
Appendix A - Data Processing 

All patients received diagnostic contrast-enhanced computed tomography (CECT) 

imaging. To establish tumor location with respect to organs-at-risk (OARs), contours for GTVs 

and at least 41 OARs  were contoured on individual patient’s scans. GTVs were manually 

contoured, while OARs were automatically segmented using a previously validated approach 

[1]. These contours were then used to extract GTV and OAR volumes, as well as the minimum 

distances between the surface of each region of interest (GTV and OARs), allowing some 

distances to be negative if they overlapped due to concave-convex adjacency and partial 

volume effects. Mean dose values to each ROI were further extracted from each patient’s 

radiation plans.  

The minimum euclidean distances between the outer contour of each ROI and individual 

GTVs were  denoised using a denoising autoencoder [2], which maps the original data to a 

lower-dimensional space and then attempting to reconstruct the original values, which serves a 

method of filtering noise in the data by looking at the values as a whole.  The denoising 

autoencoder consisted of a neural net using a single hidden layer of 90 units and an output 

layer of 45 units that attempted to predict the original values given a corrupted version of the 

original inputs, which both used rectified linear unit (relu) activation functions.  Gaussian dropout 

[3] with a dropout rate of .1, meaning 10% of the input values were randomly set to zero at each 

training step for the autoencoder,  was applied to the input layer. Gaussian noise with a 

standard deviation of .5 was then applied to the hidden layer during training.  By applying 

dropout and noise during training the encoder then learns to filter out noise in the input data 

using the other organ-tumor distances, given that these values are highly related.  Training was 

done using 800 epochs with a batch size of 4.  For training we used the Adam optimizer [4] with 

a learning rate of .0001.  Once trained, all tumor-organ distances were passed through the 

autoencoder to create a denoised dataset.  For patients with multiple GTVs, inter-organ 

distances were denoised separately before calculating a global minimum distance for each 

non-target ROI  The denoising autoencoder was implemented in python with tensorflow [5]. 

 

Appendix B - Dose Prediction 

 Tumor prediction was done using a k-nearest-neighbors approach using T-ssim 

similarity as the distance function, as in [6].  Tumor-organ distances as well as volumes were 

used to calculate pairwise similarity between each patient. In the original paper, the weighted 



mean of the tumor distances were used in the case of a patient with 2 GTVs.  Since our new 

dataset includes patients with up to 8 tumors, the minimum tumor-organ distances were used 

instead, as it was shown to be more effective in comparing patients with a large number of 

tumors.  Additionally, when considering patient similarity, we included both the original patient 

cohort and a symmetric copy of the cohort, where we flipped the patients’ data across the 

midline of the head, to account for lateral symmetry.  No group archetypes were used, and 

patient matches were determined by including all patient matches with a similarity of .94 or 

more, or the 8 most similar patients, whichever was greater. These values were determined via 

linear search optimization. Mean values for the true doses, predicted doses, and organ-tumor 

distances used in the prediction for each ROI group are in Table B.1.  

 

Table B.1​. ROIs considered during dose prediction and clustering analysis. For bilateral organs, we              
report statistics for the mean values of each ROI pair. True planned dose and predicted dose both refer                  
to the mean total dose delivered to an ROI over the entire treatment period. Organ-tumor distance                
represents the inter-contours distances between segmented ROIs. Negative values denote overlap           
between the GTV and ROI contour. 

