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1) Inversion Algorithm: optimization of the smoothing parameter 𝝎𝒑  

 As explained in the main text, the novelty of our algorithm, with respect to the original Lucy-Richardson 

algorithm, is the introduction of a smoothing procedure of the recovered distributions between successive 

iterations. This procedure consists in convolving the recovered distribution (for each phase p) with a 3-

points symmetric triangular operator Λ𝜔𝑝
, in which the amplitudes of the lateral points are set by the 

parameter 𝜔𝑝. Such a convolution acts as a regularization scheme that produces smooth distributions, 

but the price to pay for such regularization is a dampening of the ultimate resolution of the method. 

Indeed, the higher 𝜔𝑝, the broader the distribution that can be reliably recovered. In other words, narrow 

distributions are artificially broadened if a too large value for 𝜔𝑝 is used, dampening in this way the 

resolving power of the method. 

 An example of these effects is shown in Figure 1, where the noisy data (𝑆𝑁𝑅~300) deriving from two 

Log-Normal distributions of anatase TiO2 nanocrystals with the same (weight) average diameter 

< 𝑑1 >𝑚= < 𝑑2 >𝑚= 15.6𝑛𝑚, but quite different widths 𝜎1 = 6.2𝑛𝑚 (Fig.S1(a)) and 𝜎2 = 0.50𝑛𝑚 

[Fig.S1(a)], were inverted with different values of 𝜔𝑝 (including 𝜔𝑝 = 0)  varying in the range 10−6 −

10−1. As one can immediately notice, the recovered distributions of Fig.S1(a) are fairly dependent on 𝜔𝑝, 

passing from highly spiked curves at small 𝜔𝑝 to nicely smoothed curves for large 𝜔𝑝’s where, however, 

the reconstruction is not so accurate. In between, there is an optimal value of 𝜔𝑝~10−3 for which the 

matching between the recovered and the input distribution is reasonably good, as also witnessed by the 

residual plots reported in Fig.S1(b). When the input distribution is quite narrow as in Fig.S1(c), the optimal 

𝜔𝑝 value tend to be 𝜔𝑝~0 and as larger and larger 𝜔𝑝’s are used, the recovered distribution becomes 

increasingly over-smoothed, spoiling the resolution of the inversion algorithm. Thus, it is quite evident 

that, for this simulation, the optimal value of 𝜔𝑝 is highly dependent on distribution width and must be 

optimized. 

 

       
 
Figure S1 – (a) Simulated input (black curve) and reconstructed (colour curves) mass distributions obtained at different values 
of the smoothing parameter 𝜔𝑝 for anatase TiO2 nanocrystals characterized by a fairly broad Log-Normal distribution 

(< 𝑑1 >𝑚= 15.6𝑛𝑚, 𝜎1𝑚 = 6.2𝑛𝑚); (b) Absolute residuals between recovered and input distributions of panel (a); (c) same 
as a panel (a), but with a very narrow Log-Normal distribution (< 𝑑2 >𝑚= 15.6𝑛𝑚, 𝜎2𝑚 = 0.5𝑛𝑚); (d) Absolute residuals 
between recovered and input distributions of panel (c). 
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 Another factor which is expected to influence the optimal value of 𝜔𝑝 to be used in the inversion 

procedure is the actual noise present in the data. To quantitatively investigate this effect, we repeated 

the same simulations of Fig.S1(a) and Fig.S1(b) by generating independent noisy WAXTS-DSE signals, all 

of them characterized by the same level of statistical Poisson noise (𝑆𝑁𝑅~300), which is equal to the 

typical noise encountered in total scattering experiments of solid (i.e. dry) nanoparticles performed at 

dedicated synchrotron beamlines. Each input signal was inverted with different values of 𝜔𝑝 and the 

inversion procedure was stopped as described below in the second paragraph of this SI. The agreement 

between the distributions recovered at the different 𝜔𝑝 and the input one, was ascertained by using the 

Relative Restoration Error (RRE) parameter defined as  

RRE(𝜔𝑝) =
∑ (𝑀𝑗

𝑟𝑒𝑐−𝑀𝑗
𝑖𝑛𝑝

)
2𝑀

𝑗=1

∑ (𝑀𝑗
𝑖𝑛𝑝

)
2𝑀

𝑗=1

         (S1) 

 

where the mass distributions are computed as  𝑀(𝑑𝑗) =  𝑁(𝑑𝑗) 𝑚𝑗 (note that the phase index p has been 

omitted for simplicity). Eq.(S1) corresponds to the relative average mean square deviations between the 
retrieved and input mass distribution. Thus, the optimal value of 𝜔𝑝 is, in principle, the one that minimizes 

RRE. 
 

 

 
 
Figure S2 – Behaviors, as a function of 𝜔𝑝, of various parameters characterizing the distribution of Fig.S1(a) for 10 different 

configurations of statistical Poisson noise of the same level (𝑆𝑁𝑅 = 300). (a): Relative Reconstruction Error (RRE) between 
the input and recovered distributions; each curve exhibits a minimum at  𝜔𝑝

∗  whose average value is 〈𝜔𝑝
∗〉 = 1.04 × 10−3  ±

5.4 × 10−4 (see horizontal bar). (b) Goodness of Fit (GOF) parameter (see Eq.5 main text); (c) Relative error [(rec-inp)/inp] 
between the recovered and input average diameters. (d) Relative error between the recovered and input standard 
deviations. The horizontal bar indicates the range 〈𝜔𝑝

∗〉 ± 𝜎𝜔𝑝
. Vertical bar in (b) indicates the value  𝜔𝑝~10 〈𝜔𝑝

∗〉 at 

which the GOF starts to deviate from 1. Vertical bars in (c) and (d) show that both errors start to deviate from 0 at values 
well beyond  𝜔𝑝~10 〈𝜔𝑝

∗〉 . 
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 In Fig.S2(a) we report the behavior of RRE as a function of 𝜔𝑝 for the same distribution of Fig.S1(a) 

corresponding to 10 statistically independent configurations of Poisson noise. As one can notice, the 
curves change remarkably for different configurations and exhibit minima, 𝜔𝑝

∗ , that are very broad and 

spread over a pretty large range of 𝜔𝑝’s. Their average value is  〈𝜔𝑝
∗〉 = 1.04 × 10−3  ± 5.4 × 10−4. In 

