151	separately at baseline and at follow-up surveys, since occupational activity only applied to baseline
48 49	152	and therefore the distribution of physical activity and sedentary behaviour domains was naturally
50	153	different at follow-up after retirement. ²⁶ Unfavourable job activity at work (only baseline) was defined
51 52	154	as mainly sedentary or sitting approximately half of the time. Unfavourable sedentary behaviour
53 54	155	during leisure time at baseline was defined as 2-3 hours per day or more, and at follow-up as 3-4 hours
55	156	per day or more. Physical activity at home was defined as unfavourable when less than 1 hr per day at
56 57	157	baseline and less than 1-2 hours per day at follow-up. For both baseline and follow-up walking-and
58 59	158	cycling activity were defined as unfavourable when performed for less than 20 minutes per day, and
60	159	exercise when accumulating less than 1 hour per week.

BMJ Open

1 2		
2	160	
4 5	161	Binary logistic regression analyses were conducted using general linear models in order to derive odds
6 7	162	ratios (OR) of unfavourable behaviour after retirement for: 1) sedentary time, 2) physical activity at
8	163	home, 3) walking/cycling and 4) exercise. Predictors were unfavourable behaviours before retirement
9 10	164	related to: a) job activity, b) sedentary leisure time, c) physical activity at home, d) walking/cycling, and
11 12 13 14	165	e) exercise.
	166	A similar additional logistic regression analysis was conducted for all behaviours considered together,
15 16	167	i.e. estimating the amount of unfavourable behaviours after retirement based on the amount of
17 19	168	unfavourable behaviours before retirement. To obtain a dichotomous variable, the median number of
19 20	169	unfavourable behaviours after retirement was used, i.e. 3 or more unfavourable behaviours.
21 22	170	Education was used as an indicator of socioeconomic position, and all models were adjusted for
23 24	171	education and gender
25 26	172	We checked for multicollinearity by assessing both correlations between the predictors and with VIF
27 28 29	173	statistics and concluded that there were no indications of collinearity. All statistical analyses were
	174	performed in IBM SPSS Statistics version 24 (Armonk, NY: IBM Corp).
30 31 32	175	
33 34	176	Results
35	177	Mean age of the analytical sample at baseline was 63 years (SD=2), 55% were women and 43% highly
36 37	178	educated. The associations between pre-retirement and after-retirement behaviours are shown in
38 39	179	Table 1.
40 41	180	The results can be summarized as:
42 43	181	- Unfavourable pre-retirement physical activity and sedentary behaviour at home or during leisure
44	182	time were the strongest predictors of the same behaviour after retirement.
45 46	183	- Unfavourable job physical activity predicted unfavourable sedentary time after retirement, but not
47 48	184	any other unfavourable physical activity behaviour.
49	185	- Unfavourable exercise behaviour before retirement predicted all unfavourable sedentary and
50 51 52	186	physical activity behaviours after retirement.
53	187	-Unfavourable sedentary leisure time predicted all unfavourable behaviours, except for
54 55 56	188	walking/cycling
57 58	189	The relation between multiple unfavourable behaviours before and after retirement is shown
59 60	190	descriptively in Table 2. Among participants who presented with all unfavourable behaviours at

Page 9 of 20

BMJ Open

baseline the adjusted OR of having three or more unfavourable behaviour after retirement (vs. 2 or
less) was 36.7 (95% CI=16.8-80.5). The corresponding ORs for 4 unfavourable behaviours before
retirement was 14.3 (95% CI=7.1-29.0); 6.6 (95% CI=3.3-13.2) for 3 unfavourable behaviours; 3.2 (95%
CI=1.6-6.5) for 2 unfavourable behaviours and 1.7 (95% CI=0.8-3.6) for 1 unfavourable behaviour.

11 195

13 196 Discussion

This longitudinal study increases the understanding of sedentary and physical activity behaviour during the retirement transition. We found that unfavourable pre-retirement physical activity and sedentary behaviour at home or during leisure time were the strongest predictors of the same behaviour after retirement. Pre-retirement job activity did not predict low levels of physical activity but did predict sedentary behaviour after retirement. Furthermore, less than 1 hour exercise per week before retirement predicted all of the unfavourable behaviours after retirement. Unfavourable sedentary leisure time before retirement predicted both sedentary time and most physical activity behaviours after retirement. Moreover, the higher the number of unfavourable behaviours before retirement, the more likely it was that a person had multiple (at least three) unfavourable behaviours after retirement.

