Human Natural Killer Cell Cytoskeletal Dynamics and Cytotoxicity are Regulated by LIM Kinase

Supplementary Materials

Authors: Melody G. Duvall^{1,2}, Mary E. Fuhlbrigge¹, Roisin B. Reilly¹, Katherine H. Walker¹, Ayşe Kılıç^{1,3}, Bruce D. Levy^{1*}

Affiliations:

¹ Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.

² Division of Critical Care Medicine, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.

³ Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA

*Corresponding Author: Bruce D. Levy, 60 Fenwood Road, Boston, MA, 02115, USA. Phone: 617-525-5407; Fax: 617-732-7421; Email: <u>blevy@bwh.harvard.edu</u>

Supplemental Figure 1

Supplemental Figure 1. Analysis of NK cell immunofluorescence and confocal microscopy. (A) Cell perimeters of NK:target conjugates were outlined as regions of interest (ROIs). (B) ROIs were applied to immunofluorescence images (perforin; green). (C) Centroid coordinates of each lytic granule were noted (X_m, Y_m) . (D) The immune synapse was identified as the overlap of NK and target cell perimeters (red shaded area). Coordinates of synapse endpoints were noted $(X_1, Y_1 \text{ and } X_2, Y_2)$. The red dashed line connecting the points is the synapse axis. (E) Distance from each lytic granule to the synapse axis was calculated using Equation A (black dashed lines in panel D). For granules outside the synapse axis (e.g. Granule 7), Equation B was used to calculate the distance to the nearest synapse endpoint (black double line in panel D). Equation C to was used to calculate areaweighted mean lytic granule distance (AWMLGD). See Methods "Immunofluorescence microscopy". (F) Confocal microscopy was used to image NK:target conjugates for F-actin (phalloidin, red), perforin (green), and α -tubulin (blue). Phalloidin signal was measured within the immune synapse (red dashed line). Centroid coordinates of phalloidin signal within the synapse were noted (red star; X₁,Y₁). NK cell MTOC was identified (α -tubulin, blue circle; X₂,Y₂). Perforin density within the immune synapse was determined. (G) Distance between immune synapse center (X_1, Y_1) and the MTOC (X_2, Y_2) was calculated for each NK:target conjugate. See Methods section "Confocal Microscopy".

Supplemental Figure 2. Dexamethasone and LXA₄ concentration response curves and NK cell activating receptor expression. A concentration response curve was established for dexamethasone and LXA₄ effect on NK cells using K562 target cell apoptosis as the readout. NK cells isolated from healthy donors were exposed to serial-dilutions of (A) dexamethasone (100 pM to 1 μM, blue), or (B) lipoxin A₄ (100 pM to 100 nM, red) for 48 hours. (A-B) Treated NK cells were coincubated with K562 target cells at 5:1 effector: target ratio for 4 hours and NK cell-mediated target cell apoptosis was assessed by flow cytometry staining for annexin-V and 7-AAD (% Target Annexin V^{+}). log(Dex) and log(LXA₄) concentration response curves were generated and nonlinear regression was performed using least squares regression fitting method to calculate the IC₅₀ for dexamethasone. R^2 goodness of fit measure is shown. n=3 experiments. Symbols denote mean + SEM. (C-D) NK cells were exposed to vehicle control (Veh, grey), 1 µM dexamethasone (Dex, blue), or 100 nM lipoxin A₄ (LXA₄, red) for 48 hours. (C) Percentage of NK cells expressing the activating receptor NKp46 was analyzed for each condition by flow cytometry. n=7 experiments. (D) Median fluorescence intensity (MFI) of NKG2D expression on NK cells was analyzed by flow cytometry. n=3 experiments. Bars show mean + SEM with individual data points. ***p<0.005 and ****p<0.0001 by repeated measures one-way ANOVA with Tukey's multiple comparisons test.

Supplemental Figure 3. LIMK inhibition does not impair NK cell viability, NK:target conjugate formation, or NK cell perforin content. NK cells were exposed to the LIMK inhibitor BMS-5 for 48 hours and NK cell viability was assessed by (A) flow cytometry staining for annexin V and 7-AAD and (B) trypan blue evaluation. NK cell viability was $\geq 85\%$ in all conditions; n=3 individual experiments. NK cells exposed to BMS-5 for 48 hours were subsequently co-incubated with K562 target cells for 2 hours. (C) The percentage of NK cells conjugated to target K562 cells was evaluated by confocal microscopy in n=2 experiments. Total NK cells observed was > 200 per condition. (D) Confocal microscopy was used to image NK:target conjugates for intracellular perforin (AF488, green) in BMS-5 5µM and 10µM conditions relative to control. Total NK cell perforin integrated density (area x MFI) was quantified for each NK:target conjugate. n=3 experiments, 49-51 total NK:target conjugates imaged and quantified per condition. Bars show mean <u>+</u> SEM and violin plots depict density distribution with median (line) and interquartile ranges (dashed line). ns = not significant.

