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1. MODEL PARAMETERS  

1.1. Compartmental model 

 
Table S1. Parameters, values, and sources used to define the compartmental model 

Variable Description Value Source 

𝜃−1 Incubation period 5.2d  30 

𝜇𝑝
−1 Duration of prodromal phase 1.5d, computed as the fraction of pre-

symptomatic transmission events out of 

pre-symptomatic plus symptomatic 

transmission events. 

31 

𝜖−1 Latency period 𝜃−1 − 𝜇𝑝
−1 - 

𝑝𝑎 Probability of being asymptomatic 0.2, 0.5 21 

𝑝𝑝𝑠 If symptomatic, probability of being paucisymptomatic 1 for children 
0.2 for adults, seniors 

18 

𝑝𝑚𝑠 If symptomatic, probability of developing mild symptoms 0 for children 
0.7 for adults  

0.6 for seniors 

18 

𝑝𝑠𝑠 If symptomatic, probability of developing severe symptoms 0 for children 

0.1 for adults  

0.2 for seniors 

18,19,33 

𝑔 Generation time  6.6d 34 

𝜇−1 Infectious period for 𝐼𝑎, 𝐼𝑝𝑠, 𝐼𝑚𝑠 , 𝐼𝑠𝑠 2.3d, chosen accordingly to generation 

time distribution (see following 

subsection) 

- 

𝑟𝛽 Relative infectiousness of 𝐼𝑝, 𝐼𝑎, 𝐼𝑝𝑠 0.55 8 

𝑝𝐼𝐶𝑈 If severe symptoms, probability of going in ICU 0 for children 

0.24 for adults 
0.24 for seniors 

28 

𝜆𝐻,𝑅 If hospitalized, daily rate entering in R 0 for children 

0.083 for adults 
0.033 for seniors 

28 

𝜆𝐻,𝐷 If hospitalized, daily rate entering in D 0 for children 
0.0031 for adults 

0.0155 for seniors 

28 

𝑝𝐼𝐶𝑈,𝑅 Probability of recovery from ICU 0.76 for adults 

0.54 for seniors 

28 

𝜆𝐼𝐶𝑈
−1  Time spent in ICU  21.1 days for adults 

20.7 days for seniors 

28 
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1.2. Generation time distribution 

 
The generation time distribution in a compartmental epidemic model can be computed thanks to the theory 

developed by Svensson32. Let 𝑋 and 𝑌 be the random variables describing the latency period and the infectious 

period, respectively. Then the distribution of the generation time is the result of the convolution 𝑔 ∗ ℎ𝑠, with 𝑔 

being the probability density function of 𝑋 and 

ℎ𝑠(𝑡) =
1 − 𝐻(𝑡)

𝐸(𝑌)
 

where 𝐻 is the cumulative distribution function of 𝑌, and 𝐸(𝑌) is the mean.  

In the compartmental model under consideration (Figure 2), we have that 𝑋 is exponentially distributed with rate 

𝜖, and 𝑌 is the sum of two exponentially distributed random variables (prodromic phase and infectious period, 

with rate 𝜇𝑝 and 𝜇 respectively). Computations show that the corresponding generation time distribution is  

𝑓(𝑡) =
𝜖 𝜇𝑝 𝜇

(𝜇𝑝 + 𝜇)(𝜇 − 𝜇𝑝)
 [ 

𝜇

(𝜖 − 𝜇𝑝)
 (𝑒−𝜇𝑝𝑡 − 𝑒−𝜖 𝑡) −

𝜇𝑝

(𝜖 − 𝜇)
 (𝑒−𝜇 𝑡 − 𝑒−𝜖 𝑡)]   

Given the values of 𝜖 and 𝜇𝑝 informed from the literature (Table S1), we choose 𝜇 so that the mean of the 

generation time equals to 6.6 days. The shape of the distribution is displayed in Figure S1 and it closely 

resembles a gamma distribution with mean 6.6 and shape parameter 1.87, estimated in Ref.34  

 
 

   

Figure S1. Distribution of the generation time. The generation time distribution corresponding to our compartmental 

model (blue) in comparison with the distribution estimated in Ref.34 (orange). 
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1.3. Estimation of within-hospital parameters  
 

We fit data on patient trajectories recorded in Île-de-France hospitals after admission up to April 5, 2020. Data 

consisted of age, sex, date of hospital admission and subsequent dates of discharge or death, and, when relevant, 

dates of entering/leaving the ICU. We fit mixture and competing risks models to time to event data, taking into 

account censoring due to patients being still in the hospital at the time of analysis. We used exponential 

distributions for time to event data to match the hypotheses of the compartmental epidemic model.  