Fig.S2(b) we report the behavior of GOF as a function of 𝜔𝑝 corresponding to the same curves shown in 

Fig.S2(a). This figure suggests that there is an extremely large range of 𝜔𝑝’s (from 𝜔𝑝 ≪ 〈𝜔𝑝
∗〉 to 

 𝜔𝑝~10 〈𝜔𝑝
∗〉, indicated by the vertical bar) where, regardless of the fact that RRE might be quite higher 

than its minimum value, the signal reconstruction is always excellent with values of GOF~1. Similarly, 
within this range, the distribution recovery is always accurate, as evidenced by Fig.S2(c) and S2(d), where 
the relative errors [(rec.-inp)/inp] between the recovered and input average diameters and standard 
deviations are reported as a function of 𝜔𝑝. Both figures exhibit the same behaviors, showing that, as long 

as  𝜔𝑝 ≤ 10 〈𝜔𝑝
∗〉, both parameters are recovered quite accurately, with relative errors always smaller 

than ~0.1% (average diameter) and ~1% (standard deviation). 
 Figure S3 reports the same analysis of Fig.S2 for the distribution of Fig.S1(b), which is much narrower. 
In this case, the minima  𝜔𝑝

∗  are even more scattered and, on average, are much smaller, i.e. 〈𝜔𝑝
∗〉 =

3.2 × 10−7  ± 3.2 × 10−7 Similarly to Fig.S2, as long as  𝜔𝑝 ≤ 10 〈𝜔𝑝
∗〉 (vertical bar), GOF~1 and the 

relative errors on the average diameter remain always smaller than ~0.1%. As to the standard deviation, 
Fig.S3(d) suggests that the optimal value of  𝜔𝑝 → 0, but also in this limit the errors on 𝜎𝑚remain always  

 

  

   
 
Figure S3 – Behaviors, as a function of 𝜔𝑝, of various parameters characterizing the distribution of Fig.S1(b) for 10 different 

configurations of statistical Poisson noise of the same level (𝑆𝑁𝑅 = 300). (a): Relative Reconstruction Error (RRE) between 
the input and recovered distributions; each curve exhibits a minimum at  𝜔𝑝

∗  whose average value is 〈𝜔𝑝
∗〉 = 3.2 × 10−7  ±

3.2 × 10−7 (see horizontal bar). (b) Goodness of Fit (GOF) parameter (see Eq.5 main text); (c) Relative error [(rec-inp)/inp] 
between the recovered and input average diameters. (d) Relative error between the recovered and input standard 
deviations. The horizontal bar indicates the range 〈𝜔𝑝

∗〉 ± 𝜎𝜔𝑝
. Vertical bar in (b) indicates the value  𝜔𝑝~10 〈𝜔𝑝

∗〉 at 

which the GOF starts to deviate from 1. Vertical bars in (c) and (d) show that both errors start to deviate from 0 at values 
well beyond  𝜔𝑝~10 〈𝜔𝑝

∗〉 . 
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~10%, a limitation due to the intrinsic finite resolution of the inversion procedure. On the other side, 
for values of  𝜔𝑝 > 〈𝜔𝑝

∗〉, the figure shows that, up to   𝜔𝑝~5 〈𝜔𝑝
∗〉, the errors on 𝜎𝑚 are  always ≤ 20%. 

 
 Summarizing, Figs.2 and 3 show that, although the data associated to each single noise configuration 

should be inverted with their own optimal  𝜔𝑝
∗ , if we use a unique single optimal 𝜔𝑝

𝑜𝑝𝑡
= 〈𝜔𝑝

∗〉, the errors 

introduced in the recovery of the distribution parameters are quite negligible (except for the parameter 
𝜎𝑚 of the narrow distribution, which remain always ~10%, due to the intrinsic finite resolution of the 
procedure). 
 

 Clearly, we expect that  𝜔𝑝
𝑜𝑝𝑡

is also dependent on many other parameters such as distribution shapes, 

crystal phases and the absolute level on noise present on the data. For this reason, we repeated the same 
test of Figs.2 and 3 with different levels of Poisson noise, by using crystals of anatase and rutile, 
characterized by Log-Normal and Gaussians distributions with various average diameters and standard 

deviations. Our findings show that, regardless of all the other parameters,  𝜔𝑝
𝑜𝑝𝑡

 is mainly dependent on 

only two parameters: the width 𝜎𝑚 of the (mass) recovered distribution and the noise level present in the 

data. Figure 4 reports the behavior of  𝜔𝑝
𝑜𝑝𝑡

 (symbols) as a function of 𝜎𝑚 for a variety of different 

distributions and four noise levels (𝑆𝑁𝑅 = 30, 100, 300, 1000). As one can notice, for each 𝜎𝑚, the values 

of 𝜔𝑝
𝑜𝑝𝑡

 span over about two decade, passing from 𝜔𝑝
𝑜𝑝𝑡

~10−7 − 10−5 for very narrow distributions 

(𝜎𝑚~0.5 − 1𝑛𝑚) up to values which tend to saturate around 𝜔𝑝
𝑜𝑝𝑡

~10−3 − 10−1 for broad distributions 

with 𝜎𝑚 ≥ 10𝑛𝑚. This range of variability of about two decade is mostly due to different noise levels, 

with noisiest data (𝑆𝑁𝑅 = 30) requiring values of  𝜔𝑝
𝑜𝑝𝑡

~ 100  times higher than those required for least 

noisy data (𝑆𝑁𝑅 = 1000).  
 

    
 

 

Figure S4 – Behaviors, as a function of 𝜎𝑚, of the optimal smoothing parameter  𝜔𝑝
𝑜𝑝𝑡

for a variety of different 

distributions and four noise levels. The lines are guide to the eye. 
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 In conclusion, Fig.S4 represents a clear indication for the choice of 𝜔𝑝 when 𝜎𝑚 and SNR are known. 