Contrary to our hypothesis, pre-retirement job activity did not seem to be related to post-retirement physical activity in this study, i.e. there was no hint that persons retiring from physically active jobs compensated the loss of this activity by increasing leisure time physical activity. A previous study showed that people changing job do compensate loss of job activity in their leisure time. ²² Retirement means a change to no job activity at all, potentially explaining why this compensation does not apply. Nevertheless, job activity did seem to predict sedentary behaviour after retirement in the anticipated direction. These results are in line with a previous study where decreases in occupational sedentary behaviour were compensated by increasing sitting time outside working hours.²⁷

A systematic review¹² suggested that pre-retirement physical activity and sedentary behaviour outside work may be stronger predictors of behaviour after retirement compared to job activity. This hypothesis is supported by our findings that unfavourable pre-retirement physical activity and sedentary behaviour at home or during leisure time were the strongest predictors of the same unfavourable behaviours after retirement. These results confirm that behaviours tend to be rather stable over the life course ²⁸, and this is probably true even after a major life change such as retirement.

We found that unfavourable exercise behaviour before retirement seems to influence practically all
 unfavourable physical activity and sedentary behaviours after retirement. It is possible that regular

BMJ Open

exercise results in a higher physical fitness level, subsequently in a lower strain when performing physical activities, making it easier to maintain a favourable level of both physical activity and sedentary behaviour even at older age. This outcome is in line with a previous study that found that persons with low levels of physical activity before retirement are at risk for unfavourable sedentary behaviour after retirement.¹⁴ In addition to exercise behaviour, unfavourable sedentary leisure time before retirement predicted both sedentary time and most physical activity behaviours after retirement. These outcomes suggest that interventions promoting exercise behaviour and limiting sedentary time before retirement may potentially prevent unfavourable physical activity and sedentary behaviour also after retirement.

Older adults often have unfavourable physical activity and sedentary behaviour ^{9 10} which negatively impacts healthy aging.³⁻⁸ Our results imply that adults with multiple unfavourable pre-retirement behaviours are at higher risk to hold this profile after retirement. This group should be thought of as a priority for preventive interventions targeting physical activity and sedentary behaviour. Despite the paucity of studies of interventions during the retirement transition, a review concluded that different types of counselling programs, such as group sessions; individual training sessions; in-home exercise programmes or e-health programs can lead to positive effects in aging adults.²⁹ Our results carry a decisive suggestion that future studies should evaluate the effectiveness of pre-retirement exercise and sedentary behaviour interventions on overall post-retirement physical activity and sedentary behaviour.

When interpreting the results of the study it should be realized that we used the sample medians to distinguish between favourable and unfavourable behaviour. Since there is no evidence for cut-off points for domain-specific physical activity and sedentary behaviour, it is unclear whether the medians reflect a true border between favourable and unfavourable. The question on job activity was a combination of sedentary behaviour and physical activity and our definition of favourable was being more active at work. However, a recent review indicates that high levels of job activity might have detrimental health consequences and therefore not necessarily be favourable.³⁰ Furthermore, we did not separate different leisure time sedentary activities (such as computer use, TV, reading etc.) whilst certain leisure sitting time might be more likely to be combined with other unfavourable health behaviours such as drinking alcohol and eating snacks.³¹ In addition, we did also not separate between walking and cycling and between different exercise modalities even though we are aware that health effects might depend on the intensity and type of exercise performed.

Strengths and Limitations

Page 11 of 20

BMJ Open

The used instrument (PAQ questionnaire) takes into account both physical activity and sedentary behaviour in different domains and was used to measure these behaviours both before and after retirement, which is a major strength of our study. Nevertheless, as discussed above, the instrument does not differentiate between vocational physical activity and sedentary behaviour, between different types of leisure sedentary activities and between types of exercise performed. There were also some limitations. First, all participants who retired in a time frame of 4 years were included in this study. There was no information available on the exact time of retirement, while this could have influenced behavioural adjustments. Second, we had no information on possible confounders of outcomes, such as comorbidities. Third, we included persons that completed two surveys, which might have led to a selection bias. A relatively large proportion of the included sample was highly educated, which is known to be related to more favourable exercise patterns and sedentary behaviour.³²⁻³⁴ Furthermore, a decrease in income after retirement might have potentially influenced retirement behaviours including physical activity and sedentary behaviour. Last, we cannot rule out misclassification of sedentary behaviour and physical activity since it is known that self-report measures often demonstrate restricted validity and reliability.³⁵