 
True Planned Dose 

(Gy) Predicted Dose (Gy) 
Organ-Tumor 
Distance (mm) 

Organ Mean Std Mean Std Mean Std 

Mandible 39.4 7.3 39.5 3.8 4.7 4.6 

Extended Oral Cavity 51.7 7.1 52 3.7 -9.4 4.8 

Medial Pterygoid Muscle 
Avg. 54 6.9 53.9 3.9 11.4 8.2 

MPC 58.7 10.4 59.1 4.3 8.4 6.2 

Esophagus 29.1 10 29.1 3.5 38.2 21.1 

Spinal Cord 26 4.7 26.1 1.8 21 10.4 

Cricopharyngeal Muscle 20.1 13.6 19.3 5.1 23.8 14.5 

Cricoid Cartilage 24.7 12.7 24.3 4.6 21.6 13.1 

IPC 33.3 16.8 33 7.7 13 8.7 

Brainstem 13.2 4.5 13.1 1.7 29.4 16.2 

Larynx 26.4 13.3 25.7 6.4 11.2 8 

Thyroid Cartilage 38.1 11.6 38.1 6.2 7.9 7.2 

Supraglottic Larynx 52.9 11.8 53.4 5.9 1.2 5.9 

SPC 63.1 6.3 63.3 3.1 -4 3.6 



Hyoid Bone 62.9 11.7 63.6 4 3 5.4 

Soft Palate 58.1 9.4 58.2 5.1 3.1 9 

Genioglossus Muscle 61.1 8.2 61.5 3.9 -3.4 5 

Tongue 56.6 8.3 56.8 3.6 -2.9 5.5 

Mylogeniohyoid Muscle 54.9 10.1 55.3 5 5.4 6.1 

Hard Palate 25.3 10.1 24.9 4.4 28.6 18.4 

Lower Lip 23.4 6.8 23.6 2.1 41.7 20.4 

Upper Lip 16.6 6 16.5 2.2 46.9 23.4 

Brachial Plexus Avg. 48.8 8.8 48.9 4.1 22.4 13 

Thyroid Lobe Avg. 48.6 9.4 48.9 3.7 30.3 17.6 

Sternocleidomastoid 
Muscle Avg. 56.1 8.8 56.2 4.1 11.9 10.5 

Mastoid Avg. 40.8 9 40.8 3.8 36.4 19 

Parotid Gland Avg. 28.5 6.9 28.5 3.5 15.8 10.3 

Lateral Pterygoid 
Muscle Avg. 35.2 10.2 34.8 4.6 27.5 16.3 

Masseter Muscle Avg. 29.7 6.6 29.5 3.2 22.4 12 

Submandibular Gland 
Avg. 61.9 8.8 62.1 4.5 6.5 6.7 

Anterior Digastric 
Muscle Avg. 54.1 9.5 54.4 4.8 9.9 7.7 

 
Table B.2: ​Predicted dose mean and standard deviation by cluster.  Dose values for bilateral organs 

report the mean values between both organs. Swallowing-related muscles are highlighted. 
 Spatial Cluster 1 Spatial Cluster 2 Spatial Cluster 3 Spatial Cluster 4 

