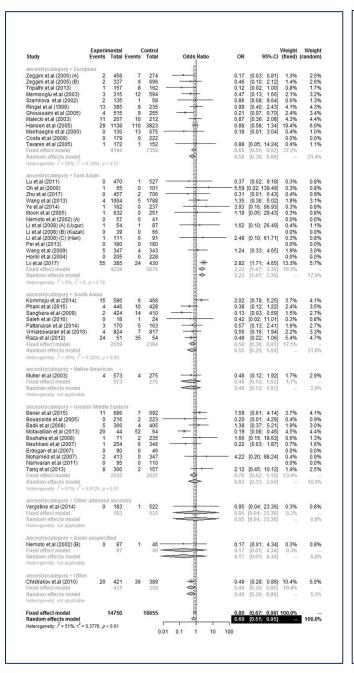
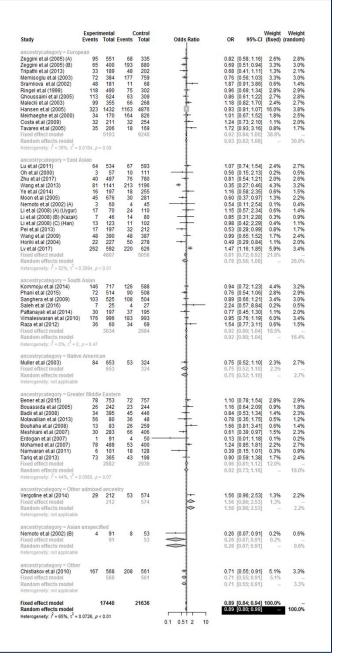
PPARG (Pro12Ala) genetic variant and risk of T2DM: a systematic review and meta-analysis

Negar Sarhangi ¹, Farshad Sharifi ², Leila Hashemian ³, Maryam Hassani Doabsari ³, Katayoun Heshmatzad ³, Marzieh Rahbaran ³, Seyed Hamid Jamaldini ³, Hamid Reza Aghaei Meybodi ^{1, 4}, Mandana Hasanzad ^{1,3,*}

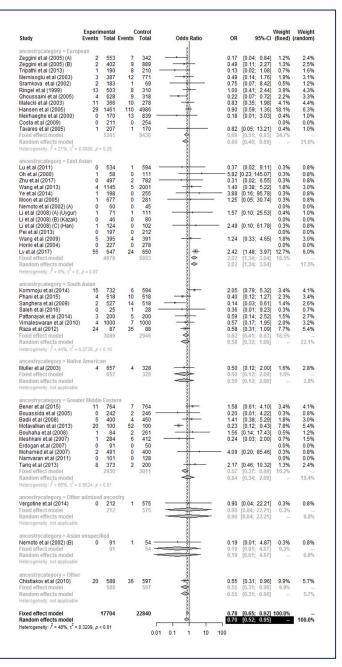

¹ Personalized Medicine Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran 1411413137, Iran

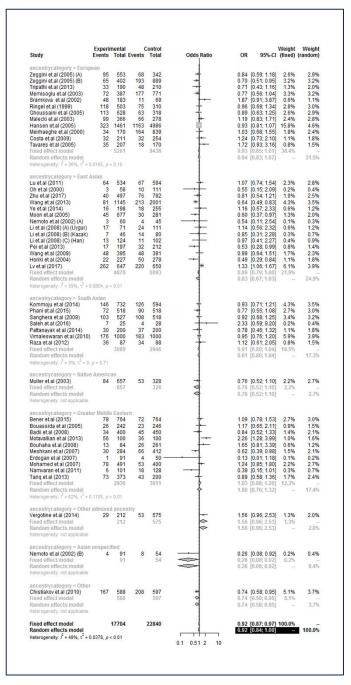

² Elderly Health Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran 1411413137, Iran

³ Medical Genomics Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran

⁴ Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran 1411413137, Iran

ancestrycategory - European Zeggini et al (2005) (A) Zeggini et al (2005) (B) Zeggini et al (200	072 [0.53,0.98] 2.0% 2.3 2.3 2.4 2.4 0.70 [0.52,0.33] 2.3% 2.4 0.70 [0.52,0.33] 2.3% 2.4 0.70 [0.52,0.33] 2.3% 2.4 0.70 [0.55,0.36,0.37] 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0%
Tripathi et al (2013) ### (2005) ### (20	056 [0.36,0.87] 10% 18 076 [0.57,0.97] 0.97 [0.57] 0.97 [0.47] 0.9
Tripathi et al (2013) ### (2005) ### (20	056 [0.36,0.87] 10% 18 076 [0.57,0.97] 0.97 [0.57] 0.97 [0.47] 0.9
Item	075 (0.57 0.09) 2.5% 2.4 0.4 0.1 0.5 (0.57 0.09) 2.5% 2.4 0.4 0.5 (0.57 0.09) 2.5% 2.4 0.4 0.5 (0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57
Stambows et al (2002) Stambows et al (2002) Stambows et al (2002) Stambows et al (2003) Stambows et al (2004)	081 [0 302 218] 0 24
Stambons et al. (2002) 52 386 13 138	159 [084.303] 0.5% 12 079 [071.22] 2.4% 2.47 073 [054.089] 2.1% 2.38 073 [054.089] 2.1% 2.39 074 [054.089] 2.1% 2.39 075 [054.089] 2.1% 2.39 075 [059.128] 2.3% 2.29 075 [059.128] 2.3% 2.29 077 [059.128] 2.3% 2.29 077 [059.128] 2.3% 2.29 077 [059.128] 2.3% 2.29 078 [059.128] 2.3% 2.29 078 [059.128] 2.3% 2.29 078 [059.128] 2.3% 2.29 078 [059.128] 2.3% 2.29 079 [059.128] 2.3% 2.39 079 [059.128] 2.39
Andrews and et al (2005) Andrews and et al (20	073 (054.099) 2.1% 2.3 106 (080.146) 2.1% 2.3 3.0 033 (082.169) 2.1% 3.30 033 (082.169) 2.1% 3.30 1.57 (088.276) 0.0% 1.4 0.26 (0.78 0.03) 3.1.3% 0.86 (0.78 0.03) 3.1.3% 0.84 (0.72 0.93) 3.1.3% 0.84 (0.72 0.93) 3.1.3% 0.85 (0.78 0.03) 3.1.3% 0.85 (0.78 0.03) 3.1.3% 0.86 (0.78 0.03) 3.1.3% 0.87 (0.78 0.03) 3.1.3% 0.88 (0.72 0.93) 3.1.3% 0.89 (0.78 0.03) 3.1.3% 0.89 (0.78 0.03) 3.1.3% 0.80 (0.78 0.03) 3.1.3% 0.80 (0.78 0.03) 3.1.3% 0.81 (0.78 0.03) 3.
Andrews and et al (2005) Andrews and et al (20	073 (054.099) 2.1% 2.3 106 (080.146) 2.1% 2.3 3.0 033 (082.169) 2.1% 3.30 033 (082.169) 2.1% 3.30 1.57 (088.276) 0.0% 1.4 0.26 (0.78 0.03) 3.1.3% 0.86 (0.78 0.03) 3.1.3% 0.84 (0.72 0.93) 3.1.3% 0.84 (0.72 0.93) 3.1.3% 0.85 (0.78 0.03) 3.1.3% 0.85 (0.78 0.03) 3.1.3% 0.86 (0.78 0.03) 3.1.3% 0.87 (0.78 0.03) 3.1.3% 0.88 (0.72 0.93) 3.1.3% 0.89 (0.78 0.03) 3.1.3% 0.89 (0.78 0.03) 3.1.3% 0.80 (0.78 0.03) 3.1.3% 0.80 (0.78 0.03) 3.1.3% 0.81 (0.78 0.03) 3.