However, when these two parameters are not (or only roughly) known prior the inversion, a rule of thumb 
for choosing 𝜔𝑝 is the following:  

 
 (a) carry out the inversion with 𝜔𝑝 = 0; 

 (b) estimate 𝜎𝑚 [which is not affected by 𝜔𝑝 → 0 as shown in Figs.S2(d) and S3(d)]; 

 (c) by using Fig.S4, choose a mid-range value for 𝜔𝑝 corresponding to 𝜎𝑚; 

 (d) repeat the inversion with the new value of 𝜔𝑝 and compute the new 𝜎𝑚
′ ; 

 (e) if  𝜎𝑚
′ > 𝜎𝑚 decrease 𝜔𝑝(for example by a factor 2) and go back to point (d); 

 (f) if  𝜎𝑚
′  ~ 𝜎𝑚 and the recovered distribution is still too spiky (see below), increase 𝜔𝑝(for example 

by a factor 2) and go back to point (d); 
 (g)  if  𝜎𝑚

′  ~ 𝜎𝑚 and the recovered distribution is sufficiently smooth (see below), accept the result 
and the procedure is over. 

 
 As a final comment about the spikiness (or smoothness) of the recovered distribution, we found that, 

although possible, a quantification of this feature was not necessary. Indeed, as long as 𝜔𝑝  < 𝜔𝑝
𝑜𝑝𝑡

(see 

panels (c) and (d) of Figs.S2 and S3), both  < 𝑑 >𝑚  and  𝜎𝑚 are unaffected by 𝜔𝑝.Thus, distributions 

with different levels of spikiness provide the same recovered parameters and selecting the one which is 
sufficiently smooth is a simple criterion of “good sense” based on a visual inspection of the curve. 
 
 
2) Inversion Algorithm: stopping criterion 

The iterative procedure was stopped according to the following criteria: 
 
(a) First of all, we impose a minimum number of iterations, 𝑟𝑚𝑖𝑛, which is necessary for the algorithm 
to work properly, i.e. to reconstruct accurately the expected distribution under ideal conditions 
(noiseless data). This is necessary because the starting uniform distribution is (obviously) very different 
from the expected one and the LR algorithm attains convergence quite slowly. The parameter 𝑟𝑚𝑖𝑛 
was estimated by finding the number of iterations necessary for retrieving the expected (mass) 
distributions with high accuracy (RRE ~10−3). We tested many distributions of a single phase (anatase) 
TiO2 nanocrystals with different shapes (Log-Normals and Gaussians) and different average diameters 
and standard deviations. All the inversion were carried out by imposing  𝜔𝑝 = 0, which is the optimal 

value for noiseless data. The results indicate that, regardless of average diameters and distribution 
shapes, 𝑟𝑚𝑖𝑛 is mainly dependent on the (mass) standard deviations the input distributions as 
described in Table S1. 
 
 

TABLE S1: minimum number of iterations 
𝑟𝑚𝑖𝑛 used for inverting a single phase 
(anatase) TiO2 nanocrystals 

m (nm) 𝑟𝑚𝑖𝑛  

1 4×104 _ 7×104 
2 8×103 _ 2×104 

5 3×103 _ 7×103 

10 2×103 _ 5×103 

15 1×103 _ 3×103 
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Notice that 𝑟𝑚𝑖𝑛 scales approximately as the inverse of the distribution width (𝑟𝑚𝑖𝑛 ∝ 1/m) and for 
the narrowest distributions (𝜎m = 1 nm) tends to be rather high (> 104). 
 
(b) We also impose a maximum number of iterations 𝑟𝑚𝑎𝑥 = 106, which ensures that the inversion 
stops even when the criteria below reported are not met. 
 
(c) For any 𝑟𝑚𝑖𝑛 < 𝑟 < 𝑟𝑚𝑎𝑥, the procedure is stopped as soon as the parameter GOF(r), computed for 
each iteration, attains a minimum and continues to increase for at least 10 consecutive iterations. 
 
(d) Additionally, whenever, for 𝑟𝑚𝑖𝑛 < 𝑟 < 𝑟𝑚𝑎𝑥, condition (c) is not met but the decrease of GOF(r) 
becomes increasingly slow, the procedure is stopped when the variation of GOF(r) is below a given 
threshold. Numerically, we monitored the parameter 𝛿(𝑟) = [𝑑 GOF(r)/dr]/GOF(r) (equal to the 
(relative) first derivative of GOF with respect to r) and stopped the procedure when  𝛿(𝑟) ≤ 10−9. 
 

Finally, we checked that, when the procedure would prefer to stop at a number of iterations 𝑟 < 𝑟𝑚𝑖𝑛 
either because conditions (c) or (d) are met, forcing it to continue up to 𝑟𝑚𝑖𝑛 does not jeopardize 
significantly the quality of the recovered distribution. 
 
 
3) Simulations: number distributions  

Table S2 reports the comparison between the number input and recovered distribution parameters 
relative to the TiO2 simulation described in Fig.2 of the main text. 
 
 

TABLE S2: comparison between input and recovered parameters 
for the number distributions of Fig.2 of the main text 

 input recovered 

TiO2 phase 
<d>n 

(nm) 
n 

(nm) 
cn 

(%) 
<d>n 

(nm) 
n 

(nm) 
cn 

(%) 

anatase 4 1 0.625 3.87 1.12 0.632 

rutile 6 2 0.250 5.98 2.03 0.242 

brookite 10 2 0.125 9.73 2.31 0.126 

background (a.u.) -- -- 1 -- -- 0.998 

 
 
Table S3 reports the comparison between the number input and recovered distribution parameters 
relative to the Fe5Te4 simulation described in Fig.3 of the main text. 
 
 

TABLE S3: comparison between input and recovered parameters 
for the number distributions of Fig.3 of the main text  

 input recovered 

Fe5Te4 phase 
<d>n 

(nm) 
n 

(nm) 
cn 

(%) 
<d>n 

(nm) 
n 

(nm) 
cn 

(%) 

no-strain - -- 0 5.28 3.30 0.003 

aniso-strain 10 2 1 9.85 2.21 0.980 

iso-strain -- -- 0 8.28 3.00 0.017 

background (a.u.) -- -- 1 -- -- 0.998 
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4) Inversion Algorithm: stability against noise 

 One of the main advantages of having introduced our smoothing procedure in the original LR algorithm 

is the remarkable stability of our algorithm against noise. Indeed, whereas for the original LR procedure 

the recovered distributions tend to become spiky when too many iterations are processed, in our case, 

they always remain nicely smooth without renouncing to accuracy (provided that 𝜔𝑝 is properly chosen). 