 Mean Std Mean Std Mean Std Mean Std 

Esophagus 31.4 0.5 29.7 0.8 24.5 5.7 30.9 2.6 

Spinal Cord 26.9 0.3 26.0 0.4 24.1 2.9 27.6 1.3 

Cricopharyngeal 
Muscle 21.9 2.0 18.3 1.8 14.7 4.4 25.0 6.0 

Cricoid Cartilage 26.7 1.3 23.4 1.6 20.3 3.9 29.4 5.6 

IPC 40.9 1.5 31.3 4.5 28.1 6.5 39.9 9.9 

MPC 61.4 0.9 58.8 2.0 54.6 5.5 63.1 3.6 

Brainstem 12.4 0.8 12.4 1.0 13.2 1.7 14.8 1.8 



Larynx 30.3 0.5 24.0 2.8 21.3 4.0 32.8 8.3 

Thyroid Cartilage 41.5 0.7 36.2 2.4 34.6 4.4 45.1 8.1 

Supraglottic 
Larynx 58.6 1.0 52.0 3.4 49.9 6.9 58.7 6.4 

SPC 63.4 1.4 62.7 1.1 60.0 3.8 66.9 2.1 

Hyoid Bone 66.4 0.8 63.0 2.6 60.7 5.6 66.9 3.2 

Soft Palate 53.8 2.3 56.7 4.0 55.1 3.4 64.4 3.3 

Genioglossus 
Muscle 65.5 1.9 61.1 2.4 57.9 4.9 64.8 3.3 

Tongue 58.6 2.5 56.0 1.4 53.6 4.1 61.1 2.8 

Mylogeniohyoid 
Muscle 60.5 3.3 54.3 2.9 51.4 4.9 60.2 5.3 

Extended Oral 
Cavity 52.0 2.0 50.8 1.4 48.7 3.2 57.1 2.9 

Mandible 39.9 2.2 38.2 1.0 36.3 2.8 44.8 3.7 

Hard Palate 20.6 1.3 23.2 3.1 24.2 3.0 29.9 4.0 

Lower Lip 22.3 1.4 22.6 1.0 23.8 2.1 26.0 2.1 

Upper Lip 15.7 1.3 15.6 1.3 16.2 1.9 18.7 2.6 

Brachial Plexus 
(LR) 53.0 1.8 48.7 1.8 44.3 4.8 52.7 3.8 

Thyroid Lobe (LR) 52.6 1.4 48.8 1.5 44.5 5.0 52.2 2.8 

Sternocleidomast
oid Muscle (LR) 59.1 0.4 56.3 1.5 50.9 5.7 59.5 2.9 

Mastoid (LR) 40.7 1.3 39.7 1.8 37.7 3.4 45.6 3.2 

Parotid Gland 
(LR) 28.8 2.1 27.5 1.1 25.5 2.2 33.2 3.6 

Medial Pterygoid 
Muscle (LR) 53.6 0.7 53.1 1.2 49.6 3.8 59.0 2.9 

Lateral Pterygoid 
Muscle (LR) 31.5 0.6 32.9 3.2 32.9 3.0 40.8 2.9 

Masseter Muscle 
(LR) 28.9 0.6 28.8 1.5 25.9 2.9 33.6 2.0 

Submandibular 
Gland (LR) 66.0 1.6 61.5 2.2 57.7 5.9 66.3 3.9 



Anterior Digastric 
Muscle (LR) 59.7 4.1 53.3 2.8 51.0 4.6 59.3 5.1 

 
Appendix C. - Covariate Selection 

Our model uses Hierarchical clustering to segment the cohort, which is a standard 

data-mining technique for identifying patterns in the data.  The most important consideration for 

this is the way in which we define similar.  We postulated that the anatomical and spatial 

characteristics of the GTV and surrounding organs can be used as a source of similarity that 

isn’t well captured in existing literature.  Because the root cause of RAD is hard to attribute to 

individual organs, we considered the volume and minimum distance to GTV for all nearby ROIs 

in the head and neck to be potential covariates.  Since treatment dose to non-target ROIs is 

considered to be the main driver of RAD, we further estimated these doses using the available 

covariates based on previously published methods.  We then performed a search over these 

covariates to identify a representative subset of them to use in our final model. 

Our set of available candidate features were 41 sets of tumor-organ distances, predicted 

mean treatment doses, and contour volumes.  Of these 41 organs, 10 pairs of bilaterally 

symmetrical organs were combined using their euclidean norm, resulting in 31 composite ROIs 

for each covariate type.  With these 93 candidate covariates, we performed a search to identify 

the most representative values to use in our final model.  Because the results of clustering are 

dependent on the dataset used, we need to avoid overfitting the model that is only 

discriminative on the current cohort.  To avoid this, we used bagging to estimate true distribution 

of clusters for each variable.  

Concretely, we randomly sampled from the original dataset with replacement, such that 

the new dataset had the same number of patients as in the original dataset.  Within this 

processed dataset, we performed agglomerative clustering using a weighted linkage function 

and 2-5 clusters on each individual candidate covariate. For each of the clustering results, the 

correlation between these clusters and RAD was measured using a two-tailed version of 

Fisher’s exact test [7], and the inverse of the smallest p-value (among all options of 2-5 clusters) 

was used as the ‘importance’ for the candidate covariate. We chose Fisher's exact test over a 

standard Chi-squared test, because the exact test works well on small numbers of samples. 