Alabeck et al. (2003) 121 732 86 555	106 [080:146] 2154 23 037 [082:108] 138, 20 037 [085:128] 138, 20 137 [085:128] 138, 20 138 [087:087] 138, 20 139 [085:128] 138, 20 130 [087:248] 138, 20 130 [087:248] 138, 20 130 [087:254] 048, 117 130 [087:254] 048, 117 130 [087:254] 048, 117 131 [087:252] 138, 20 131 [087:252] 138,
samen et al (2005) selection (2006) 34 340 190 1078 bethage the class (2009) 32 421 32 508 32 422 32 508 32 422 32 508 several (2006) 32 421 32 508 32 421 32 508 several (2006) 32 422 32 508 32 421 32 508 several (2006) 32 422 32 508 several (2006) several (2007) several (2007) several (2008) sever	087 [0.59:1.28] 1.3% 2.0 1.20 [0.73:2.07] 0.78: 1.18 1.27 [0.73:2.07] 0.78: 1.18 1.27 [0.82:2.76] 0.8% 1.4 1.27 [0.82:2.76] 0.8% 1.4 1.27 [0.82:2.76] 0.8% 1.4 1.27 [0.82:2.76] 0.8% 1.4 1.28 [0.82:2.08] 0.8% 1.4 1.29 [0.82:2.08] 0.8% 0.8 1.29 [0.82:2.08] 0.8% 0.8 1.29 [0.82:2.08] 0.8% 0.8 1.29 [0.82:2.08] 0.9% 0.8 1.29 [0.83:0.88] 0.9% 2.5 1.29 [0.83:0.88] 0.9% 2.5 1.29 [0.83:0.88] 0.9% 2.5 1.29 [0.83:0.88] 0.9% 1.7 1.20 [0.83:0.88] 0.9% 1.7 1.20 [0.83:0.88
Telephasphe et al (2009)	087 [0.59:1.28] 1.3% 2.0 1.20 [0.73:2.07] 0.78: 1.18 1.27 [0.73:2.07] 0.78: 1.18 1.27 [0.82:2.76] 0.8% 1.4 1.27 [0.82:2.76] 0.8% 1.4 1.27 [0.82:2.76] 0.8% 1.4 1.27 [0.82:2.76] 0.8% 1.4 1.28 [0.82:2.08] 0.8% 1.4 1.29 [0.82:2.08] 0.8% 0.8 1.29 [0.82:2.08] 0.8% 0.8 1.29 [0.82:2.08] 0.8% 0.8 1.29 [0.82:2.08] 0.9% 0.8 1.29 [0.83:0.88] 0.9% 2.5 1.29 [0.83:0.88] 0.9% 2.5 1.29 [0.83:0.88] 0.9% 2.5 1.29 [0.83:0.88] 0.9% 1.7 1.20 [0.83:0.88] 0.9% 1.7 1.20 [0.83:0.88
Traverse et al (2005) (Caucasian living in Dallas) 27 414 20 340 19066 stands et al (2006) (Caucasian living in Dallas) 22 44 14 1668 stands et al (2006) (Caucasian living in Dallas) 22 44 14 1668 stands et al (2006) (Caucasian living in Dallas) 22 44 14 1668 stands et al (2006) (Caucasian living in Dallas) 22 44 14 1668 stands et al (2006) (Caucasian living in Dallas) 22 45 16 18 18 10 222 hubble et al (2017) 40 94 80 1564 value et al (2014) 41 83 95 35 10 1664 value et al (2014) 41 83 95 35 10 1664 value et al (2014) 41 83 95 35 10 1664 value et al (2008) (No (Vapur) 16 142 25 22 14 160 160 value et al (2008) (No (Vapur) 17 994 12 14 160 160 value et al (2008) (No (Vapur) 17 994 12 14 160 160 value et al (2008) (No (Vapur) 17 994 12 14 160 160 value et al (2008) (No (Vapur) 17 994 12 14 160 160 value et al (2008) (No (Vapur) 17 994 12 14 160 160 value et al (2008) (No (Vapur) 17 994 12 14 160 160 value et al (2008) (No (Vapur) 17 994 12 14 160 160 value et al (2008) (No (Vapur) 17 994 12 14 160 160 value et al (2008) (No (Vapur) 17 994 12 14 160 160 value et al (2008) (No (Vapur) 17 994 12 14 160 160 value et al (2008) (No (Vapur) 17 994 12 14 160 160 value et al (2008) (No (Vapur) 17 994 12 14 160 160 value et al (2008) (No (Vapur) 17 994 12 14 160 value et al (2008) (No (Vapur) 18 160 value et al (2008) (No (Vapur	157 [0.88 2.76] 0.8% 14 0.37 [0.22 0.9] 0.8% 14 0.85 [0.76 0.33] 31.37 0.84 [0.77 0.33] 31.37 27.1 10.3 [0.73 0.34] 1.5% 2.1 0.55 [0.32 2.86] 0.2% 0.5 0.56 [0.32 2.86] 0.2% 0.5 0.57 [0.32 2.86] 0.2% 0.5 0.58 [0.32 2.86] 0.2% 0.5 0.59 [0.32 2.86] 0.3% 0.5 0.59 [0.32 0.97] 1.4% 2.0 0.59 [0.32 0.97] 1.4% 2.0 0.59 [0.32 0.97] 1.4% 2.0 0.59 [0.32 0.97] 1.4% 2.0
Traverse et al (2005) (Caucasian living in Dallas) 27 414 20 340 19066 stands et al (2006) (Caucasian living in Dallas) 22 44 14 1668 stands et al (2006) (Caucasian living in Dallas) 22 44 14 1668 stands et al (2006) (Caucasian living in Dallas) 22 44 14 1668 stands et al (2006) (Caucasian living in Dallas) 22 44 14 1668 stands et al (2006) (Caucasian living in Dallas) 22 45 16 18 18 10 222 hubble et al (2017) 40 94 80 1564 value et al (2014) 41 83 95 35 10 1664 value et al (2014) 41 83 95 35 10 1664 value et al (2014) 41 83 95 35 10 1664 value et al (2008) (No (Vapur) 16 142 25 22 14 160 160 value et al (2008) (No (Vapur) 17 994 12 14 160 160 value et al (2008) (No (Vapur) 17 994 12 14 160 160 value et al (2008) (No (Vapur) 17 994 12 14 160 160 value et al (2008) (No (Vapur) 17 994 12 14 160 160 value et al (2008) (No (Vapur) 17 994 12 14 160 160 value et al (2008) (No (Vapur) 17 994 12 14 160 160 value et al (2008) (No (Vapur) 17 994 12 14 160 160 value et al (2008) (No (Vapur) 17 994 12 14 160 160 value et al (2008) (No (Vapur) 17 994 12 14 160 160 value et al (2008) (No (Vapur) 17 994 12 14 160 160 value et al (2008) (No (Vapur) 17 994 12 14 160 160 value et al (2008) (No (Vapur) 17 994 12 14 160 160 value et al (2008) (No (Vapur) 17 994 12 14 160 value et al (2008) (No (Vapur) 18 160 value et al (2008) (No (Vapur	157 [0.88 2.76] 0.8% 14 0.37 [0.22 0.9] 0.8% 14 0.85 [0.76 0.33] 31.37 0.84 [0.77 0.33] 31.37 27.1 10.3 [0.73 0.34] 1.5% 2.1 0.55 [0.32 2.86] 0.2% 0.5 0.56 [0.32 2.86] 0.2% 0.5 0.57 [0.32 2.86] 0.2% 0.5 0.58 [0.32 2.86] 0.2% 0.5 0.59 [0.32 2.86] 0.3% 0.5 0.59 [0.32 0.97] 1.4% 2.0 0.59 [0.32 0.97] 1.4% 2.0 0.59 [0.32 0.97] 1.4% 2.0 0.59 [0.32 0.97] 1.4% 2.0
Adam at et al. (2009) (Gaucasian king in Dallas) 22 246 11 686 Exact effect model clandion effects mo	037 [023.059] 08% 16 080 [079.033] 31.3% 084 [072.097] — 27.1 103 [073.147] 15% 2.1 095 [032.286] 02% 05 076 [055.115] 13% 2.0 08 [055.088] 30% 2.5 130 [057.245] 04% 117 041 [040.102] 09% 17 041 [040.102] 09% 17 048 [033.221] 02% 07 113 [057.252] 03% 09 086 [033.221] 02% 07 113 [057.252] 03% 09 076 [046.097] 14% 2.0 087 [046.097] 14% 2.0