We have ascertained the stability of our algorithm against noise by repeating the same simulation test of 

Fig.2 of the main text (a TiO2 sample made of a mixture of nanocrystals of the three common polymorphs 

rutile, anatase and brookite) with three different noise levels corresponding to 𝑆𝑁𝑅 ~ 300, 100, 30.  

For each of them, we accumulated statistics by generating (and inverting) 100 independent noisy 𝐼(𝑄) 

scattering profiles obtained by adding 100 statistical independent configurations of Poisson noise to the 

ideal (noiseless) profile. Then we evaluated the algorithm performances in terms of accuracy on the 

recovered distribution parameter. The results of this test are shown in Figs.5 and 6.  

 Figure 5(a) compares the input distributions of the three phases (black solid curves) with the 

corresponding recovered averaged distributions (colored symbols) obtained by averaging 100 

distributions retrieved by inverting 100 noisy data (𝑆𝑁𝑅 ~ 100). The error bars associated to each point 

of the recovered distributions are remarkably small (not visible on the scale of the figure), demonstrating 

the high stability of the inversion procedure. At the same time the matching between the input and 

recovered distribution is rather good, as demonstrated by the normalized residual plots (𝑛𝑜𝑟𝑚_𝑟𝑒𝑠𝑖 =

(𝑀𝑖
𝑟𝑒𝑐−𝑀𝑖

𝑖𝑛𝑝
)/ ∑ 𝑀𝑖

𝑖𝑛𝑝
𝑖 ) reported in Fig.S5(b), where the (systematic) errors are always smaller than 1%. 

On the right side of the figure, we report for all the three noise levels, as a function of the noise 

configuration number, the GOF (c), the stopping iteration number (d), and the relative error on the 

recovered background amplitude (e). As one can notice, the GOF is always around unity (±0.02), the 

number of iterations varies between ~1 − 5 × 104, and the relative error on the background amplitude 

is always lower than ~1%. 
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Figure S5 – (a) Simulated input (black curves) and average recovered (colour curves) mass distributions of the three phases of a 

TiO2 sample made of a mixture of anatase, rutile and brookite. The distribution parameters and the noise level on the data are the 
same of Fig.2 of the main test. The average distribution and error bars (not visible because very small) were computed by averaging 
100 distributions retrieved by inverting 100 independent noisy data with SNR=100. (b) normalized residuals between the recovered 
and input distributions. (c-d-e) behaviours, as a function of SNR and noise configuration number, of GOF (c), stopping iteration 
number (d), and relative error on the recovered background amplitude (e). 
  

 
 
Figure S6 – Behaviours, as a function of SNR and noise configuration number, of the relative errors between the recovered and input 
parameters for the three phases anatase (orange), rutile (magenta) and brookite (green) of Fig5: < 𝑑 >𝑚 (first row), standard 
deviation 𝜎𝑚 (second row) and concentration 𝑐𝑚 (third row)  
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 Figure 6 reports for all the three noise levels, as a function of the noise configuration number and for 

all the three phases, the relative errors between the recovered and expected (mass) average diameter 

< 𝑑 >𝑚 (first row), standard deviation 𝜎𝑚 (second row) and concentration 𝑐𝑚 (third row). As expected, 

the errors increase with the noise level (lower SNRs), but for common experimental conditions where 

typically 𝑆𝑁𝑅 ≥  100, they are always much less than 1% for < 𝑑 >𝑚 and 𝑐𝑚, and less than a few 

percents for 𝜎𝑚.  

 Therefore, we can conclude that the stability of our algorithm against noise is remarkably high. 

 

 

5) Inversion algorithm: artefacts in the recovered distributions deriving from imperfect modeling 

 In this section we report some examples of the artefacts that might arise in the recovered distribution 

when there is some discrepancy between the modelled and actual structure of the nanocrystals or there 

are some errors in the (shape of the) background signal. We anticipate that these inaccuracies introduce 

systematic errors in the kernel functions that show up as spurious peaks in the recovered distributions. 

 Figure 7 shows an example of what happens when the background signal is not properly taken into 

account. The input data have been generated by summing the WAXTS-DSE data (Fig.S7(b), black curve) 

corresponding to a distribution of anatase TiO2 nanocrystals (Log Normal, < 𝑑 >𝑚= 24𝑛𝑚 , 𝜎𝑚 =

6.0𝑛𝑚) to a linear background (blue curve). The latter one is quite small with respect to the scattering 

peaks, but not so small with respect to the diffuse scattering in between the peaks. The inversion has been 

carried out by using either no background or a constant background. The corresponding recovered mass 

distributions (colored symbols) are shown in Fig.S7(a), together with the input distribution (black solid 

curve). As evident, the recovered distributions match the input one rather accurately over almost the 

entire diameter range, except for the very narrow sizes where two spurious peaks are present. These 

peaks are due to the fact that, since the background is not available or not properly shaped for the signal 

reconstruction, this missing contribution is attributed to the smaller sizes that are the ones whose 

scattering profiles resemble more closely the background signal (see magenta curve in Fig.S6(b), which 

corresponds to the second lowest size used in the nanocrystal distribution). It is worth noticing that the 

two spurious peaks are very well separated from the main bell shaped distribution; thus, they can be easily 

trimmed out when computing the distribution average parameters. For completeness, we report in 

Fig.S7(c) also the input and recovered number distributions, in which the spurious peaks are enormously 

amplified. Nevertheless, as for the mass distributions, they are still well isolated and can be easily removed 

from the analysis. 
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 The second example shows what happens when the Debye−Waller thermal parameters 𝑇𝑖 are not 

correct. Figure 8a compares the input distribution of anatase TiO2 nanocristyals (Log Normal, < 𝑑 >𝑚=

12𝑛𝑚, 𝜎𝑚 = 4.4𝑛𝑚) with the distributions recovered when the input data have been generated with 

𝑇𝑖𝑛𝑝 = 0.7 Å, but inverted with 𝑇𝑟𝑒𝑐 = 0.5 Å (red circles) and vice versa (green squares). The effects of 

varying 𝑇𝑖𝑛𝑝 between 0.5 Å and 0.7 Å is shown in the figure inset [Fig.S8(b)], where is quite evident that 

the main difference between the two profiles shows up in the diffuse scattering between the peaks. In 

these regions, the sample with higher 𝑇𝑖𝑛𝑝 scatters slightly more (~10%) than the sample with smaller 

