Supplemental Information

Essential role of Salmonella Enteritidis DNA adenine methylase in modulating

inflammasome activation

Yaxin Guo, Dan Gu, Tingting Huang, Liyan Cao, Xinyu Zhu, Yi Zhou, Kangru Wang,

Xilong Kang, Chuang Meng, Xinan Jiao, Zhiming Pan

Figure S5

Supplemental figure legends

Fig. S1 Growth curves of *dam* (**a**), *invC* (**b**), *hilD* (**c**), *prgH* (**d**), and *spaN* (**e**) gene deletion mutants, complementation, and overexpression strains. Bacteria were grown in liquid LB medium at 37 °C for 12 h with agitation, and the OD₆₀₀ values of triplicate cultures in LB medium were determined in 1-h intervals.

Fig. S2 Two rounds of screening to identify the genes involved in regulating inflammasome activation *in vitro*. J774A.1 cells were pre-treated with LPS (1 μ g/mL, 5 h) and then infected with candidate transposon mutants at an MOI of 20 for 4 h, uninfected cells was used as a negative control (Blank). The activation of caspase-1 (p20) was examined via western blot. β -actin was blotted as a loading control. Molecular mass markers in kDa are indicated on the left.

Fig. S3 Deletion mutants of *dam*, *invC*, *prgH*, and *spaN* failed to induce inflammasome activation. J774A.1 cells were pre-treated with LPS (1 μ g/mL, 5 h) and then infected with WT strain C50336 and *dam*, *invC*, *hilD*, *prgH*, and *spaN* gene deletion mutants at an MOI of 20 for 4 h, uninfected cells was used as a negative control (Blank). The activation of caspase-1 (p20) was examined via western blot. β -actin was blotted as a loading control. Molecular mass markers in kDa are indicated on the left.

Fig. S4 Deletion of *prgH* did not influence the synthesis of inflammasome components. C57BL/6 BMDMs were pre-treated with LPS (1 μ g/mL) for 5 h (untreated and uninfected BMDMs was used as a negative control, Blank LPS-), and then infected with C50336, C50336 Δ prgH, C50336 Δ prgH::prgH, C50336 Δ prgH-pMMB207, C50336::prgH, or C50336-pMMB207 at an MOI of 20 for 4 h, uninfected BMDMs was used as another negative control (Blank LPS+). Bacteria bearing pMMB207 plasmids were cultured with IPTG (0.5 mM). The expression of caspase-1, NLRP3, NLRC4, ASC, and pro-IL-1 β were analyzed by immunoblotting. β -actin was blotted as a loading control. Molecular mass markers in kDa are indicated on the left.

Fig. S5 Overexpression of Dam inhibited inflammasome activation. C57BL/6 BMDMs were pre-treated with LPS (1 µg/mL) for 5 h (untreated and uninfected BMDMs was used as a negative control, Blank LPS-), and then infected with C50336, C50336Δ*dam*, C50336Δ*dam*::*dam*, C50336Δ*dam*-pMMB207, C50336::*dam*, or C50336-pMMB207 at an MOI of 20 for 4 h, uninfected BMDMs was used as another negative control (Blank LPS+). Bacteria bearing pMMB207 plasmids were cultured with IPTG (0.5 mM). The expression of caspase-1, NLRP3, NLRC4, ASC, and pro-IL-1β were analyzed by immunoblotting. β-actin was blotted as a loading control. Molecular mass markers in kDa are indicated on the left.

Fig. S6 The ability of the *dam* complementation strain and overexpression strain cultured without IPTG to activate the inflammasome was improved. C57BL/6 BMDMs were pre-treated with LPS (1 µg/mL) for 5 h (untreated and uninfected BMDMs was used as a negative control, Blank LPS-), and then infected with C50336, C50336Δ*dam*, C50336Δ*dam*::*dam*, C50336Δ*dam*-pMMB207, C50336::*dam*, or C50336-pMMB207 at an MOI of 20 for 4 h uninfected BMDMs was used as another negative control (Blank LPS+). Bacteria bearing pMMB207 plasmids were cultured without IPTG. The expression of caspase-1, NLRP3, NLRC4, ASC, and pro-IL-1β were analyzed by immunoblotting. β-actin was blotted as a loading control. Molecular mass markers in kDa are indicated on the left.

Fig. S7 The deletion of Dam blocked the Jnk pathway in infected J774A.1 cells. J774A.1 cells were pre-treated with LPS (1 µg/mL, 5 h) and then infected with C50336, C50336 Δ *dam*, or C50336-pMMB207 at an MOI of 20 for 4 h, uninfected cells was used as a negative control (Blank). Bacteria bearing pMMB207 plasmids were cultured without IPTG. The activation of caspase-1, phosphorylated Jnk (P-Jnk), phosphorylated p38 (P-p38), and phosphorylated ERK1/2 (P-ERK1/2) were analyzed by immunoblotting. β-actin was blotted as a loading control. Molecular mass markers in kDa are indicated on the left.

Fig. S8 Dam independently promoted NLRP3 inflammasome activation. J774A.1 cells were transduced with LV5-Dam or LV5-negative lentivirus, untreated cells was used as a negative control (Blank). Cells were then pre-treated with LPS (1 μ g/mL, 5 h) and stimulated with or without ATP (1.25 mM) for 1 h. The expression of caspase-1, NLRP3, ASC, pro-IL-1 β , and P-Jnk were analyzed by immunoblotting. β -actin was blotted as a loading control. Molecular mass markers in kDa are indicated on the left.