	0.88 [0.76; 0.33] 31.37 0.84 [0.72; 0.97] - 27.4 100 [0.72; 0.97] - 27.4 100 [0.72; 0.97] - 27.4 100 [0.72; 0.97] - 27.4 100 [0.32; 0.88] 0.24 0.78 [0.53; 1.15] 1.39, 2.0 0.78 [0.53; 0.15] 1.39, 2.0 0.78 [0.53; 0.15] 1.39, 2.0 0.79 [0.40; 0.10] 1.39, 1.7 0.79 [0.40; 0.10] 1.39, 1.7 0.70 [0.40; 0.17] 1.39, 1.7 0.70 [0.40; 0.77] 1.49, 2.0 0.75 [0.40; 0.77] 1.49, 2.0
Interesting Common Commo	103 (0.73; 1.47) 1.5% 2.1 0.55 (0.32; 2.68) 0.2% 0.5 0.78 (0.53; 0.68) 3.0% 2.5 0.68 (0.53; 0.68) 3.0% 2.5 0.50 (0.53; 0.68) 3.0% 2.5 0.50 (0.52; 0.23) 0.1% 0.3 0.55 (0.12; 2.53) 0.1% 0.3 0.55 (0.12; 2.53) 0.1% 0.3 0.68 (0.33; 2.21) 0.2% 0.7 1.13 (0.51; 2.52) 0.3% 0.9 0.67 (0.46; 0.97) 1.4% 2.0 0.65 (0.30; 0.10) 0.5% 1.3% 2.0
Land	95 [0.32 2.88] 0.2½ 0.5
Marcating Marc	95 [0.32 2.88] 0.2½ 0.5
us tal (2011)	95 [0.32 2.88] 0.2½ 0.5
the stal (2000) the stal (2017) the stal (2018) the stal (2018) the stal (2008) the s	95 [0.32 2.88] 0.2½ 0.5
the stal (2000) the stal (2017) the stal (2018) the stal (2018) the stal (2008) the s	95 [0.32 2.88] 0.2½ 0.5
Value Valu	** 0.69 [0.53,0.88] 3.0% 2.5 ** 1.30 [0.72.24] 0.4% 2.5 ** 0.45 [0.44,1.02] 0.9% 1.7 ** 0.45 [0.12.25] 1.1% 0.3 ** 0.45 [0.12.25] 1.1% 0.3 ** 0.45 [0.12.25] 1.1% 0.3 ** 0.45 [0.12.25] 1.1% 0.3 ** 0.45 [0.12.25] 0.2% 0.7 ** 0.67 [0.46,0.97] 1.4% 2.0 ** 0.67 [0.46,0.97] 1.4% 2.0
e et al (2014)	130 (9.67:2.54) 0.4% 1.17 0.64 (9.40 1.02) 0.9% 1.7 0.55 (9.12:2.53) 0.1% 0.3 1.14 (9.00:2.17) 0.5% 1.2 0.88 (9.33:2.21) 0.2% 0.7 1.13 (9.15:2.52) 0.3% 0.9 0.67 (9.46:0.97) 1.4% 2.0 0.55 (9.30) 1.01) 0.5% 1.2
e et al (2014)	130 (9.67:2.54) 0.4% 1.17 0.64 (9.40 1.02) 0.9% 1.7 0.55 (9.12:2.53) 0.1% 0.3 1.14 (9.00:2.17) 0.5% 1.2 0.88 (9.33:2.21) 0.2% 0.7 1.13 (9.15:2.52) 0.3% 0.9 0.67 (9.46:0.97) 1.4% 2.0 0.55 (9.30) 1.01) 0.5% 1.2
Israel at al (2002) (A)	0.55 [0.12, 2.53] 0.1% 0.3 1.14 [0.60, 2.17] 0.5% 1.2 0.88 [0.33, 2.21] 0.2% 0.7 1.13 [0.51, 2.52] 0.3% 0.9 0.67 [0.46; 0.97] 1.4% 2.0 0.55 [0.30, 1.01] 0.5% 1.3
Israel at al (2002) (A)	0.55 [0.12, 2.53] 0.1% 0.3 1.14 [0.60, 2.17] 0.5% 1.2 0.88 [0.33, 2.21] 0.2% 0.7 1.13 [0.51, 2.52] 0.3% 0.9 0.67 [0.46; 0.97] 1.4% 2.0 0.55 [0.30, 1.01] 0.5% 1.3
1 et al (2008) (B) (Kazak)	0.86 [0.33;2.21] 0.2% 0.7 1.13 [0.51;2.52] 0.3% 0.9 0.67 [0.46; 0.97] 1.4% 2.0 0.55 [0.30; 1.01] 0.5% 1.3
1 et al (2008) (B) (Kazak)	0.86 [0.33;2.21] 0.2% 0.7 1.13 [0.51;2.52] 0.3% 0.9 0.67 [0.46; 0.97] 1.4% 2.0 0.55 [0.30; 1.01] 0.5% 1.3
Let al (2008) (C) (Han) 15	0.67 [0.46; 0.97] 1.4% 2.0 0.55 [0.30; 1.01] 0.5% 1.3
Pale et al (2013) 17 394 32 424 32 43 32 424 34 32 43 43 43 43 43 43 43 43 43 43 43 43 43	0.67 [0.46; 0.97] 1.4% 2.0 0.55 [0.30; 1.01] 0.5% 1.3
Pale et al (2013) 17 394 32 424 32 43 32 424 34 32 43 43 43 43 43 43 43 43 43 43 43 43 43	0.55 [0.30; 1.01] 0.5% 1.3
Indicated (2004) 22 454 50 555	1.03 [0.70; 1.50] 1.3% 2.0 0.52 [0.31; 0.86] 0.7% 1.5
Indicated (2004) 22 454 50 555	0.52 [0.31; 0.86] 0.7% 1.5
vet al (2017) size of effect model detemporable, "−201, t" = 0.1262, p < 0.01 detemporable, "−201, t" = 0.01 detemporable, "−201, t"	1 = 1.55 (4.00 4.00)
12874 12985 12874 12985 12874 12985 12874 12985 12874 12985 12874 12985 12874 12985 12874 12985 12874 12985 12874 12985 12874 12985 12874 12985 12874 1287	1.55 [1.30; 1.86] 5.8% 2.8
Commons Comm	0.98 [0.88; 1.08] 18.1%
Interest Section Sec	0.86 [0.68; 1.08] - 22.5
Interest Section Sec	,
Common 14 2014 176 1494 138 118	1
Phani et al (2015)	3
Phani et al (2015)	1.04 [0.82; 1.32] 3.4% 2.6
alain et al. (2016) 7 5 50 6 55 400 47 7 400 1814 2010 197 200 1814 200 197 200 1814 200 197 200 1814 200 197 200 1814 200 197 200 1814 200 197 200 1814 200 197 200 1814 200 197 200 1818 200 198 201 1819	
Salah et al. (2014) 7 50 6 55	0.70 [0.52; 0.95] 2.1% 2.3 0.75 [0.57; 0.98] 2.6% 2.4
Analysis of all (2014) ### Analysis of all (2014) ### Analysis of all (2014) ### Analysis of all (2015) ### Analysis of all (1.36 [0.42; 4.35] 0.1% 0.5
197 2000 197 2000 207 20	0.74 [0.47; 1.17] 0.9% 1.7 0.93 [0.75; 1.15] 4.3% 2.7
State et al. (2012) South Asian ining in Chennal 384 174 104 176	\$ 0.93 (0.75; 1.15) 4.3% 2.7°
Augha et al. (2006) (Gouth Asian Hang in Dallas) 33 162 265 1232 Excel effect model Landoun effects	-+1 0.65 [0.42: 0.99] 1.1% 1.8°
Augha et al. (2006) (Gouth Asian Hang in Dallas) 33 162 265 1232 Excel effect model Landoun effects	0.65 [0.42; 0.99] 1.1% 1.8 0.95 [0.80; 1.13] 6.2% 2.8
Ixide deficit model	0.93 [0.62; 1.40] 1.2% 1.9
Sandom effects model	0.88 [0.80; 0.97] 21.9%
International Content	0.87 [0.78; 0.97] 18.7
Interest Part Par	
Nuller et al. (2003) 92 1314 61 656	0.95 [0.80,173] 6.24 2.2 0.20 0.30 [0.82,104] 1.24 1.24 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25
Nuller et al. (2003) 92 1314 61 656	
International Content Inte	
International Content Inte	0.73 [0.52; 1.03] 1.7%
International Content Inte	0.73 [0.52; 1.03] 2.2
Hismoul et al (2012) (A) (Lebanes) Hismoul et al (2012) (B) (Tunishan) 246 2940 110 1676 sener et al (2015) 100 1528 86 1528 sener et al (2015) 100 1528 87 1528 sener et al (2015) 100 1528 87 1528 sener et al (2013) 100 1528 1678 sener et al (2013) 100 1528 168 30 522 sener et al (2006) 15 168 30 522 sener et al (2007) 11 182 4 100 100 sener et al (2007) 11 182 4 100 100 sener et al (2013) 100 100 100 100 100 100 100 100 100 10	
Hismoul et al (2012) (A) (Lebanes) Hismoul et al (2012) (B) (Tunishan) 246 2940 110 1676 sener et al (2015) 100 1528 86 1528 sener et al (2015) 100 1528 87 1528 sener et al (2015) 100 1528 87 1528 sener et al (2013) 100 1528 1678 sener et al (2013) 100 1528 168 30 522 sener et al (2006) 15 168 30 522 sener et al (2007) 11 182 4 100 100 sener et al (2007) 11 182 4 100 100 sener et al (2013) 100 100 100 100 100 100 100 100 100 10	
Infraoul et al (2012) (B) (Tunisian) 248 2940 110 1676	+ 1.41 [1.11: 1.79] 3.3% 2.6