𝑇𝑖𝑛𝑝. Thus, the situation is similar to that discussed in Fig.S7, where an incorrect background signal was 

used. It is indeed well known that thermal factors and the background level, even in conventional powder 

diffractometry, highly correlate, and manifest themselves in additional scattering, attributable to diffuse 

or extra-sample contributions, respectively. Correspondingly, the distribution of Fig.S8(a), which was 

recovered by using kernel functions with not enough scattering in between the peaks (very much as in the 

case of an underestimated background level) shows a spurious peak at small sizes (red circles). On the 

contrary, had the input data generated with 𝑇𝑖𝑛𝑝 = 0.5 Å, and inverted with 𝑇𝑟𝑒𝑐 = 0.7 Å, an excess 

diffuse scattering appears, which can be dampened only by reducing the population of the smallest classes 

belonging to the input distribution (green squares). In the latter case the occurrence of this artefact is less 

evident, and care must be taken into interpreting the inversion results. For completeness, we report in 

Fig.S8(c) also the input and recovered number distributions, in which the two artefact are remarkably 

amplified with respect to the ones shown in the mass distributions. Thus, the recovery of number 

distributions in the presence of this kind of artefacts becomes highly critical. 

 

    
 
Figure S7 – (a) Simulated input (black curve) and recovered (colour symbols) mass distributions of a TiO2 sample (see text) when 

the inversion is carried out by using an incorrect constant background signal (green squares) or no background (red circles);  (b) 
WAXTS-DSE data (black curve) and corresponding background signal (blue curve) used for generating the input data. For comparison 
with the background signal, the scattering profile of the second lowest size of the distribution has also been reported (magenta 
dotted curve); (c) number distributions corresponding to the mass distributions of (a). 
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6) Inversion algorithm: comparison with DEBUSSY analysis. 

 In this section we report two examples concerning the comparison between our algorithm and the 

DEBUSSY analysis. As known, the DEBUSSY method pivots on the strong assumption that the PSD of the 

sample is supposed to be known (typically a LogNormal distribution) and the various distribution 

parameters (average size, standard deviation, Debye-Waller thermal parameters, background amplitude, 

etc.) are retrieved by standard X2 minimization. Thus, in those cases where the PSD shapes are fairly 

different from a LogNormal, this wrong assumption could affect significantly the results, and the fitted 

distribution parameters might be highly inaccurate. 

 In Fig.9 we report this comparison for the case of a Weibull (number) input distribution of anatase TiO2 

nanocrystals with 〈𝑑〉𝑛 =  10𝑛𝑚 and 𝜎𝑛 = 5𝑛𝑚. Figure 9(a) and (b) compare the input number and mass 

distributions (black solid curves) with the corresponding averaged distributions recovered with the 

DEBUSSY analysis (blue squares) and with our algorithm (red circles). Statistics was accumulated by 

averaging 100 distributions retrieved by processing 100 noisy data generated with 𝑆𝑁𝑅 =  300. As one 

can notice, the error bars are always remarkably small (not visible on the scale of the figure) except for 

the small sizes of the number distributions recovered with our algorithm (where, anyway, there is 

statistical consistency between input and recovered distributions). Thus, Figures 9(a) and 9(b) show that, 

whereas our algorithm is capable of retrieving both number and mass distributions with high accuracy, 

the DEBUSSY method recovers with a somewhat accuracy only the mass distribution, but wildly fails in 

the reconstruction of for the number distribution. The different performances of the two methods are 

also witnessed by the different qualities of signal reconstruction: with our algorithm we obtain a GOF 

~ 1.00 ± 0.01 whereas with the Debussy analysis we get GOF ~ 3.16 ± 0.02. Although such differences 

are not appreciable in Fig.9(c) where both reconstructed signals are indistinguishable from the input signal 

(black circles), the residuals plot clearly shows that the DEBUSSY reconstruction (blue curve) exhibits 

systematic deviations that, in correspondence of the peaks, are much higher than the (non systematic) 

    
 
Figure S8 – (a) Simulated input (black curves) and recovered (colour symbols) mass distributions of the anatase phase of a TiO2 

sample when the inversion is carried out by using incorrect Debye−Waller thermal parameters, i.e. different from the ones used 

for generating the scattering data; (b) detail of the WAXTS-DSE data generated by using 𝑇𝑖𝑛𝑝 = 0.7 Å (red curve) and 𝑇𝑖𝑛𝑝 = 0.5 Å 

(green curve); ; (c) number distributions corresponding to the mass distributions of (a). 
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deviations associated to our method (red curve). A summary of the results of this test together with more 

tests carried out with 𝑆𝑁𝑅 =  100 and 𝑆𝑁𝑅 =  30 are reported in Table S4. Regardless of the 𝑆𝑁𝑅, our 

 

method recovers both number (〈𝑑〉𝑛 , 𝜎𝑛) and mass (〈𝑑〉𝑚 ,  𝜎𝑚) parameters that are always consistent 
(within the statistical accuracy) with the input ones. Conversely, for the DEBUSSY analysis, 〈𝑑〉𝑛 and 𝜎𝑛 
are both wrong by ~20% whereas the mass parameters are somewhat more accurate with only 𝜎𝑚 off 
by ~8%. It is also worth noticing that the GOF recovered with our method is always around unity, whereas 
for DEBUSSY depends sensitively on the 𝑆𝑁𝑅 levels. As expected at low 𝑆𝑁𝑅 = 30, the GOF is around 
unity because the systematic deviations between input and reconstructed data are smaller than noise 
(data not shown), but at high 𝑆𝑁𝑅 =  300, the opposite takes place (see Fig.9d) and we get GOF ~ 3.16 ±
0.02.  
 