271 Conclusions

This study contributes to a deeper understanding of unhealthy aging with novel insights on unfavourable sedentary and physical activity behaviour after retirement. Despite the major life event of retirement, pre-retirement unfavourable behaviours seem likely to be carried into retirement age. Likewise, those with multiple unfavourable pre-retirement behaviours seem at a higher risk to hold the same unfavourable profile after retirement. There was no indication that persons retiring from physically active jobs compensated the loss of this activity by increasing leisure time physical activity. Interventions should target those with more unfavourable pre-retirement physical activity and sedentary behaviours pre-retirement, and those interventions focusing on exercise might have greatest potential.

Table 1. Baseline characteristics and predictors of more unfavourable sedentary and physical activity behaviour after retirement

	Sedentary leisu retiren	Sedentary leisure time after retirement		
	Unfavourable after retirement	Favourable after retirement	_	
	n=1441	n=1805	_	
Predictors of unfavourable leisure time sedentary behaviour after retirement*	% (n)	% (n)	OR	95% CI
Unfavourable job activity before retirement	70 (988)	59 (1042)	1.66	1.41-1.96
Unfavourable sedentary leisure time before retirement	66 (933)	33 (588)	4.19	3.59-4.89
Unfavourable activity at home before retirement	36 (512)	29 (522)	1.32	1.12-1.56
Unfavourable walking/cycling before retirement	72 (1029)	67 (1194)	1.17	0.99-1.38
Unfavourable exercise	48 (678)	40 (709)	1.29	1.10-1.50

	Physical activity retire	at home after ment		
	Unfavourable	Favourable after retirement	_	
	n=1928	n=1302	-	
Predictors of unfavourable home physical activity after retirement*	% (n)	% (n)	OR	95% CI
Unfavourable job activity before retirement	66 (1252)	60 (769)	1.16	0.99-1.37
Unfavourable sedentary leisure time before retirement	50 (957)	44 (562) 🚤	1.35	1.16-1.58
Unfavourable activity at home before retirement	44 (837)	15 (188)	3.92	3.26-4.72
Unfavourable walking/cycling before retirement	71 (1359)	66 (850)	1.06	0.90-1.25
Unfavourable exercise	46 (878)	39 (503)	1.23	1.05-1.44

204					
291					
292					
		Walking/cycling	after retirement	_	
		Unfavourable after retirement	Favourable after retirement		
		n=1923	n=1313	-	
	Predictors of unfavourable walking/cycling after retirement*	% (n)	% (n)	OR	95% CI
	Unfavourable job activity before retirement	66 (1240)	61 (787)	1.07	0.91-1.26
	Unfavourable sedentary leisure time before retirement	47 (902)	48 (620)	0.99	0.84-1.15
	Unfavourable activity at home before retirement	34 (651)	29 (374)	1.04	0.88-1.23
	Unfavourable walking/cycling before retirement	81 (1537)	53 (681)	3.74	3.18-4.41
	Unfavourable exercise before retirement	48 (911)	37 (474)	1.43	1.22-1.66
293	*adjusted for gender and education				
294	294				
		Exercise afte	r retirement		
		Unfavourable	Favourable	-	
		after retirement	after retirement		
		n=1414	n=1833	-	
	Predictors of unfavourable exercise	% (n)	% (n)	OR	95% CI
	after retirement*				
	Unfavourable job activity before retirement	65 (896)	63 (1134)	1.07	0.91-1.26
	Unfavourable sedentary leisure time before retirement	52 (731)	44 (791)	1.36	1.17-1.59
	Unfavourable activity at home before retirement	35 (483)	30 (547)	1.05	0.89-1.24
	Unfavourable walking/cycling before retirement	73 (1021)	67 (1205)	1.15	0.97-1.36
	Unfavourable exercise before retirement	64 (900)	26 (478)	4.92	4.21-5.75
295	*adjusted for gender and education				
296					
297					
298					