Sener et al. (2015) 100 1528 86 1528 200 200 200 200 200 200 200 200 200 2	+ 1.41 [1.11; 1.79] 3.3% 2.6° + 1.30 [1.03; 1.64] 3.5% 2.6°
Sequence 2005 26 484 27 492	+ 1.30 [1.03; 1.64] 3.5% 2.6 - 1.17 [0.87; 1.58] 2.2% 2.3
Modwallian et al (2013) 96 200 140 200 Modwallian et al (2013) 158 30 522 Modwallian et al (2009) 15 168 30 522 Modwallian et al (2007) 32 558 78 624 Modwallian et al (2007) 79 682 56 600 Modwallian et al (2007) 79 682 56 600 Modwallian et al (2007) 79 682 56 600 Modwallian et al (2013) 87 746 47 400 Modwallian et al (2013) 746 47 400 Modwallian et al (2014) 746 746 Modwallian et al (2014) 746 746 Modwallian et al (2014) 746 746 Modwallian et al (2014) 746 Modwallian et al (201	1.17 [0.87; 1.58] 2.2% 2.3
Modwallian et al (2013) 96 200 140 200 Modwallian et al (2013) 158 30 522 Modwallian et al (2009) 15 168 30 522 Modwallian et al (2007) 32 558 78 624 Modwallian et al (2007) 79 682 56 600 Modwallian et al (2007) 79 682 56 600 Modwallian et al (2007) 79 682 56 600 Modwallian et al (2013) 87 746 47 400 Modwallian et al (2013) 746 47 400 Modwallian et al (2014) 746 746 Modwallian et al (2014) 746 746 Modwallian et al (2014) 746 746 Modwallian et al (2014) 746 Modwallian et al (201	0.98 (0.56; 1.70) 0.6% 1.4
Soluhaha (al. (2009) 15 168 30 522	0.93 [0.62; 1.40] 1.1% 1.9
Isehshani et al (2007) 32 568 78 624 100	- 0.40 [0.26; 0.60] 1.1% 1.9°
iridogan etal (2007) 1 1 182 4 100	1.61 [0.84; 3.07] 0.5% 1.2 0.57 [0.37; 0.87] 1.0% 1.8
Mohamed et al (2007)	0.57 [0.37; 0.87] 1.0% 1.8
Mohamed et al (2007)	· · · · · · · · · · · · · · · · · · ·
September Sep	# - 1.16 [0.81; 1.66] 1.5% 2.1
Ixed effect model 10302 9534	0.40 [0.16; 1.04] 0.2% 0.7
Namidous effects model	
Anadom effects model elegance of the effects model elegance of the effects model elegance of the effect of the eff	1.05 [0.95; 1.17] 16.4%
Incestry_category - Cither admixed ancestry 19	1.02 (0.70, 1.48) 1.3% 2.0 1.05 (0.95; 1.17) 16.4% 0.93 (0.72; 1.19) 20.5
ergodine et al (2014) 29 424 55 1150 ked effect model 424 1150 andom effects model 424 1150 encestrycate,or v a dispitale 422 100 mendo et al (2005) 4 182 10 kxed effect model 182 108 100 eterregreeky, not appicable 4 182 100 100 eterregreeky, not appicable 182 100 1	3
ergodine et al (2014) 29 424 55 1150 ked effect model 424 1150 andom effects model 424 1150 encestrycate,or v a dispitale 422 100 mendo et al (2005) 4 182 10 kxed effect model 182 108 100 eterregreeky, not appicable 4 182 100 100 eterregreeky, not appicable 182 100 1	3
Ixed effect model 424 1150	1.46 [0.92; 2.33] 0.9% 1.7
Interception Intercept I	1.46 [0.92, 2.33] 0.9% 1.7
eterogenery not applicable microstrycategory = Asian unspecified temolo etal (2002)(B)	1.46 [0.92; 2.33] 0.9% 1.46 [0.92; 2.33] - 1.7
Recently-stationary - Asian unspecified	1.40 [0.52, 2.55] 1.7
Inemote stal (2002) (B)	1
Inemote stal (2002) (B)	1
Ixed effect model	O.22 [0.07; 0.72] 0.1% 0.5
Alandom effects model	0.22 [0.07; 0.72] 0.1%
eterogenety, not applicable moestrycategory = Other Chistiakov et al. (2010) 207 1178 279 1194 kized effect model 1176 1194 andom effects model eterogenety, not applicable	0.22 [0.07; 0.72] 0.1% 0.22 [0.07; 0.72] 0.5
Shisbakov et al (2010) 207 1178 279 1194 Lixed effect model 1176 1194 Inadom effects model 1176 1194 elerogeneity: not applicable	
Shisbakov et al (2010) 207 1178 279 1194 Lixed effect model 1176 1194 Inadom effects model 1176 1194 elerogeneity: not applicable	1
ixed effect model 1176 1194 landom effects model elerogenety: not applicable	
tandom effects model eterogeneity: not applicable	0.70 [0.57; 0.86] 4.7% 2.7
tandom effects model eterogeneity: not applicable	0.70 [0.57; 0.86] 4.7%
	0.70 [0.57; 0.86] - 2.7
ncoetrycatogory - Hispanic or Latin American	0.70 [0.57; 0.88] 4.7% 2.7 0.70 [0.57; 0.88] 4.7% 0.70 [0.57; 0.88] 2.7
	3
incestrycategory - Hispanic of Laun American	31
ara-Riegos et al (2015) 27 252 38 252	
#artinez□Gómez et.al (2011) (Combined) 192 1438 200 1492	→ 0.68 [0.40; 1.15] 0.7% 1.5
ixed effect model 1690 1744	0.68 [0.40; 1.15] 0.7% 1.5 1.00 [0.80; 1.23] 4.2% 2.7
Random effects model	0.68 (0.40; 1.15) 0.7% 1.5 1.00 (0.80; 1.23) 4.2% 2.7 0.94 (0.77; 1.15) 4.9%
tandom effects model eterogeneity: $\hat{f} = 44\%$, $\tau^2 = 0.0329$, $\rho = 0.18$	0.68 [0.40; 1.15] 0.7% 1.5 1.00 [0.80; 1.23] 4.2% 2.7 0.94 [0.77; 1.15] 4.9% 0.89 [0.63; 1.26] 4.1
	0.88 [0.40] 1.15] 0.7% 1.5 1.00 [0.80] 1.23] 4.2% 2.7 0.94 [0.77] 1.15] 4.9% 0.89 [0.63] 1.26] - 4.1
ixed effect model 46802 55801	0.88 [0.40;1.15] 0.7% 1.5 1.00 [0.80;1.23] 4.2% 2.7 0.94 [0.77;1.15] 4.9% 0.89 [0.63;1.26] 4.1
tandom effects model	0.88 [0.40;1.15] 0.7% 1.5 1.00 [0.80;1.23] 4.2% 2.7 0.94 [0.77;1.15] 4.9% 0.89 [0.63;1.26] 4.1
eterogeneity: \hat{f} = 69%, τ^2 = 0.0832, ρ < 0.01	0.88 [0.40;1.15] 0.7% 1.5 1.00 [0.80;1.23] 4.2% 2.7 0.94 [0.77;1.15] 4.9% 0.89 [0.63;1.26] 4.1




A B

ancestrycategory = European Zaggini etal (2005) (A) 2 97 7 75 0.00 (D.04, 1.01) 1.3% Zaggini etal (2005) (B) 2 97 9 202 0.08 (D.14, 3.13) 1.4% B 86 0.18 (D.14, 3.13) 1.4% B 81 0.18 (D.14, 3.14) 1.4% B 91 0.18 (D.14, 3.14) 1.4%	Ev	perimental vents Total	Contro Events Tota		OR	95%-CI	(fixed)	Weigl (randon
Zeggini etal (2005) (8)			7 7		0.20	ID 04: 1 041	1 304	2.39
Tripath etal (2013) 1 34 8 56	t al (2005) (A)	2 87			0.20	[0.04, 1.01]		2.3
Memisopiu et al (2003) 3 75 12 189	t al (2013)	1 34	8 5		0.19	[0.02: 1.52]	0.7%	1.49
Sramkova et al (2002)	du et al (2002)	2 75			0.10			3.09