 

           

 
 

Figure S9 – (a) Simulated Weibull number input distribution of anatase TiO2 nanocrystals with nominal 〈𝑑〉𝑛 =  10𝑛𝑚 and 𝜎𝑛 =

5𝑛𝑚 and corresponding (averaged) recovered distributions obtained with the DEBUSSY analysis (blue squares) and with our 
inversion algorithm (red circles). Statistics was accumulated by processing 100 noisy data with 𝑆𝑁𝑅 ~ 300.; (b) corresponding input 
and recovered mass distributions; (c) Simulated input WAXTS (black circles) and reconstructed data obtained with the DEBUSSY 
analysis (blue line, not visible)and with our inversion algorithm (red line); (d) absolute residuals (recovered-input) for the data of 
panel c. DEBUSSY residuals are systematic and much higher than inversion residuals. 
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TABLE S4: comparison between input parameters of the Weibull number distribution of Fig.9 and the parameters 
recovered by using our inversion method and the DEBUSSY analysis. Three different SNR levels are shown. 

 <d>n  (nm) n  (nm) <d>m  (nm) m  (nm) GOF 

Input 10 5 16.360 5.122  

      

Inversion (SNR = 300)  9.94 ± 0.11 5.03 ± 0.06 16.365 ± 0.001 5.137 ± 0.003 1.00 ± 0.01 

DEBUSSY (SNR = 300) 11.90 ± 0.02 4.05 ± 0.01 16.510 ± 0.005 5.52 ± 0.02 3.16 ± 0.02 

      

Inversion (SNR = 100)   9.83 ± 0.16 5.08 ± 0.08 16.388 ± 0.003 5.20 ± 0.01 1.00 ± 0.01 

DEBUSSY (SNR = 100) 11.892 ± 0.003 4.057 ± 0.001 16.510 ± 0.003 5.52 ± 0.01 1.38 ± 0.01 

      

Inversion (SNR = 30) 9.6 ± 0.9 5.15 ± 0.3 16.373 ± 0.009 5.17 ± 0.03 1.00 ± 0.01 

DEBUSSY (SNR = 30) 11.89 ± 0.02 4.06 ± 0.01 16.510 ± 0.01 5.53 ± 0.02 1.04 ± 0.01 

 
 
The second test refers to an exponential decay (number) input distribution of anatase TiO2 nanocrystals 

with nominal   〈𝑑〉𝑛 = 𝜎𝑛 = 5 𝑛𝑚. As above, we processed 100 noisy input data signals with different 

𝑆𝑁𝑅 levels and, for 𝑆𝑁𝑅 =  300, we obtained the results reported in Fig.10. Once again the distributions 

obtained with the DEBUSSY analysis are partially (mass) and highly (number) inaccurate, whereas the ones 

obtained with our algorithm match quite nicely the expected ones (both number and mass). The 

differences in signal reconstruction are very similar to the ones obtained in the previous case, with similar 

systematic residuals [see Fig.10(d)] and a higher GOF. A summary of the results of this test carried out 

also with 𝑆𝑁𝑅 =  100 and 𝑆𝑁𝑅 =  30 are are reported in Table S5. All the comments done for Table S4 

apply also to Table S5. 

 In conclusion, we have shown two examples (a Weibull and an Exponential distribution) of the different 

performances between our inversion algorithm and the DEBUSSY analysis. In both cases the number 

distributions to be recovered were quite broad (𝜎𝑛 / 〈𝑑〉𝑛 ≥ 0.5) and their shapes quite different from 

that of a LogNormal distribution, which is characterized by long decaying tails toward large sizes. 

Conversely, the Weibull distribution exhibits long tails toward small sizes and the Exponential distribution 

exhibits no tails at all at small sizes. For these two examples, the DEBUSSY method wildly fails in recovering 

the number distributions with errors on 〈𝑑〉𝑛 and 𝜎𝑛 of ~20%, but recovers the mass distribution with a 

somewhat satisfactory accuracy so that, in spite of the fact the PDS shape does not match accurately the 

expected one, all the mass parameters 〈𝑑〉𝑚 and 𝜎𝑚 are retrieved with rather high accuracy (a few 

percents) except for 𝜎𝑚 of the Weibull distribution (~8%). Therefore, the DEBUSSY analysis appears to 

be reliable when dealing with mass distributions, but any comparison with other techniques based on the 

analysis of number PSDs (such as TEM or other optical microscopy methods) must be taken with care.  
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TABLE S5: comparison between input parameters of the Exponential number distribution of Fig.10 and the parameters 
recovered by using our inversion method and the DEBUSSY analysis. Three different SNR levels are shown. 

 <d>n  (nm) n  (nm) <d>m  (nm) m  (nm) GOF 

Input 5.258 4.998 19.986 9.957  

      

Inversion (SNR = 300)  5.30 ± 0.06 5.02 ± 0.01 19.998 ± 0.002 9.96 ± 0.01 1.00 ± 0.01 

DEBUSSY (SNR = 300) 8.627 ± 0.004 5.060 ± 0.001 20.169 ± 0.001 10.270 ± 0.002 3.15 ± 0.01 

      

Inversion (SNR = 100)   5.29 ± 0.17 5.00 ± 0.03 19.99 ± 0.01 9.97 ± 0.02 1.00 ± 0.01 

DEBUSSY (SNR = 100) 8.63 ± 0.01 5.061 ± 0.002 20.17 ± 0.02 10.27 ± 0.02 1.40 ± 0.01 

      

Inversion (SNR = 30) 5.32 ± 0.29 5.00 ± 0.05 19.99 ± 0.01 9.99 ± 0.06 1.00 ± 0.01 

DEBUSSY (SNR = 30) 8.63 ± 0.02 5.064 ± 0.005 20.20 ± 0.03 10.30 ± 0.04 1.04 ± 0.01 

 

           

 
 
Figure S10 – (a) Simulated Exponential number input distribution of anatase TiO2 nanocrystals with nominal   〈𝑑〉𝑛 = 𝜎𝑛 = 5 𝑛𝑚 
and corresponding (averaged) recovered distributions obtained with the DEBUSSY analysis (blue squares) and with our inversion 
algorithm (red circles). Statistics was accumulated by processing 100 noisy data signals with 𝑆𝑁𝑅 ~ 300.; (b) corresponding input 
and recovered mass distributions; (c) Simulated input WAXTS (black circles) and reconstructed data obtained with the DEBUSSY 
analysis (blue line, not visible)and with our inversion algorithm (red line); (d) absolute residuals (recovered-input) for the data of 
panel c. DEBUSSY residuals are systematic and much higher than inversion residuals. 
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 Clearly, had we used in the DEBUSSY analysis the correct shape for the PSD, we would had found much 

more accurate results, consistent with the ones obtained with the inversion algorithm. It should be also 

pointed out that, regardless of the shape, when the PSDs are rather narrow (𝜎𝑛 / 〈𝑑〉𝑛 ≤ 0.1) the 

differences between our inversion method and the DEBUSSY analysis become more and more negligible. 