4	
5	
6	
7	
8	
9	
10	
11	
12	
12	
17	
14	
15	
10	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

Table 2. Multiple unfavourable behaviours before and after retirement

			Number of aft	unfavourable er retirement	e behaviours : (n=3092)	5
	% (n)	All	3	2	1	None
		10 (309)	24 (755)	35 (1087)	24 (732)	7 (209)
	All	43 (68)	35 (55)	18 (28)	4 (6)	0 (0)
iviours ent	4	22 (109)	36 (182)	32 (160)	10 (50)	1 (4)
oer of e beha ttireme	3	9 (83)	30 (282)	39 (369)	19 (183)	3 (32)
Numk urable ore re	2	4 (40)	19 (170)	37 (340)	31 (286)	8 (74)
unfavo bef	1	2 (9)	12 (56)	35 (163)	35 (163)	16 (74)
د	None	0 (0) 🔨	9 (10)	26 (27)	42 (44)	24 (25)

1 ว		
2 3	309	Figure 1. Flowchart of Participants
4 5		
6		
7 8		
9		
10 11		
12		
13 14		
15		
16 17		
18 10		
20		
21 22		
23		
24 25		
26		
27 28		
29 30		
31		
32 33		
34 35		
36		
37 38		
39 40		
41		
42 43		
44 45		
46		
47 48		
49 50		
50 51		
52 53		
54		
55 56		
57		
58 59		
60		

2		
3	310	References
4		
5	311	1. Organization WH. Global Health and Aging. Geneva: World Health Organization, 2011.
6 7	312	2. Dogra S, Stathokostas L. Sedentary behavior and physical activity are independent predictors of
/ Q	313	successful aging in middle-aged and older adults. <i>J Aging Res</i> 2012;2012:190654. doi:
9	314	10.1155/2012/190654 [published Online First: 2012/09/22]
10	315	3. Chau JY, Grunseit AC, Chey T, et al. Daily sitting time and all-cause mortality: a meta-analysis. Plos
11	316	One 2013;8(11):e80000. doi: 10.1371/journal.pone.0080000
12	217	DONE D 12 10224 [nii] [nubliched Online First: 2012/11/16]
13	317 310	A Wilmot EC, Edwardson CL, Ashana EA, et al. Sodentary time in adults and the association with
14	210	4. Winnot EG, Euwaruson CL, Achana FA, et al. Sedentary time in adults and the association with
15	319	Diabetele air 2012 EF(11) 2805 005 dei: 10 1007 (200125 012 2077 -
16	320	Diabeloiogia 2012;55(11):2895-905. doi: 10.1007/s00125-012-2677-2
1/	321	5. Biswas A, On PI, Faulkner GE, et al. Sedentary time and its association with risk for disease
18 10	322	incidence, mortality, and hospitalization in adults: a systematic review and meta-analysis.
20	323	Annals of internal medicine 2015;162(2):123-32. doi: 10.7326/M14-1651
20	324	6. Bayan-Bravo A, Perez-Tasigchana RF, Lopez-Garcia E, et al. The association of major patterns of
22	325	physical activity, sedentary behavior and sleeping with mortality in older adults. J Sports Sci
23	326	2018:1-10. doi: 10.1080/02640414.2018.1504617 [published Online First: 2018/08/02]
24	327	7. de Rezende LF, Rey-Lopez JP, Matsudo VK, et al. Sedentary behavior and health outcomes among
25	328	older adults: a systematic review. BMC Public Health 2014;14:333. doi: 1471-2458-14-333
26	329	[pii]
27	220	10 1186/1471-2458-14-222 [publiched Opline First: 2014/04/10]
28	221	2 Connuce KD Congroup PE Matthews CE at al Sodentary behavior, physical activity, and markers
29	221 222	of health in older adults. Med Sci Sports Evers 2012:4E(8):1402 E00. doi:
30 21	332 222	01 Health III oldel addits. <i>Med Sci Sports Exerc</i> 2015,45(6).1495-500. doi:
37	333 224	10.1249/MSS.000138318288d185 [published Online First: 2013/03/12]
33	334 225	9. Harvey JA, Chastin SF, Skelton DA. How Sedentary are Older People? A Systematic Review of the
34	335	Amount of Sedentary Benavior. J Aging Phys Act 2015;23(3):471-87. doi: 2014-0164 [ph]
35	336	10.1123/japa.2014-0164 [published Online First: 2014/11/12]
36	337	10. Godfrey A, Lord S, Galna B, et al. The association between retirement and age on physical activity
37	338	in older adults. Age Ageing 2014;43(3):386-93. doi: aft168 [pii]
38		
39	339	10.1093/ageing/aft168 [published Online First: 2013/11/01]
40 11	340	11. Reichert FF, Barros AJ, Domingues MR, et al. The role of perceived personal barriers to
41	341	engagement in leisure-time physical activity. Am J Public Health 2007;97(3):515-9. doi:
43	342	10.2105/AJPH.2005.070144 [published Online First: 2007/02/03]
44	343	12. Sprod J, Ferrar K, Olds T, et al. Changes in sedentary behaviours across the retirement transition:
45	344	a systematic review. Age Ageing 2015;44(6):918-25. doi: afv140 [pii]
46	345	10 1093/ageing/afv140 [nublished Online First: 2015/10/28]
47	346	13 Barnett L van Sluijs FM. Ogilvie D. Physical activity and transitioning to retirement: a systematic
48	347	review Am / Prev Med 2012:43(3):329-36 doi: \$0749-3797(12)00394-7 [nii] [nublished
49 50	3/18	Online First: 2012/08/18]
50 51	310	14 Leskinen T. Pulakka A. Heinonen OI. et al. Changes in pon-occupational sedentary behaviours
57	250	14. Leskinen T, Fulakka A, Heinonen OJ, et al. Changes in hon-occupational sedentary behaviours
53	250	Community Health 2019;72(9):60E 701 doi: 10.1126/joch.2017.2000E9 [published Online
54	227	Eirct: 2019/04/11]
55	252	III SL. 2010/04/11] 15 Manai M. Eazou L. Charroiro H. at al. Changes in codentary hobeviews and accessiotions with
56	222	13. Ivienal IVI, Fezeu L, Charlene F, et al. Changes III seventary penaviours and associations WITA
57	304 255	physical activity through retirement: a 6-year longitudinal study. <i>PLOS Une</i>
58	300	2014;9(9):e100850. doi: 10.13/1/journal.pone.010850 [published Online First: 2014/09/27]
59	350	то. вагнесси, van Siuijs E, Oglivie D, et al. Changes in nousenoid, transport and recreational physical
60	357	activity and television viewing time across the transition to retirement: longitudinal evidence