Ringel et al (1999) 13 131 8 8 3 103 0041 2.51 2.59 1.29% (Aboussain it al (2005) 4 170 9 72 0.25 (2007) 0.44 2.51 2.59% (Aboussain it al (2005) 11 11 10 10 76 0 73 10.29 1.82 1.41% (Aboussain it al (2005) 29 392 110 1273 0.95 (0.62 1.46) 18.5% (Aboussain it al (2000) 0 34 13 177 0.18 (0.01) 3.04 10.4% (Aboussain it al (2000) 0 32 0 32 0 10 1273 0.95 (0.62 1.46) 18.5% (Aboussain it al (2000) 1 36 1 19 0 0.51 (0.03) 8.71 (0.0% 17.20 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1	a et al (2003)	2 50	1 1			10.04: 5.521		1.19
Ghoussaini et al (2005)	al (1999)	13 131					3.9%	4.59
Malecki et al (2003) 11 11 110 10 76	ini et.al (2005)					[0.07: 0.84]	2.3%	3.39
Hansen et al (2000) 3 4 13 177 118 1001; 320 10 45 Costa et al (2000) 3 4 13 177 118 1001; 320 10 45 Costa et al (2000) 3 4 13 177 118 1001; 320 10 45 Costa et al (2000) 3 4 13 177 118 1001; 320 10 45 Costa et al (2000) 3 4 13 177 118 1001; 320 10 45 Costa et al (2000) 1 5 5 10 103; 871 10 45 Costa et al (2000) 1 15 5 226 Costa et al (2000) 1 1 6 4 1 68 Costa et al (2000) 1 1 6 4 1 68 Costa et al (2000) 1 1 6 4 1 68 Costa et al (2000) 1 1 6 4 1 68 Costa et al (2000) 1 1 6 4 1 100 Costa et al (2001) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	t.al (2003)	11 110	10 7		0.73	[0.29; 1.82]	4,1%	4.59
Meinhapphe et al (2000) 0 34 13 177	et.al (2005)	29 352	110 127	*	0.95	[0.62; 1.46]	18.5%	7.39
Tavarse et al (2005) Fixed effect model Fixed effe	he et.al (2000)				0.18	[0.01; 3.04]		0.99
Fixed effect model Fixed effect model Fixed effects model Interrogeney, 7 = 3%, x² = 0.0110, p = 0.41 Interrogeney, 8 = 3%, x² = 0.0110, p = 0.41 Interrogeney, 8 = 3%, x² = 0.0110, p = 0.41 Interrogeney, 8 = 3%, x² = 0.0110, p = 0.41 Interrogeney, 9 = 3%, x² = 0.010, p = 0.41 Interrogeney, 9 = 3%, x² = 0.0110, p = 0.41 Intero								0.09
Lue tal (2001)								0.99
Lue tal (2001)		1135	226	9			35.6%	31.5
Lue tal (2001)		0, p = 0.41		1	0.70	[0.51; 0.97]	-	31,5
On et al (2000) 1			1 6		0.26	IO 04: 0 721	0.204	0.79
Zhu et al (2017)	2011)				0.35	[0.01, 0.72] (0.20: 275 FEI	0.3%	0.69
Wang etal (2014)	(2017)	0 40	2 7		0.38	[0.29, 270.50]	0.3%	0.89
Ye efal (2014) 1 1 7 0 18 3 36 (0.13, 88.39) 0.3% Nemdo et al (2002) (A) 0 3 0 20 1 (0.08, £101) 0.3% Nemdo et al (2002) (A) 0 3 0 4 1 1 9 1 0.08 (2.01) 0.3% Nemdo et al (2003) 0.1 1 18 1 25 1 1.41 (0.08, 24.18) 0.4% Let al (2008) (B) (Kezak) 0 7 0 14 1 1 2.5	al (2013)	4 95	E 24	1.		[0.02, 0.00]		2.99
Moon etal (2002) 1	2014)	1 17	0 1		3.36	[0.33, 88 39]	0.3%	0.79
Nemolo et al (2002) (A) 1			0 3			[0.08: 51.01]	0.3%	0.79
Li et al (2008) (A) (Uygur)	et.al (2002) (A)							0.09
Lie tal (2008) (B) (Kazak) 0 7 0 14	(008) (A) (Uygur)	1 18	1 2	; - 	1.41	[0.08; 24.18]	0.4%	0.99
Li et al (2008) (C) (Han)	(008) (B) (Kazak)	0 7	0 1	1			0.0%	0.09
Pell et al (2013) 0 17 0 32 4 52 1.25 [0.32, 4.94] 1.8% Horis et al (2009) 5 53 4 52 1.25 [0.32, 4.94] 1.8% 1.36 [1.15; 3.21] 1.29% 1.37 [1.15; 3.21] 1.29% 1.38 [1.15; 2.76] 1.8.3% 1.38 [1.15; 2.76] 1.8.3% 1.38 [1.15; 2.76] 1.8.3% 1.38 [1.15; 2.76] 1.8.3% 1.39 [1.15; 3.21] 1.29% 1.39 [1.15; 3.21] 1.29% 1.30 [1.15; 3.21] 1.29% 1.30 [1.15; 3.21] 1.29% 1.31 [1.15; 2.76] 1.8.3% 1.32 [1.15; 2.76] 1.8.3% 1.38 [1.15; 2.76] 1.8.3% 1.39 [1.15; 2.76] 1.8.3% 1.39 [1.15; 2.76] 1.8.3% 1.39 [1.15; 2.76] 1.8.3% 1.39 [1.15; 2.76] 1.8.3% 1.30 [1.15; 2.76] 1.8.3% 1.30 [1.15; 2.76] 1.8.3% 1.30 [1.15; 2.76] 1.8.3% 1.31 [1.15; 2.76] 1.8.3% 1.32 [1.15; 2.76] 1.8.3% 1.34 [1.15; 2.76] 1.8.3% 1.35 [1.15; 2.76] 1.8.3% 1.36 [1.15; 2.76] 1.8.3% 1.37 [1.15; 2.76] 1.8.3% 1.38 [1.15; 2.76] 1.8.3% 1.39 [1.15; 2.76] 1.8.3% 1.30 [1.15; 2.76] 1.8.3% 1.30 [1.15; 2.76] 1.8.3% 1.30 [1.15; 2.76] 1.8.3% 1.31 [1.15; 2.76] 1.8.3% 1.32 [1.15; 2.76] 1.8.3% 1.34 [1.15; 2.76] 1.8.3% 1.35 [1.15; 2.76] 1.8.3% 1.35 [1.15; 2.76] 1.8.3% 1.36 [1.15; 2.76] 1.8.3% 1.37 [1.15; 2.76] 1.7.3% 1.38 [1.15; 2.76] 1.7.3% 1.38 [1.15; 2.76] 1.7.3% 1.39 [1.15; 2.76] 1.7.3% 1.30 [1.15; 2.	008) (C) (Han)	1 14	0 1		2.56	[0.09; 69.00]	0.3%	0.79
Wang et al (2009) 5 53 4 52	(2013)		0 3					0.09
Horist et al (2004) 0 22 0 50 0 0.0% Livet al (2017) 5 377 2 4244	al (2009)	5 53	4 5	· —	1.25	[0.32; 4.94]	1.8%	2.89
Fixed effect model (2014) 140 7 190	al (2004)						0.0%	0.09
Random effects model Heterogenety, r = 6,914, r = 0, p = 0.94 ancestrycategory = South Asian Kommonju etal (2014) 15 161 6 132 2.16 [0.81; 5.73] 3.5% Fanal etal (2015) 4 76 10 100 0.56 [0.15; 1.66] 2.3% Sanghiera etal (2009) 2 105 14 122 0.15 [0.06] 0.88 1.5% Sanghiera etal (2009) 2 105 14 122 0.15 [0.06] 0.88 1.5% Sanghiera etal (2014) 3 3.3 5 4.2 0.74 [0.16; 3.35] 1.5% Virinaleswaran etal (2014) 4 180 7 190 0.50 [0.17; 2.07] 2.2% Sanghiera etal (2012) 2 46 3 35 53 0.32 [0.15; 0.88] 1.5% Virinaleswaran etal (2012) 2 46 3 35 53 0.32 [0.15; 0.88] 5.5% Fixed effect model 6.25 644 0.54 [0.35; 0.35] 1.7% Fixed effect model 8.8 57 0.35 [0.15; 0.35] 1.7% Fixed effect model 8.8 57 0.35 [0.15; 2.63] 1.7% Fixed effect model 8.8 57 0.35 [0.15; 2.63] 1.7% Fixed effect model 8.8 57 0.35 [0.15; 2.63] 1.7% Fixed effect model 9.8 57 0.35 [0.15; 2.63] 1.7% Fixed effect model 9.8 10.9 11 89 1.5% 1.5% 1.5% 1.5% 1.5% 1.5% 1.5% 1.5%	ect model					[1.15; 3.21]		6.89
### Standard Hallow Hal	effects model		0.0			[1.19; 2.76]		17.5
Kommoju et al (2014) 15 161 6 132 216 (0.01; 5.73) 3.5% Phani et al (2015) 4 76 10 100 0.50 (0.15; 1.616) 2.3% Phani et al (2015) 4 76 10 100 0.50 (0.15; 1.616) 2.3% Sanghera et al (2016) 2.3% Path et al (2016) 2 105 14 122 0.15 (0.01; 6.04) 0.35 (0.35 1.5% 0.20 (0.01; 6.04) 0.35 (0.35 1.5% 0.20 (0.01; 6.04) 0.35 (0.35 1.5% 0.20 (0.01; 6.04) 0.35 (0.35 1.5% 0.20 (0.01; 6.04) 0.35 (0.35 1.5% 0.20 (0.01; 6.04) 0.35 (0.35 1.5% 0.20 (0.01; 6.04) 0.35 (0.35 1.5% 0.20 (0.01; 6.04) 0.35 (0.35 1.5% 0.20 (0.01; 6.04) 0.35 (0.02 (0.02 (0.01; 6.04) 0.35 (0.02 (0.								