Under these circumstances, the DESUSSY analysis in more convenient because much faster than the 

inversion algorithm. 

 

7) Synchrotron WAXTS data collection and reduction. 

 Magnetite-Maghemite (MM, Fe3O4 - γ-Fe2O3) and Titania (TiO2) powder samples were loaded into 

borosilicate glass capillaries with certified composition (Hilgenberg GmbH 0500), 0.3mm and 0.5mm in 

diameter, respectively.  

 High-resolution Wide Angle X-ray Total Scattering (WAXTS) measurements were performed at the MS-

X04SA Powder Diffraction Beamline of the Swiss Light Source (Paul Scherrer Institute, Villigen, CH).1 Two 

different beam energies of 15 KeV (Fe2O3) and 17 KeV (TiO2) were set and the operational wavelengths 

(λ15KeV = 0.82712 Å, λ17KeV = 0.70880 Å) accurately determined using a silicon powder standard (NIST 640d, 

a0 = 0.543123(8) nm at 22.5°C). Data were collected in the 0.5°-130° 2θ range using a single-photon 

counting silicon microstrip detector (MYTHEN II).2 

 The spatial coherence length of the X-ray beam of the MS-X04SA beamline is claimed to be, in the 

longitudinal direction, of the order of 105 ’s, i.e., a few microns, and, in the transversal plane, up to 0.1 

mm. Such coherence is much larger than the sizes of nanoparticles (< 100 nm) treated with DSE equation 

and the inversion algorithm (Eq.s 1 and 2 of the main text). Thus, the impinging field does not suffer of 

significant spatial variations and does not affect the analysis. 

 He/air background and empty glass capillaries were independently collected under the same 

experimental conditions. Additionally, an amorphous ferrihydrite sample was measured in the same 

experimental conditions used for the MM nanocrystals (NCs), to be added as background curve during the 

modelling.  

 Angle-dependent intensity corrections3 were applied to the raw data to account for signal attenuations 

due to absorption effects; sample absorption curves were determined by measuring the transmitted 

beam from the filled capillaries, while for the empty capillaries the X-ray attenuation coefficient was 

computed using their nominal composition. Angular calibrations were applied to the zero angle and to x, 

y capillary offsets, derived from the certified silicon powder standard (NIST 640d) using locally developed 

procedures. Air and (absorption-corrected) capillary scattering contributions were subtracted from the 

signals of the samples.  

 

8) Modeling and scattering profiles of Magnetite-maghemite (Fe3O4 - γ-Fe2O3) nanocrystals 

 The kernels profiles 𝐼𝑝(𝑄𝑖, 𝑑𝑝,𝑗) used for the inversion algorithm were computed using the DEBUSSY 

Suite, a suite of programs implementing the Debye Scattering Equation (DSE) to model total scattering 

data of nanosized and disordered materials.4 The Suite relies on a bottom-up approach that consists of 

two main steps. In the first one, a monovariate population of atomistic models of nanocrystals (NCs) with 
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increasing size and desired shape are generated, with the set of multiplicities of sampled interatomic 

distances stored in suitable databases. In the second step, this stored information is used to compute, via 

the DSE equation, the kernels 𝐼𝑝(𝑄𝑖, 𝑑𝑝,𝑗).  

 Magnetite and maghemite are characterized by the same spinel-like crystal structure (space group Fd-

3m), shown in Fig.S11, with oxygens forming a face centered cubic lattice and two crystallographic 

independent Fe atoms occupying octahedral and tetrahedral interstitial sites, respectively. In magnetite 

(Fe3O4, containing Fe2+ and Fe3+ in the 1:2 ratio) half Fe3+ ions show a tetrahedral coordination, whereas 

the other half, together with Fe2+ cations, occupy the octahedral sites. When magnetite is partially 

oxidized to maghemite (-Fe2O3), some additional iron vacancies are created. The crystal structure 

remains the same with a slight shrinking of the lattice (𝑎 = 8.397 Å for magnetite to 𝑎 = 8.346 Å for 

maghemite).5 

 The DSE modelling strategy behind the calculation of the Magnetite-Maghemite (MM) kernel functions 

was similar to the one used in Ref.[5], but based on the use of constant (not size dependent) 

crystallographic parameters. In particular: 

(i) the cubic crystal structure was built with an average lattice parameter 𝑎 =  8.36052 Å, which is in 

between the ones characterizing the magnetite and maghemite structures. This figure (slightly expanded 

with respect to that of magnetite5) accounts for surface expansion effects that are common in many 

oxides and are mainly due to repulsion between unsaturated ions in the NCs shell.6 Based on this  

structure, a monovariate population of NCs clusters of spherical shape and increasing diameter  (𝛥𝑑 =

 0.65𝑛𝑚) were generated up to 𝑑 = 50 𝑛𝑚. The corresponding multiplicities of the sampled interatomic 

distances of each cluster were stored a suitable database. 

(ii) DSE calculations were carried out by using constant site occupancy and Debye-Waller factors. The site 

occupancy factors (s.o.f.) for the iron atom in the octahedral sites was set to s.o.f.(Feoct) = 0.89, so to 

account for iron vacancies originating from the maghemite formation, likely at the NCs surface; all the 

other site occupancy factors were kept at 1.0. Debye-Waller factors of 0.46 Å2, 0.91 Å2 and 0.33 Å2 were 

used for Fe(tet), Fe(oct) and O, respectively. These values have been derived as average parameters from 

the size dependent function described in Ref.5 

 
 

Figure S11. - Crystal structure of Fe3O4 and -Fe2O3. Oxygen ions are in red, iron ions in tetrahedral sites [Fe(tet)] in gold and iron ions in 
octahedral coordination [Fe(oct)] in light green.  
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9) Modeling and scattering profiles of commercial Titania (TiO2) nanocrystals. 