Bagging was performed 500 times, and the mean importance for each variable was then used. 

The covariate with the strongest correlation, and therefore the most discriminative clusters, was 

then choses as a static covariate.  This process was repeated, such that all non-static variables 



were combined individually with the static features, and a new ‘importance’ was measured. At 

each step, the most important variable was added to the static covariates until no covariates 

were found to improve correlation above the set of static covariates. These selected covariates 

were then used to produce the spatial clusters as described below. 

 
Appendix D. - Univariate Feature Analysis 

We performed univariate analysis of the spatial features to compare the 5 features’ 

individual effect on baseline prediction. We report the change in cross-validation AUC score 

using logistic regression relative to the baseline features when including individual features, as 

in the previous analysis, both with or without performing clustering using these individual 

features.  We additionally analyzed several other features identified as of-interest in recent 

literature [​8,9​], to provide a comparison: doses to the mandible or anterior-digastric muscle 

[10,11], as well as the mean volume of the sternocleidomastoids, masseter volume, and total 

gross tumor volume, which are shown in figure D.1.  We further compared the AUC score 

increase from performing logistic regression with the addition of the tumor-organ distances for 

the 6 muscles related to swallowing: MPC, SPC, IPC, Cricopharyngeal Muscle, the 

Mylogeniohyoid Muscle, and the Supraglottic Larynx, as they are likely candidates for a causal 

model of dysphagia, which are reported in Figure D.2. For each feature set, we report the 

change mean difference from the baseline AUC score after including each feature. 

While we identify features that allow for robust segregation of the patient cohort in an 

unsupervised manner, our approach does not capture individual features that may not cluster 

well, despite providing strong correlation with endpoints.  Our univariable analysis on the effect 

of using individual organs in the dataset yielded low to no improvement when clustering was 

applied.  The contribution of the clustered features was also not correlated with the 

improvement provided by unclustered features.  Masseter volume produced a better AUC 

improvement than any of our individual proximity and dose features, consistent with other 

literature that found masseter dose-volume was related to swallowing dysfunction. However, 

masseter volume provided slightly worse results if clustering was applied.  For our analysis of 

swallowing muscles, many of these muscles provide limited to no additional benefit to the 

predictive model, suggesting that they are likely fully encapsulated by other factors such as 

T-category. 

 



 
Figure D.1.​ Change in AUC score relative to baseline clinical features when introducing selected features 
with and without clustering.   Features tested include the 6 spatial features together, and individually, as 
well as Masseter Volume, and true doses the the Anterior Digastric, and Mandible. 
 

 
Figure D.2.​ Change in AUC score relative to baseline clinical features when introducing Swallowing 
Muscle.  
 
We further created a logistic regression model to predict the probability of a patient being not in 

the high-risk group using the tumor-organ distances of the 6 swallowing organs: SPC, IPC, 

MPC, Cricopharyngeal Muscle, Supraglottic Larynx, and the Mylogeniohyoid muscle.  By using 



a logistic regression model to estimate the likelihood of being in a low risk group, the resulting 

odds ratios can thus be interpreted as the relative importance that proximity to an organ 

represents for being in the high-risk group.  The odds ratios from the fitted model are shown in 

Table D.1.  Of the ROIs with a positive odds ratio, SPC was the most indicative (OR = 1.64, 

97.5% CI = [1.41, 1.98]), suggesting that proximity to the SPC was the strongest single 

swallowing muscle for predicting RAD, followed by the Mylogeniohyoid (OR = 1.23, 97.5% CI = 

[1.05, 1.45]), and finally IPC (OR = 1.13, 97.5% CI = [.819, 1.59]). The logistic regression mimic 

model achieved an accuracy of 83.5%, with an AUC score for predicting RAD of 0.64.  