First, we model time from admission to entering the ICU or being discharged/dead for those who do not go to 

the ICU. Write T for the time to the first of the 3 following events: entering the ICU, being discharged alive or 

dying in the hospital. T is modelled as a mixture of 2 exponential distributions: T ~ 𝜋𝐼𝐶𝑈𝐸𝑥𝑝(𝜆𝐼𝐶𝑈) +
(1 − 𝜋𝐼𝐶𝑈)𝐸𝑥𝑝(𝜆𝐻), where 𝜋𝐼𝐶𝑈 is the probability to go to the ICU, and 𝜆𝐼𝐶𝑈,  𝜆𝐻 are the rates of the exponential 

distributions. The second exponential describes time spent in the hospital by those who don’t go the ICU subject 

to competition of 2 outcomes, discharge or death. Therefore, 𝜆𝐻 = 𝜆𝐷𝐼𝑆 + 𝜆𝐷𝑇𝐻 where 𝜆𝐷𝐼𝑆 is the rate of 

discharge and 𝜆𝐷𝑇𝐻 the rate of death. The average time spent in the hospital is 1/𝜆𝐻, and the probability of being 

discharged alive is 𝜆𝐷𝐼𝑆 (𝜆𝐷𝐼𝑆 + 𝜆𝐷𝑇𝐻)⁄ .  Therefore, the likelihood of a patient trajectory observed up to time t 

with final status s (comprising still hospitalized - HOS, admitted to ICU - ICU, discharged alive - DIS, dead - 

DTH) is given by :  

𝐿(𝜋𝐼𝐶𝑈, 𝜆𝐼𝐶𝑈, 𝜆𝐷𝐼𝑆, 𝜆𝐷𝑇𝐻 ) =  (𝜋𝐼𝐶𝑈𝜆𝐼𝐶𝑈 exp(−𝜆𝐼𝐶𝑈 𝑡))𝑠=𝐼𝐶𝑈 

 
((1 − 𝜋𝐼𝐶𝑈) (𝜆𝐷𝐼𝑆 (𝜆𝐷𝐼𝑆 + 𝜆𝐷𝑇𝐻)⁄ )𝑠=𝐷𝐼𝑆 (𝜆𝐷𝑇𝐻 (𝜆𝐷𝐼𝑆 + 𝜆𝐷𝑇𝐻)⁄ )𝑠=𝐷𝑇𝐻 exp(−(𝜆𝐷𝐼𝑆 + 𝜆𝐷𝑇𝐻)𝑡))

1−𝑠=𝐼𝐶𝑈
  

(1 − 𝜋𝐼𝐶𝑈 exp(−𝜆𝐼𝐶𝑈 𝑡) − (1 − 𝜋𝐼𝐶𝑈)exp (−(𝜆𝐷𝐼𝑆 + 𝜆𝐷𝑇𝐻) 𝑡))𝑠=𝐻𝑂𝑆 

The first line is for patients going to the ICU, the second line for those being discharged alive or dead and the 

third line for patients who were censored because they were still in the hospital. 

Likewise, we fit time to discharge or death after admission to the ICU using a competing risk approach with 

exponential parameters µ for being discharged alive or dead; the likelihood is therefore:  

𝐿(𝜇𝐷𝐼𝑆, 𝜇𝐷𝑇𝐻 ) =  

 
((𝜇𝐷𝐼𝑆 (𝜇𝐷𝐼𝑆 + 𝜇𝐷𝑇𝐻)⁄ )𝑠=𝐷𝐼𝑆 (𝜇𝐷𝑇𝐻 (𝜇𝐷𝐼𝑆 + 𝜇𝐷𝑇𝐻)⁄ )𝑠=𝐷𝑇𝐻 exp(−(𝜇𝐷𝐼𝑆 + 𝜇𝐷𝑇𝐻)𝑡))

1−𝑠=𝐼𝐶𝑈
  

(1 − exp (−(𝜇𝐷𝐼𝑆 + 𝜇𝐷𝑇𝐻) 𝑡))𝑠=𝐻𝑂𝑆 

As the data is rounded to the nearest day, we discretized the exponential distributions in the likelihood. All 

models were fitted at maximum likelihood using the software R. 