1		
2		
3	358	from the EPIC-Norfolk cohort. <i>J Epidemiol Community Health</i> 2014;68(8):747-53. doi: jech-
4 5	359	2013-203225 [pii]
6	360	10 1136/jech-2013-203225 [nublished Online First: 2013/12/05]
7	361	17 Jones SA Li O Aiello AF et al Physical Activity Sedentary Behavior and Retirement: The Multi-
8	362	Ethnic Study of Atherosclerosis Am I Prev Med 2018:54(6):786-94 doi:
9	363	10.1016/i amenre 2018 02 022 [nublished Online First: 2018/04/14]
10	364	18 Holstila & Manty M Rahkonen O et al. Statutory retirement and changes in self-reported leisure-
11	365	time physical activity: a follow-up study with three time-points. BMC Public Health
12	366	2017:17(1):528 doi: 10.1186/s12880-017-4455-0 [published Online First: 2017/06/01]
13	367	19 Touvier M. Bertrais S. Charreire H. et al. Changes in leisure-time physical activity and sedentary
14	368	hebayiour at retirement: a prospective study in middle-aged French subjects. Int I Behay Nutr
16	360	Phys Act 2010;7:14, doi: 10.1186/1479-5868-7-14 [published Online First: 2010/02/26]
17	270	20 Phodes PE Mark PS Tempel CP Adult sedentary behavior: a systematic review Am / Drey Med
18	271	2012:42(2):e2-28 doi: 10.1016/i amonro 2011.10.020
19	271	2012,42(5).e5-26. doi: 10.1010/j.amepre.2011.10.020
20	372	21. Exerciting 0, Steene-Johannessen J, Brown WJ, et al. Does physical activity attenuate, of even
21	575 274	analysis of data from more than 1 million mon and women. <i>Lancet</i> 2016;289(100E1):1202
22	374 275	analysis of data from more than 1 million men and women. <i>Luncet</i> 2010,588(10031).1502-
23	575	10. doi. 30140-0730(10)30370-1 [pii]
24 25	376	10.1016/S0140-6736(16)30370-1 [published Online First: 2016/08/01]
26	377	22. Nooijen CFJ, Del Pozo-Cruz B, Nyberg G, et al. Are changes in occupational physical activity level
27	378	compensated by changes in exercise behavior? Eur J Public Health 2018 doi: 4827075 [pii]
28		
29	379	10.1093/eurpub/cky007 [published Online First: 2018/02/01]
30	380	23. Svensson AC, Fredlund P, Laflamme L, et al. Cohort profile: The Stockholm Public Health Cohort.
31	381	International journal of epidemiology 2013;42(5):1263-72. doi: 10.1093/ije/dys126
32	382	24. Orsini N, Bellocco R, Bottai M, et al. Validity of self-reported total physical activity questionnaire
33 24	383	among older women. <i>European journal of epidemiology</i> 2008;23(10):661-7. doi:
34	384	10.1007/s10654-008-9273-z
36	385	25. Norman A, Bellocco R, Bergstrom A, et al. Validity and reproducibility of self-reported total
37	386	physical activitydifferences by relative weight. International journal of obesity and related
38	387	metabolic disorders : journal of the International Association for the Study of Obesity
39	388	2001;25(5):682-8. doi: 10.1038/sj.ijo.0801597
40	389	26. Olds T, Burton NW, Sprod J, et al. One day you'll wake up and won't have to go to work: The
41	390	impact of changes in time use on mental health following retirement. PLoS One
42	391	2018;13(6):e0199605. doi: 10.1371/journal.pone.0199605
43 11	392	27. Mansoubi M, Pearson N, Biddle SJ, et al. Using Sit-to-Stand Workstations in Offices: Is There a
45	393	Compensation Effect? <i>Med Sci Sports Exerc</i> 2016;48(4):720-5. doi:
46	394	10.1249/MSS.00000000000802
47	395	28. Nooijen CFJ, Kallings LV, Blom V, et al. Common Perceived Barriers and Facilitators for Reducing
48	396	Sedentary Behaviour among Office Workers. Int J Environ Res Public Health 2018;15(4) doi:
49	397	ijerph15040792 [pii] 10.3390/ijerph15040792 [published Online First: 2018/04/20]
50	398	29 Baxter S. Johnson M. Payne N. et al. Promoting and maintaining physical activity in the transition
51	300	to retirement: a systematic review of interventions for adults around retirement age. Int I
52 52	400	Behav Nutr Phys Act 2016:13:12 doi: 10.1186/s12966-016-0336-3
53 54	- 00 ДП1	30 Coenen P. Huysmans MA. Holtermann A. et al. Do highly nhysically active workers die early? A
55	401 //02	systematic review with meta-analysis of data from 102 606 narticinants. Br I Sports Mod
56	402 //12	2018.52/20).1220-26 doi: 10.1126/bisports.2017_02540
57	403 AUV	31 Nonijan CEL Moller L Forcell V et al. Do unfavourable alcohol smoking putrition and physical
58	-04 ДП5	activity predict sustained leisure time sedentary hebayiour? A population-based cobort
59	405 406	study Prev Med 2017.101.23-27 doi: \$0091-7/25/17/20182-2 [nii]
60	.00	