 

Table D.1​: Odds-ratios for tumor-organ distance and membership in the low-risk spatial cluster. Higher              
odds ratios indicate that  tumors near the given ROI are more likely to be in the high risk group. 

Organ Odds-Ratio 2.5% CI 97.5% CI 

Superior Pharyngeal Constrictor 1.64 1.41 1.98 

Mylogeniohyoid Muscle 1.23 1.05 1.45 

Inferior Pharyngeal Constrictor 1.13 .819 1.59 

Cricopharyngeal Muscle .996 .844 1.17 

Medial Pharyngeal Constrictor .963 .782 1.19 

Supraglottic Larynx .845 .701 1.01 

 

 
 
Appendix E -  Clinical Feature Clustering Analysis 

Clustering was performed on only the non-spatial clinical features for each patient, to 
provide a baseline comparison of how well currently existing features perform when clustering. 
TMN staging information as well as common demographic and clinical features were collected 
from each patient in the cohort. All features except for age and dose-to-tumor were one-hot 
encoded [12]. Clustering was performed on these features using hierarchical clustering with the 
Manhattan distance function, which was chosen for its ability to work well with categorical data. 
We report results for​ k ​= 4 clusters, where​ k​ was chosen as it resulted in good correlation with 
RAD using Fisher’s exact test (p < .0001).  For cases where the AJCC 8th edition classification 
was missing (51), the values were estimated using the patient’s AJCC 7th edition classification 
as all such patients were hpv negative. Categorical variables were encoding using dummy 
variables with one-hot encoding.  Distance was computed using the manhattan distance with 
k-medoids clustering, which was chosen as it had the strongest correlation with RAD.  Cluster 
breakdowns are reported in Table E.1.  Cluster labels were significantly correlated with toxicity 
outcomes. 



 
Table E.1​: Clinical Cluster Characteristics 

Clinical Cluster Characteristics 

Feeding Tube 

Cluster 
# 
Patients 

# W/ 
Toxicity % W/ Toxicity P-Value 

Clinical Cluster 1 62 9 14.5 

< 0.01 
Clinical Cluster 2 59 2 3.4 

Clinical Cluster 3 42 10 23.8 

Clinical Cluster 4 37 1 2.7 

Aspiration 

Cluster 
# 
Patients 

# W/ 
Toxicity % W/ Toxicity P-Value 

Clinical Cluster 1 62 10 16.1 

< 0.01 
Clinical Cluster 2 59 1 1.7 

Clinical Cluster 3 42 8 19 

Clinical Cluster 4 37 0 0 

RAD (Either) 

Cluster 
# 
Patients 

# W/ 
Toxicity % W/ Toxicity P-Value 

Clinical Cluster 1 62 16 25.8 

< 0.0001 
Clinical Cluster 2 59 3 5.1 

Clinical Cluster 3 42 14 33.3 

Clinical Cluster 4 37 1 2.7 
 
AUC cross-validation score was calculated for these clinical cluster labels in combination with 
the original clinical features, the spatial clusters, and alone, which are reported in Table F.2.  As 
these clinical cluster labels performed worse than T-staging alone, we instead compare our 
spatial clusterings to T-stage in the main results. 
 
Table E.2​: AUC cross-validation scores using logistic regression alone and in addition to other features.               
Clusters performed worse alone and in combination with spatial clusters than T-staging alone, and did not                
change performance when using all clinical features.  

Leave-one-out Cross-Validation AUC Scores (Logistic Regression) 

 
Feeding 
Tube Aspiration RAD (Either) 



Clinical Clusters 0.64 0.66 0.68 

Clinical Clusters + Spatial Clusters 0.71 0.74 0.73 

All Clinical Features +Clinical Clusters 0.64 0.85 0.79 
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