Supplemental Figure 4

<u>Supplemental Figure 4</u>. Supplemental confocal microscopy images. NK cells were exposed to noted conditions for 48 hours before co-incubation with K562 target cells for 2 hours. Confocal microscopy was utilized to image F-actin (phalloidin AF555, red), perforin (AF488, green), and α -tubulin (AF647, blue) in NK:target conjugates. Merged images are shown for 6 representative images for the following conditions: (A) Vehicle (0.02% DMSO), (B) BMS-5 5 μ M, (C) BMS-5 10 μ M, (D) Vehicle (0.1% EtOH), (E) Dexamethasone 1 μ M, (F) LXA₄ 100nM, (G) LXA₄ 100nM with BMS-5 10 μ M.

Supplemental Table 1. Cytoskeletal Protein Array

	NK c	ell exposure		
Protein	Veh	Dex	LXA₄	
Actin alpha-1 skeletal muscle (N-term)	+	+	+	
Actin alpha-2/3 (N-term)	-	-	-	
Actin Pan (a/b/g) (Ab-55/53) Actin Pan (a/b/g) (Phospho-Tvr55/53)	-	-	-	
ACTN1 (F-Actin) (inter)	-	-	-	
Beta actin	+	+	+	
c-Raf (Ab-296)	-	-	+	
c-Raf (Ab-43)	-	+	+	
c-Raf (Phospho-Ser43)	-	-	-+	
Calmodulin (Ab-79/81)	-	-	+	
Calmodulin (Phospho-Thr79/Ser81)	-	+	-	
CaMK1-alpha (Ab-177)	-	+	-	
CaMK1-alpha (Phospho-Thr177)	-	-	+	
CaMK2 (Ab-286)	-	-	+	
CaMK2 (Phospho-Thr286)	-	-	+	
CaMK2 (Phospho-Thr305)	-	+	-	
CaMK2-beta/gamma (inter)	-	-	-	
CaMK2-beta/gamma/delta (Ab-287)	-	-	+	
CaMK2-beta/gamma/deita (Phospho-Thr287)	-	-	+	
CaMK4 (Phospho-Thr196/200)	-	-	+	
CaMK5 (inter)	-	-	-	
Cofilin (Ab-3)	-	-	+	
Cofilin (Phospho-Ser3)	-	-	+	
Cortactin (Ab-421)	-	-	+	
Cortactin (Ab-466)	-	-	+	
Cortactin (Phospho-Tyr466)	-	-	+	
Crkll (Ab-221)	-	-	+	
Crkll (Phospho-Tyr221)	-	-	+	
CrkL (Phospho-Tyr207)	-	-	+	
ERK1-p44/42 MAP Kinase (Ab-202)	-	-	+	
ERK1-p44/42 MAP Kinase (Ab-204)	-	-	+	
ERK1-p44/42 MAP Kinase (Phospho-Trr202)	-	-	+	
ERK1/2 (N-term)	-	+	+	
ERK3 (Ab-189)	-	-	-	
ERK3 (Phospho-Ser189)	-	-	+	
ERK8 (Phospho-Thr175/Tyr177)	-	-	+	
Ezrin (Ab-353) Ezrin (Ab-478)	-	-	-	
Ezrin (Ab-566)	+	+	+	
Ezrin (Phospho-Thr566)	+	+	+	
Ezrin (Phospho-Tyr353)	-	-	+	
Ezrin (Phospho-Tyr478)	-	-	+	
FAK (Ab-397)	-	-	+	
FAK (AD-407) FAK (AD-576)	-	+	-	
FAK (Ab-861)	-	-	+	
FAK (Ab-910)	+	+	+	
FAK (Ab-925)	-	-	+	
FAK (Phospho-Ser910)	+	+	+	
FAK (Phospho-Tyr397)	-	-	-	
FAK (Phospho-Tyr576)	-	-	+	
FAK (Phospho-Tyr861)	-	-	+	
FAK (Phospho-Tyr925)	-	-	+	
Filamin A (Ab-2152)	-	-	+	
Filamin A (Phospho-Ser2152)	+	+	+	
Gab2 (Ab-159)	-	-	-	
GAPDH	-	-	+	
GTPase activating protein (Ab-387)	-	-	+	
GTPase activating protein (Phospho-Ser387)	-	-	-	
LIMK1 (Ab-508)	-	+	+	
LIMK1 (Phospho-Thr508)	+	-	+	
LIMK1/2 (Ab-508/505)	+	+	+	
MEK1 (Ab-21/)	-	-	+	
IVIERI (AD-221)	-	-	+	