- 10.1016/j.ypmed.2017.05.019 [published Online First: 2017/05/23]
- 32. Chung S, Domino ME, Stearns SC, et al. Retirement and physical activity: analyses by occupation and wealth. Am J Prev Med 2009;36(5):422-8. doi: S0749-3797(09)00093-2 [pii]
- 10.1016/j.amepre.2009.01.026 [published Online First: 2009/03/10]
- 33. Shaw BA, Spokane LS. Examining the association between education level and physical activity changes during early old age. J Aging Health 2008;20(7):767-87. doi: 0898264308321081 [pii]
- 10.1177/0898264308321081 [published Online First: 2008/06/19]
- 34. Chad KE, Reeder BA, Harrison EL, et al. Profile of physical activity levels in community-dwelling older adults. Med Sci Sports Exerc 2005;37(10):1774-84. doi: 00005768-200510000-00019 [pii] [published Online First: 2005/11/02]
- , et s Exer. st: 2005/1. , ME, et al. A c. vity in adults: a sy. 368-5-56 [published C. 35. Prince SA, Adamo KB, Hamel ME, et al. A comparison of direct versus self-report measures for assessing physical activity in adults: a systematic review. Int J Behav Nutr Phys Act 2008;5:56. doi: 10.1186/1479-5868-5-56 [published Online First: 2008/11/08]