Estimates up to April 5, 2020 were also compared to values estimated in the period April 5-26 to assess possible 

changes in the management of COVID-19 patients at the hospital. We report the values in Table S2. These 

estimates are discussed in the main paper, but are not included in the analysis, as they became available at a later 

time.  



5 

 

Table S2. Estimates of within-hospital parameters in two different periods of time.  

 March 1 – April 5, 2020 April 5 – 26, 2020 

𝑝𝐼𝐶𝑈 0.24 for adults, seniors 0.16 for adults, seniors 

𝜆𝐻,𝑅 0.0832 for adults 
0.0328 for seniors 

0.0834 for adults 
0.0330 for seniors 

𝜆𝐻,𝐷 0.0031 for adults 
0.0155 for seniors 

0.0023 for adults 
0.0115 for seniors 

𝑝𝐼𝐶𝑈,𝑅 0.76 for adults 
0.54 for seniors 

0.84 for adults 
0.64 for seniors 

𝜆𝐼𝐶𝑈
−1  21.1 days for adults 

20.7 days for seniors 
15.0 days for adults 
16.6 days for seniors 

 

 

 

1.4. Mixing matrices 

 

Here we report the matrices computed for all interventions tested, compared to the baseline scenario.   

 

Figure S2. Mixing matrices for the baseline and all social distancing interventions tested. (a) Baseline contact matrix (b) 

School closure and senior isolation contact matrix (c) Mild interventions contact matrix (d) Moderate interventions contact 

matrix (e) Strict interventions contact matrix (f) Lockdown contact matrix.  
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2. MODEL CALIBRATION 
 

The model was calibrated to hospital admission data through a maximum likelihood approach. The likelihood 

function is of the form  

𝐿(𝐷𝑎𝑡𝑎|Θ) = ∏ 𝑃𝑜𝑖𝑠𝑠 (𝐻𝑜𝑏𝑠(𝑡)|𝐻𝑝𝑟𝑒𝑑(𝑡))

𝑡𝑛

𝑡=𝑡1

 

where Θ indicates the set of parameters to be estimated, 𝐻𝑜𝑏𝑠(𝑡) is the observed number of hospital admissions 

on day 𝑡, 𝐻𝑝𝑟𝑒𝑑(𝑡) is the number of hospital admissions predicted by the model on day 𝑡,  𝑃𝑜𝑖𝑠𝑠 (⋅ |𝐻𝑝𝑟𝑒𝑑(𝑡)) is 

the probability mass function of a Poisson distribution with mean 𝐻𝑝𝑟𝑒𝑑(𝑡), and [𝑡1, 𝑡𝑛] is the time window 

considered for the fit. We fit the transmission rate per contact before lockdown and the starting date of the 

simulation, considering a time window ranging from March 1 to March 23, 2020. Hospital admissions in the 

interval March 17-23 were included as still not affected by lockdown, due to delay between date of infection and 

date of hospitalization (~1 week). The resulting estimate of the transmission rate is 0.0791, with 95% CI [0.0769, 

0.0806], corresponding to 𝑅0 = 3.18 [3.09, 3.24]. 

Our model predictions were also compared to the ones obtained by fitting the model to hospital admission data 

during lockdown. We chose the period April 13-May 10 to avoid the initial fluctuations due to the 

implementation of lockdown. By doing that, we obtain an estimated transmission rate at 0.0833, corresponding 

to a 5.3% increase with respect to the transmission rate prior to lockdown.  

The number of hospital admissions, ICU admissions and ICU occupancy over time for Ile-de-France (Figure 4a, 

Figure 5) are available in an open access repository 

(https://docs.google.com/spreadsheets/d/17Q5BlJw2N6b5uf8T2E3leTul91tAyqOvKhymvPDyhHk/edit?usp=sha

ring). They are part of the SIVIC database maintained by the Agence du Numérique en Santé and Santé 

Publique. The same online repository also contains the incidence of clinical cases estimated from sentinel and 

virological surveillance by Réseau Sentinelles (Figure 4b). 