Sanghera et al (2009) 2 105 14 122	u et.al (2014)	15 161						4.29
Saleh et al (2016) 0 7 1 5 0.20 [0.01; 6.04] 0.3% 1.5%								3.39
Pattanayak et al (2014) 3 33 5 42 074 0.16; 3.35; 1.5% Available and all (2014) 4 180 7 190 0.59 0.17; 2.07; 2.2% Raza et al (2012) 24 63 35 53 0.32; 0.15; 0.68 1.58% 6.44 0.54 0.55; 0.03; 0.15; 0.68 1.58% 6.44 0.54 0.55; 0.03; 0.15; 0.68 1.58% 6.44 0.55; 0.035; 0.035; 0.15; 0.68 1.58% 6.48% 6								2.59
Vinaleswaran etal (2010) 4 190 7 190 0.59 (0.17; 2.07) 2.2% Fixed effect model 6.25 6.44 0.54 (0.35; 0.25) 10.20; 1.08]								2.59
Raza et al (2012) 24 63 35 53	useran et al (2014)		7 40			[0.16; 3.35]		3.29
Fixed effect model Random effects model Heterogenety, f = 94%, f = 0.4493, p = 0.04 ancestrycategory = Mative American Wuller et al (2003) 4 88 4 57 0.53 [0.15; 2.63] 1.7% Fixed effect model Beaussida et al (2004) Bener et al (2015) 11 89 7 79 Bener et al (2015) 11 89 7 79 Bener et al (2015) 11 89 7 79 Benussida et al (2005) 12 5 8 10 10 10 13 389 0.4% Badi et al (2008) 5 39 4 49 1.65 [0.15; 2.63] 1.7% Bouhaha et al (2008) 5 39 4 49 1.65 [0.15; 2.63] 1.78 Bouhaha et al (2008) 1 14 2 28 1.00 [0.08; 1.09] 1.79 Bouhaha et al (2007) 1 10 4 Bouhaha et al (2007) 1 10 6 0 18 1 10 10 10 10 10 10 10 10 10 10 10 10 10	varari etai (2010) il (2012)							5.39
Random effects model Heterogenety, f = 54%, f = 0.4493, p = 0.04 ancestrycategory = Native American Muller et al (2003) 4 88 4 57 0.63 (0.15; 2.63) 1.7% Fixed effect model 88 57 0.63 (0.15; 2.63) 1.7% Fixed effect model 88 57 0.63 (0.15; 2.63) 1.7% Random effects model 88 57 0.63 (0.15; 2.63) 1.7% Random effects model 88 57 0.63 (0.15; 2.63) 1.7% Random effects model 88 57 0.63 (0.15; 2.63) 1.7% Random effects model 88 57 0.63 (0.15; 2.63) 1.7% Random effects model 88 57 0.63 (0.15; 2.63) 1.7% Random effects model 88 57 0.63 (0.15; 2.63) 1.7% Random effects model 88 1.00 (0.15; 2.63) 1.7% Random effects model 88 1.00 (0.15; 2.63) 1.7% Random effects model 88 1.00 (0.15; 2.63) 1.8% Random effects model 88 1.00 (0.02; 15.31) 1.0% Random effects model 89 1.00 (0.02; 15.31) 1.0% Random effects model 89 1.00 (0.02; 15.31) 1.0% Random effects model 80 (0.02; 15.31) 1.00; 18.84 (0.36; 2.00) 1.								5.31
Heterogenety 7 = 54%, 1° 0 4493, p = 0.04 ancestrycategory = Halive American Muller et al (2003)		023	04	-	0.53		11.170	21.6
Muller et al (2003) 4 88 4 57 0,63 8 0,15; 2,63 1,7% Random effects model Heterogeney, not applicable ancestry category = Greater Middle Eastern Bener et al (2015) 11 89 7 79 1,45 (2013) 3,44 5 (2013) 4,5 (201		193, p = 0.04			0.00			
Fixed effect model 88 57 0.53 [0.15; 2.63] 1.7% and an expectation of the transperse, not applicable 188 57 0.53 [0.15; 2.63] 1.7% and an expectation of the transperse, not applicable 188 57 0.53 [0.15; 2.63] 1.7% and an expectation of the transperse, not applicable 188 1.85 [0.15; 2.63] 1.7% and an expectation of the transperse 188 1.85 [0.15; 3.44] 3.4% and an expectation of the transperse 188 1.85 [0.15; 3.44] 3.4% and an expectation of the transperse 188 1.85 [0.15; 3.44] 3.4% and an expectation of the transperse 188 1.85 [0.15; 3.44] 3.4% and an expectation of the transperse 188 1.85 [0.15; 3.44] 3.4% and an expectation of the transperse 188 1.85 [0.15; 3.44] 3.4% and an expectation of the transperse 188 1.85 [0.15; 3.44] 3.4% and an expectation of the transperse 188 1.85 [0.15; 2.63] 1.7% and an expectation of th	category = Native Ar	merican 4 88	4 5		0.63	[0.15: 2.63]	1 7%	2.79
Random effects model Heterogeney, not applicable ancestry category = Greater Middle Eastern Bener et al (2015) 11 89 7 79 1.45 (0.53; 3.94) 3.45 (0.58) 6.00 (0.58) 6.02 (0.58	ect model		5	-	0.63	[0.15; 2.63]	1.7%	
Heterogeneky, not applicable Bener et al (2015)	effects model			-			-	2.7
Bener etal (2015) 11 89 7 79 1 1.45 (0.53; 3.94) 3.4% Bouassida etal (2005) 0.26 2 25 0.18 (0.01; 3.09) 0.4% Badi etal (2008) 5 39 4 49 1.66 (0.01; 6.39) 0.4% Badi etal (2008) 1 1.4 2 28 1.00 (0.02; 10.13) 0.48 Bouhaha etal (2007) 1 31 6 72 0.37 (0.04; 3.18) 0.7% Erdogan etal (2007) 0.1 1 0.0 4 4 0.00 (0.02; 10.13) 0.04% Bouhaha etal (2007) 0.1 0.0 4 4 0.00 (0.02; 10.13) 0.04% Bouhaha etal (2017) 0.1 0.0 4 4 0.00 (0.02; 10.13) 0.0% Bouhaha etal (2017) 0.1 0.0 4 4 0.00 (0.02; 10.13) 0.0% Bouhaha etal (2017) 0.1 0.0 0.0 0.00 (0.02; 10.13) 0.0% Bouhaha etal (2017) 0.1 0.0 0.0 0.00 (0.02; 10.13) 0.0% Bouhaha etal (2018) 0.00 (0.02; 10.13) 0.0% Bouhaha etal (2018) 0.00 (0.02; 10.13) 0.0% Bouhaha etal (2018) 0.00 (0.02; 10.13) 0.0% Bouhaha etal (2018) 0.00 (0.02; 10.13) 0.0% Bouhaha etal (2018) 0.00	elty; not applicable							
Bouasside et al (2005) 0 26 2 25 0.18 (0.01; 3.89) 0.4% Application of the control of the contro	al (2015)	11 89	7 7		1.45	[0.53; 3.94]	3.4%	4.19
Badi etal (2008) 5 39 4 49 1.55 [0.41; 6.53] 1.8% [0.41] 6.50 [0.41; 6.53] 1.8% [0.41] 6.50 [0.41] 6.5	da et.al (2005)	0 26	2 2		0.18	[0.01; 3.89]	0.4%	0.79