	NK cell exposure		
		- en expc	sule
Protein (continued)	Veh	Dex	LXA₄
MEK1 (Ab-286)	-	+	+
MEK1 (Ab-298)		+	+
MEK1 (Phospho-Ser217)	-	-	+
MEK1 (Phospho-Ser221)	-	-	+
MEK1 (Phospho-Ser298)	-	-	-
MEK1 (Phospho-Thr286)	-	+	+
MEK1 (Phospho-Thr291)	-	-	+
MEK2 (Ab-394)	-	-	+
MEK2 (Phospho-Thr394)	-	-	+
MEKKK 1 (Inter)	-	-	-
Merlin (Ab-10)		- +	- +
Merlin (Ab-518)	-	-	+
Merlin (Phospho-Ser10)	+	+	+
Merlin (Phospho-Ser518)	-	-	+
MKK3/MAP2K3 (Ab-189)	-	+	+
MKK3/MAP2K3 (Ab-222)	-	-	-
MKK3/MAP2K3 (Phospho-Ser189)	-	-	-
MKK3/MAP2K3 (Phospho-Thr222)	-	-	-
MKK6 (Ab-207)	-	+	+
MKK6 (Phospho-Ser207)	+	+	+
MKK7/MAP2K7 (Ab-271) MKK7/MAP2K7 (Phospho_Ser271)	-	-	+
MKK7/MAP2K7 (Phospho-Thr275)	-	+	+
Myosin regulatory light chain 2 (Ab-18)	-	-	+
Myosin regulatory light chain 2 (Phospho-Ser18)	-	+	+
NCK2 (C-term)	-	-	-
p130Cas (Ab-165)	-	-	-
p130Cas (Ab-410)	-	-	-
p130Cas (Phospho-Tyr165)	-	-	-
p130Cas (Phospho-Tyr410)	-	+	-
Paxillin (Ab-118)	-	-	-
Paxillin (Ab-31)	-	-	+
Paxillin (Phospho-Tyr118)	-	-	+
PI3-kinase n85-alnha (Phospho-Tyr607)	-	-	+
Pl3-kinase p85-subunit alpha/gamma (Ab-467/199)	-	-	-
PI3-kinase p85-subunit alpha/gamma (Phospho-Tyr467/Tyr199)		-	+
PIP5K (inter)	-	-	+
PIP5K (Phospho-Ser307)	-	-	-
PKA CAT (Ab-197)	-	+	+
PKA CAT (Phospho-Thr197)	-	-	+
PKC alpha (Ab-657)	-	-	-
PKC alpha (Phospho-Tyr657)	-	+	+
PKC alpha/beta II (Ab-638)	-	-	+
PKC appractivation site	-	-	-
PKC pan activation site (Phospho)	-	-	+
PLC beta-3 (Ab-1105)	-	-	-
PLC beta-3 (Ab-537)	-	-	-
PLC beta-3 (Phospho-Ser1105)	+	+	-
PLC beta-3 (Phospho-Ser537)	-	-	+
Rac1/cdc42 (Ab-71)	-	-	+
Rac1/cdc42 (Phospho-Ser71)	-	-	+
Rho/Rac guanine nucleotide exchange factor 2 (Ab-885)	-	-	-
Rho/Rac guanine nucleotide exchange factor 2 (Phospho-Ser885)	-	-	+
Src (Ab-418)	+	+	+
Src (Ab-529)	-	-	+
Src (AD-75)	-	-	-
Src (Phospho-Ser75)		-	- +
Src (Phospho-Tyr418)	-	-	+
Src (Phospho-Tyr529)	-	-	+
VASP (Ab-157)	+	+	+
VASP (Ab-238)	-	-	+
VASP (Phospho-Ser157)	-	-	+
VASP (Phospho-Ser238)	-	-	+
WASP (Ab-290)	-	-	+
WASP (Phospho-Tyr290)	-	-	-
WAVE1 (Ab-125)	-	-	-
VVAVE1 (Phospho-Tyr125)	-	+	-

Supplemental Table 1. Cytoskeletal Protein Array. NK cells from healthy donors were exposed to Vehicle, Dexamethasone, or LXA₄ for 48 hours and protein was extracted for screening in this cytoskeletal protein array (see Methods). + denotes positive signal and – denotes lack of signal above background threshold for each of the 141 site-specific and phosphor-specific cytoskeletal proteins included in the cytoskeletal protein array.