	Item No	Recommendation
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract
		p.2 (marked copy)
		(b) Provide in the abstract an informative and balanced summary of what was done
		and what was found p.2 (marked copy)
Introduction		
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported
	-	n.4 (marked copy)
Objectives	3	State specific objectives, including any prespecified hypotheses p.5 (marked copy)
Methods		
Study design	4	Present key elements of study design early in the paper p.5 (marked copy)
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment.
0		exposure, follow-up, and data collection p.5 (marked copy)
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of
		participants. Describe methods of follow-up, p.5 (marked copy)
		(b) For matched studies, give matching criteria and number of exposed and
		unexposed N.A.
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect
		modifiers. Give diagnostic criteria, if applicable p.6-7 (marked copy)
Data sources/	8*	For each variable of interest, give sources of data and details of methods of
measurement		assessment (measurement). Describe comparability of assessment methods if there is
		more than one group p.6 (marked copy)
Bias	9	Describe any efforts to address potential sources of bias $p.7 + p.10$ (marked copy)
Study size	10	Explain how the study size was arrived at p.5 (marked copy) + Figure 1
Ouantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable,
		describe which groupings were chosen and why p.6-7 (marked copy)
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding
		p.6-7 (marked copy)
		(b) Describe any methods used to examine subgroups and interactions p.6-7
		(marked copy)
		(c) Explain how missing data were addressed N.A. complete cases selected, see
		page 5
		(d) If applicable, explain how loss to follow-up was addressed p.5 (marked copy)
		(e) Describe any sensitivity analyses N.a.
Results		
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially
i unorpunto	15	eligible examined for eligibility confirmed eligible included in the study
		completing follow-up, and analysed p.5 (marked copy) + Figure 1
		(b) Give reasons for non-participation at each stage N.a.
		(c) Consider use of a flow diagram Figure 1
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and
r		information on exposures and potential confounders p.7 (marked copy)
		(b) Indicate number of participants with missing data for each variable of interest
		N.A. complete cases selected, see page 5
		(c) Summarise follow-up time (eg. average and total amount) N.A.
Outcome data	15*	Report numbers of outcome events or summary measures over time p.7+8 (marked

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	
2	
3	
4	
5	
6 7	
/ 8	
9	
10	
11	
12	
13	
14	
15	
16	
1/	
10	
20	
20	
22	
23	
24	
25	
26	
27	
28	
29	
31	
32	
33	
34	
35	
36	
3/	
20 20	
<u> </u>	
41	
42	
43	
44	
45	
46	
4/	
48 ⊿0	
49 50	
51	
52	
53	
54	
55	
56	
57	
58	
59 60	
00	

		copy)
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and
		their precision (eg, 95% confidence interval). Make clear which confounders were
		adjusted for and why they were included p.8 + Table 1+2 (marked copy)
		(b) Report category boundaries when continuous variables were categorized p.6+7
		(marked copy)
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a
		meaningful time period N.a.
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and
		sensitivity analyses N.a.
Discussion		
Key results	18	Summarise key results with reference to study objectives p.8 (marked copy)
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or
		imprecision. Discuss both direction and magnitude of any potential bias p.10
		(marked copy)
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,
		multiplicity of analyses, results from similar studies, and other relevant evidence
		p.10+11 (marked copy)
Generalisability	21	Discuss the generalisability (external validity) of the study results p.8-11 (marked
		copy)
Other information		
Funding	22	Give the source of funding and the role of the funders for the present study and, if
		applicable, for the original study on which the present article is based p.3 (marked
		copy)

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at http://www.strobe-statement.org.