Bouhaha et al (2008)	1 (2008)	5 39	4 4		1.65	[0.41; 6.63]	1.8%	2.89
Meshkani et al (2007)	an et.al (2013)					[0.13; 0.48]		5.99
Erdogan et al (2007)	etal (2008)	1 14	2 2		1.00	[0.08; 12.07]		1.19
Mohamed et al (2007) 2 79 0 53 3.45 [0.16; 73.34] 0.4% Namaran et al (2011) 0 6 0 18 0.0% Tairq et al (2013) 8 81 2 45 0.56 [0.48; 11.61] 1.3% Random effects model 442 461 0.56 [0.38; 0.34] 16.1% Random effects model 48 0.56 0.7672_p = 0.02 Ancestrycategory = Other admixed ancestry Vergofine et al (2014) 0 29 54 0.56 [0.02; 15.31] 0.3% Random effects model 0.56 [0.02; 15.31] 0.3% Random effects model 0.56 [0.02; 15.31] 0.3% Random effects model 0.56 [0.02; 18.84] 0.3% Random effects model 0.58 [0.	etal (2007)		6 7		0.37	[0.04; 3.18]	0.7%	1.49
Tarig et al (2013) 8 81 2 45 2.36 [0.48; 11.61] 1.3% [1.61% and office timed effect model 442 461 0.60 [0.38; 0.94] 16.1% [0.38] 0.24 16.1% [0.38] 0.24 16.1% [0.38] 0.24 16.1% [0.38] 0.24 16.1% [0.38] 0.24 16.1% [0.38] 0.24 16.1% [0.38] 0.25 16.1% [0.38] 0.24 16.1% [0.38] 0.26 16.1% [0.38] 0.28 16.1% [0.38] 0.28 16.1% [0.38] 0.28 16.1% [0.38] 0.28 16.1% [0.38] 0.28 16.1% [0.38] 0.28 16.1% [0.38] 0.28 16.1% [0.38] 0.28 16.1% [0.38] 0.28 16.1% [0.38] 0.28 16.1% [0.38] 0.28 16.1% [0.38] 0.28 16.1% [0.38] 0.28 16.1% [0.38] 0.28 16.2	et.al (2007)	0 1	0 -		21-	10 46: 72 24	0.0%	0.09
Tarig et al (2013) 8 81 2 45 2.36 [0.48; 11.61] 1.3% [1.61% and office timed effect model 442 461 0.60 [0.38; 0.94] 16.1% [0.38] 0.24 16.1% [0.38] 0.24 16.1% [0.38] 0.24 16.1% [0.38] 0.24 16.1% [0.38] 0.24 16.1% [0.38] 0.24 16.1% [0.38] 0.25 16.1% [0.38] 0.24 16.1% [0.38] 0.26 16.1% [0.38] 0.28 16.1% [0.38] 0.28 16.1% [0.38] 0.28 16.1% [0.38] 0.28 16.1% [0.38] 0.28 16.1% [0.38] 0.28 16.1% [0.38] 0.28 16.1% [0.38] 0.28 16.1% [0.38] 0.28 16.1% [0.38] 0.28 16.1% [0.38] 0.28 16.1% [0.38] 0.28 16.1% [0.38] 0.28 16.1% [0.38] 0.28 16.2	n et al (2007)	0 6	0 5		3.40	[0.10, /3.34]	0.4%	0.8
Fixed effect model 442 461 0.60 [0.38; 0.54] 16.1%. Random effects model 0.84 [0.36; 2.00]			2 4		226	ID 48: 11 641		2.39
Random effects model	ect model			4		[0.40, 11.01]	16.1%	2.39
Interrogenery 7 = 59%, 1" = 0.7872, p = 0.02	effects model		40	4			19613	19.19
Vergotine et al (2014) 0 29 1 54 0.60 [0.02; 15.31] 0.3% Kreid effect fundel 29 54 0.60 [0.02; 15.31] 0.3% Random effects model 0.60 [0.02; 15.31] 0.5% 0.60 [0.02; 15.31] 0.5% Hermoto et al (2002) 0.60 1 9 0.63 [0.02; 18.84] 0.3% Insect effect model 4 9 0.63 [0.02; 18.84] 0.3% Insect effect model 4 9 0.63 [0.02; 18.84] 0.3% Insect effect model 4 9 0.63 [0.02; 18.84] 0.3%	eity: $f = 59\%$, $\tau^2 = 0.76$							
Fixed effect model 29 54 0.60 (0.02; 15.31) 0.3% Random effects model 0.60 (0.02; 15.31)			stry 1 5	. —	0.60	[0.02; 15.31]	0.3%	0.79
Random effects model		29	5	-	0.60	[0.02; 15.31]		
ancestrycategory = Asian unspecified Nemdo et al (2002) (B) 0 4 1 9 0.63 [0.02; 18.84] 0.3% Fixed effect model 4 9 0.53 [0.02; 18.84] 0.3% Random effects model 0.63 [0.02; 18.84] 0.3%					0.60	[0.02; 15.31]		0.7
Fixed effect model 4 9 0.63 [0.02; 18.84] 0.3% Random effects model 0.63 [0.02; 18.84] 0.3%								
Fixed effect model 4 9 0.63 [0.02; 18.84] 0.3% Random effects model 0.63 [0.02; 18.84] 0.3%	et.al (2002) (B)			,	0.63	[0.02; 18.84]	0.3%	0.69
Random effects model 0.63 [0.02: 18.84]	ect model	4			0.63	[0.02; 18.84]	0.3%	
ancestrycategory = Other Chistiakov et al (2010) 20 187 36 244 9 060 10 39 1 241 9.9%	effects model ety: not applicable				0.63	[0.02; 18.84]		0.69
Chistiakov et al (2010) 20 187 36 244 # 0.69 10.39: 1.241 9.9%	category = Other							
1	ov et.al (2010)	20 187		#	0.69	[0.39; 1.24]	9.9%	6.39
Fixed effect model 187 244 🖨 0.69 [0.39; 1.24] 9.9%		187	24	\$			9.9%	
Random effects model 0.69 [0.39; 1.24] Heteropeneity: not applicable				9	0.69	[0.39; 1.24]	***	6.3
Fixed effect model 3217 4589 0.79 [0.66; 0.95] 100.0%		3217	458		0.79	[0.66: 0.95]	100.0%	
Fixed effects model $5217 - 4589 = 9$ $0.79 - [0.56; 0.95] = 0.005$ Readom effects model $0.73 - [0.56; 0.97] = 0.005$ Heterogeneity: $\hat{L} = 38\%$, $\hat{L}^2 = 0.2319$, $\rho < 0.01$	effects model		438	- 4		[0.56; 0.97]	700.0%	100.0

Study	Experir Events	Total		Total	Odds Ratio	OR	95%-CI	(fixed)	Weight (random)
ancestrycategory = Europ Zeggini et.al (2005) (A)	ean 97	553	75	342		0.70	10 54: 4 001	2.6%	2.9%
Zeggini et.al (2005) (A) Zeggini et.al (2005) (B)	67	402	202	889	1	0.76	[0.54; 1.06] [0.50; 0.92]	3.2%	3.1%
Tripathi et.al (2013)	34	190	56	210	-1	0.60	[0.37; 0.97]	1.3%	2.1%
Memisoglu et.al (2003)	75	387	189	771	-	0.74	[0.55; 1.00]	3.3%	3.1%
Sramkova et.al (2002)	50	183	12	69	-	1.79	[0.88; 3.60]	0.6%	1.3%
Ringel et.al (1999)	131	503	83	310	+	0.96	10.70: 1.331	2.9%	3.0%
Ghoussaini et.al (2005)	117	628	72	318	+	0.78	[0.56; 1.09]	2.7%	2.9%
Malecki et.al (2003)	110	366	76	278	#	1.14	[0.81; 1.61]	2.5%	2.8%