  

https://docs.google.com/spreadsheets/d/17Q5BlJw2N6b5uf8T2E3leTul91tAyqOvKhymvPDyhHk/edit?usp=sharing
https://docs.google.com/spreadsheets/d/17Q5BlJw2N6b5uf8T2E3leTul91tAyqOvKhymvPDyhHk/edit?usp=sharing
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3. ADDITIONAL RESULTS 
 

3.1. Consultation rate throughout lockdown 
 

 

Figure S3. Consultation rate during lockdown estimated from crowdsourced data38. 
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3.2. Lockdown lifted at the beginning of May 
 

 

Figure S4. Simulated impact of lockdown and exit strategies with large-scale testing and case isolation, once lockdown is 

lifted on May 1. (a) Simulated daily new number of clinical cases assuming the progressive exit strategies illustrated in 

Figure 3. (b) Corresponding demand of ICU beds. 
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3.3. Physical contacts avoided throughout the exit strategies 
 

 

Figure S5. Simulated impact of lockdown and exit strategies with large-scale testing and case isolation, if physical contacts 

are avoided throughout the exit strategies. (a) Simulated daily new number of clinical cases assuming the progressive exit 

strategies illustrated in Figure 3. (b) Corresponding demand of ICU beds. 

 

4. SENSITIVITY ANALYSIS 

 

4.1. Probability of being asymptomatic 50% 
 

Here we report the numerical results obtained assuming a higher probability of being asymptomatic (𝑝𝑎 = 0.5) 

compared to the main paper (𝑝𝑎 = 0.2) (Figures S6-S8). 
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Figure S6. Estimates of weekly incidence and percentage of population infected. (a) Simulated weekly incidence of clinical 

cases (mild and severe) compared to estimates of COVID-19 positive cases in the region provided by syndromic and 

virological surveillance (Reseau Sentinelles (RS) data)42. (b) Simulated percentage of population infected over time. 

Results are shown for 𝑝𝑎 = 0.5. Shaded areas correspond to 95% probability ranges. 
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Figure S7. Simulated impact of lockdown of different durations and exit strategies. (a) Simulated daily incidence of clinical 

cases assuming lockdown till end of April, May 11, end of May. (b) Corresponding demand of ICU beds. (c) Simulated 

daily incidence of clinical cases assuming lockdown till May 11, followed by interventions of varying degree of intensity. 

(d) Corresponding demand of ICU beds. (e) Relative reduction of peak incidence and epidemic size after 1 year for each 

scenario. (f) Peak ICU demand relative to restored ICU capacity of the region (1,500 beds). In all panels, the color code is 

as in Table 1, and scenarios are identified as reported in Figure 3 in the main paper. Baseline scenario corresponds to no 

intervention. Results are shown for 𝑝𝑎 = 0.5. 
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Figure S8. Simulated impact of lockdown and exit strategies with large-scale testing and case isolation. (a) Simulated daily 

new number of clinical cases assuming the progressive exit strategies illustrated in Figure 3. (b) Corresponding demand of 

ICU beds. (c) as in (a) with strategies implemented 1 month after, i.e. keeping a lockdown till the end of May. (d) 

Corresponding demand of ICU beds. Results are shown for 𝑝𝑎 = 0.5. 
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4.2. Relative susceptibility of children 

 

 

Figure S9. Simulated impact of lockdown and exit strategies with large-scale testing and case isolation, assuming that 

children (under 19 years of age) are 50% susceptible compared to adults. (a) Simulated daily new number of clinical cases 

assuming the progressive exit strategies illustrated in Figure 3. (b) Corresponding demand of ICU beds. 
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4.3. Relative infectivity of younger children 

 

 

Figure S10. Simulated impact of lockdown and exit strategies with large-scale testing and case isolation, assuming that 

younger children (below 10 years of age) are 50% less infectious than adolescents44. (a) Simulated daily new number of 

clinical cases assuming the progressive exit strategies illustrated in Figure 3. (b) Corresponding demand of ICU beds. 

 

 