Hansen et.al (2005)	352	1461	1273	4986	9	0.93	[0.81; 1.06]	16.1%	4.1%
Meirhaeghe et.al (2000) Costa et.al (2009)	34	211	32	254	T.	1.24	[0.62; 1.41] [0.73; 2.10]	1.8%	1.9%
Tavares et.al (2005)	36	207	19	170		1.24	[0.73, 2.10]	0.8%	1.6%
Fixed effect model	50	5261	10	9436	d		[0.82; 0.97]	38.8%	1.070
Random effects model Heterogeneity: $\hat{f} = 47\%$, $\tau^2 = 0$	0244 p	0.04			1	0.90	[0.78; 1.03]	-	31.1%
ancestrycategory = East /	Asian								
Lu et.al (2011)	64	534	68	594	+	1.05	[0.73; 1.51]	2.3%	2.7%
Oh et.al (2000)	4	58	10	111	-+-	0.75	10 22: 2 501	0.2%	0.6%
Zhu et.al (2017)	40	497	78	782	+	0.79	10.53: 1.181	1.9%	2.5%
Wang et al (2013)	85	1145	218	2001	*	0.66	[0.50; 0.85]	4.3%	3.3%
Ye et.al (2014) Moon et.al (2005)	17 46	198	18 30	255 281		1.24	[0.62; 2.47]	0.6%	1.3%
Moon et.ai (2005) Nemoto et.ai (2002) (A)	46	60	30	45		0.54	[0.38; 0.99]	0.1%	0.4%
Li et.al (2008) (A) (Uygur)	18	71	25	111	-	1.17	[0.11, 2.54]	0.1%	1.3%
i et.al (2008) (B) (Kazak)	7	46	14	80	-	0.85	[0.31: 2.28]	0.3%	0.8%
Li et.al (2008) (C) (Han)	14	124	11	102	-	1.05	[0.46: 2.43]	0.4%	1.0%
Pei et.al (2013)	17	197	32	212		0.53	[0.28; 0.99]	0.8%	1.5%
Wang et.al (2009)	53	395	52	391	+	1.01	[0.67; 1.52]	1.8%	2.4%
Horiki et.al (2004)	317	227 647	50 244	278 650	-	0.49	[0.29; 0.84]	1.0%	1.9%
Lv et.al (2017) Fixed effect model	317	4876	244	650 5893	1-	1.60	[1.28; 1.99]	6.1%	3.6%
Random effects model		4070		2692	Ţ		[0.67; 1.10]	21.0%	25.4%
Heterogeneity: $\vec{l} = 71\%$, $\tau^2 = 0$.1320, p	0.01			1	0.00	[0.07, 1.10]		20,40
ancestrycategory = South Kommoju et.al (2014)	Asian 161	732	132	594	1	0.00	[0.76; 1.28]	4.4%	3.3%
Phani et.al (2015)	76	518	100	518	-	0.72	[0.52; 1.00]	2.8%	2.9%
Sanghera et.al (2009)	105	527	122	518	4	0.81	[0.60; 1.08]	3.4%	3.1%
Saleh et.al (2016)	7	25	5	28	+	1.79	[0.49; 6.58]	0.2%	0.5%
Pattanayak et.al (2014)	33	200	42	200	-+	0.74	[0.45; 1.23]	1.2%	2.0%
Vimaleswaran et.al (2010)	180	1000	190	1000	Ť	0.94	[0.75; 1.17]	5.8%	3.6%
Raza et.al (2012)	63	87	53	88	J-	1.73	[0.92; 3.27]	0.7%	1.5%
Fixed effect model Random effects model		3089		2946	1		[0.79; 1.02]	18.5%	16.9%
Heterogeneity: $\hat{f} = 31\%$, $\tau^2 = 0$.0141, p	0.19			Ĭ	0.90	[0.77; 1.07]	-	10.9%
ancestrycategory = Native Muller et.al (2003)	Americ 88	an 657	57	328		0.74	[0.51; 1.06]	2.3%	2.7%
Fixed effect model	00	657	5/	328	J		[0.51, 1.06]	2.3%	2.176
Random effects model					4		[0.51; 1.06]		2.7%
ancestrycategory = Great	ar Middle	Eacto	rn.		1				
Bener et.al (2015)	89	764 242	79 25	764	+	1.14	[0.83; 1.58]	2.9%	3.0%
Bouassida et.al (2005) Badii et.al (2008)	26 39	400	49	450	I	0.88	[0.60; 1.90] [0.57; 1.38]	1.5%	2.3%
Motavallian et.al (2013)	76	100	88	100		0.43	[0.20; 0.92]	0.5%	1.2%
Bouhaha et.al (2008)	14	84	28	261	+-	1.66	10 83: 3 331	0.6%	1.3%
Meshkani et.al (2007)	31	284	72	412	-	0.58	[0.83; 3.33] [0.37; 0.91]	1.5%	2.2%
Erdogan et al (2007)	1	91	4	50 -		0.13	[0.01: 1.18]	0.1%	0.2%
Mohamed et.al (2007)	79	491	53	400	+	1.26	[0.86; 1.83]	2.1%	2.6%
Namvaran et.al (2011)	6	101	18	128		0.39	[0.15; 1.01]	0.3%	0.8%
Fixed effect model	81	373 2930	45	200 3011	Ţ	0.96	[0.63; 1.44]	1.7%	2.4%
Random effects model				3011	¥		[0.67; 1.14]	12.170	17.7%
Heterogeneity: $\hat{f} = 58\%$, $\tau^2 = 0$ ancestrycategory = Other			otes						
encestrycategory = Other Vergotine et.al (2014) Fixed effect model	29	212 212	54	575 575	\vdash	1.53	[0.94; 2.47]	1.3%	2.1%
Random effects model		212		010	~		[0.94; 2.47]	1.0%	2.1%
Heterogeneity: not applicable						1.55	[0.54, 2.47]		2.170
ancestrycategory = Asian Nemoto et.al (2002) (B)	unspeci 4	fied 91	q	54		0.22	[0.07; 0.79]	0.2%	0.5%
Fixed effect model	4	91	9	54	-	0.23	[0.07; 0.79]	0.2%	0.376
Random effects model		01		34	-	0.23	[0.07; 0.79] [0.07; 0.79]	012.70	0.5%
deterogeneity: not applicable					-	412.0	[01] 01/0]		51374
ancestrycategory = Other Chistiakov et.al (2010)	187	588	244	597		0.67	[0.53; 0.86]	5.2%	3 5%
Chistiakov et.ai (2010) Fixed effect model	18/	588	244	597	-		[0.53; 0.86]	5.2%	3.5%
Random effects model		500		551	ě		[0.53; 0.86]	J12.70	3.5%
Heterogeneity: not applicable		17704		22840		0.00	10.05: 0.05	100.04	
Fixed effect model Random effects model		1//04		22840	9	0.90	[0.85; 0.95] [0.81; 0.98]	100.0%	100.0%

D E

Figure S7. Sensitivity analysis according to removing studies with the quality score two or three. "A" represents allele (G vs. C); "B" represents homozygote (GG vs. CC); "C" represents heterozygote (CG vs. CC); "D" represents additive (GG vs. CG); "E" represents dominant (CG/GG vs. CC); "F" represents recessive (GG vs. CC/CG); "G" co-dominant model (CG vs. CC+GG). Vertical and horizontal lines represent ORs and the corresponding 95% CIs of each study. Black highlight represents the overall estimates (pooled ORs and 95% CIs) of population with random effects model. 95% CI = 95% confidence interval, OR = odds ratio.

G