 Two spherical databases for the two polymorphs of TiO2 (anatase and rutile) were built, implementing 

the same strategy detailed for MM NCs and using the structural parameters available in literature,7 further 

optimized by a Rietveld refinement using the Topas program:8 a = 3.78596 Å and c = 9.50805 Å for anatase 

(space group I41/amd);  a =4.59469 Å and c =2.95921 Å for rutile (space group P42/mnm).  

 The TiO2 kernel profiles 𝐼𝑝(𝑄𝑖, 𝑑𝑝,𝑗) for both phases were computed by using the DEBUSSY suite with 

the exact DSE (Eq.1) for spherical NCs up to diameters of 𝑑~80 𝑛𝑚. Above this size, the computation via 

the DEBUSSY Suite become rather impractical because of very long computational times. 

 While for the anatase phase sizes up to 80 𝑛𝑚 are large enough to recover correctly the PSD, the 

recovered distribution of the rutile appears to be truncated and suggests the presence of larger sizes. 

Thus we resorted to an alternative approach based on (Rietveld-inspired) analytical pseudo-Voigt 

functions describing the shapes of the diffraction peaks and a polynomial description of the diffuse 

scattering hidden in the background baseline. All these parameters were derived upon calibration using 

the DSE signals for the smaller NCs (up to ca. 𝑑 =  80𝑛𝑚) as benchmarks (shown in Fig.S12).  

 Once derived through calibration, these parameters were used to calculate, using the TOPAS program,8 

all the kernels for rutile used in the inversion algorithm, up to 𝑑 ~ 200𝑛𝑚. 

 The same Debye-Waller factor (0.6Å2) and s.o.f.=1.0 were used for both atomic species (Ti and O) and 

both phases (anatase and rutile). For both phases, the inelastic Compton scattering contribution has been 

added as an additional model component at the final simulated patterns.  

 

  

 
Figure S12 - (a) Gaussian (1/FWHMG) and Lorentian (1/FWHML) “apparent” crystal sizes as a function of the clusters diameter d, 
derived using pseudo-Voigt functions describing the peaks width of the DSE reference patterns, for each cluster selected for the 
calibration (up to d = 80nm). The dotted lines are the fitting curves [1/FWHMG(d)=0.969d1.2001 and 1/FWHML(d)= 15.321d0.9129)] 
used for extrapolating the FWHMG and FWHML values at d > 80nm.  (b) Three background parameters (bg1, bg2, bg3), used for 
describing the diffuse scattering contribution in the Rietveld-like fits for d < 80nm and extrapolated at higher values, as a function 
of the clusters volume V. The dotted lines are the extrapolating curves [b1(V)=775.6V; b2(V)=122.49V; b3(V)=-161.75V]. 
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10) Inversion from multimodal distributions. 

 In this section we show two examples of the capability of our method in recovering bi-modal 

distributions that were characterized by two peaks of different widths and relative heights. Figure S13 

reports the case of a bi-Gaussian distribution of anatase TiO2 nanocrystals characterized by two broad 

peaks, namely < 𝑑1 >𝑚=  6.88𝑛𝑚, 𝜎1𝑚 = 1.75𝑛𝑚, mass fraction 𝑤1 =  0.15 and by < 𝑑2 >𝑚=

 23.4𝑛𝑚, 𝜎2𝑚 = 4.65𝑛𝑚 and mass fraction 𝑤2 =  0.85. The noisy data (𝑆𝑁𝑅 =  300) were inverted by 

setting 𝜔𝑝 = 2 × 10−4 and the iterative procedure was stopped after ~7.2 × 104 iterations when the 

relative variation of GOF attained the threshold 𝛿(𝑟) ≤ 10−9(see step (d) of section 4) and GOF~1.01. As 

one can notice, the matching between the input (black solid curves) and the recovered (symbols) 

distributions is excellent, for both number (Fig.S13a) and mass (Fig.S13b) distributions. 

 

 

 Figure S14 reports the case of a bi-Gaussian distribution of anatase TiO2 nanocrystals characterized by 

narrow peaks, namely < 𝑑1 >𝑚=  20.0𝑛𝑚, 𝜎1𝑚 = 1.0𝑛𝑚, mass fraction 𝑤1 =  0.54 and by < 𝑑2 >𝑚=

 30.0.6𝑛𝑚, 𝜎2𝑚 = 1.0𝑛𝑚 and mass fraction 𝑤2 =  0.46. The noisy data (𝑆𝑁𝑅 =  300) were inverted by 

setting 𝜔𝑝 = 1 × 10−6 and the iterative procedure was stopped at the maximum number of iterations 

106 where GOF~0.99. As for the case of Fig.S13, the matching between the input (black solid curves) and 

the recovered (symbols) distributions is excellent, for both number (Fig.S14a) and mass (Fig.S14b) 

distributions. 

 

           
 
 
Figure S13 – (a) Simulated Bigaussian number input (solid line) distribution of anatase TiO2 nanocrystals characterized by two 

broad peaks (see text) and corresponding recovered distribution obtained with our inversion algorithm (red circles); (b) 
corresponding input (solid line) and recovered mass distributions (blue squares). 
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11) Ill-posedness analysis of the WAXTS-DSE data inversion problem. 

 We show in this section that the inversion of WAXTS-DSE data is not a severely ill-posed problem. 

Indeed, as mentioned in the main text, the kernels 𝐼𝑝(𝑄𝑖, 𝑑𝑝,𝑗) associated to Eq.(1) are highly structured 

with the presence of a large number of relatively narrow and differently shaped peaks, whose amplitude, 

width, and positions depend sensitively on NC size and morphology. Thus, as long as the data 𝐼𝑚(𝑄𝑖) are 

taken over a large Q-range with a high Q-resolution and high 𝑆𝑁𝑅 ratio, the difference of the Intensity 

profiles of two adjacent size classes is higher than noise and the inversion algorithm can recover the 

correct distribution without introducing artefacts. An example of the dependence of the intensity profiles 

for 7 anatase TiO2 NCs with sizes ranging between 0.5 and 83 nm, is reported in Fig.S15. As one can 

appreciate, the average intensity, peaks height and widths vary sensitively with the NCs sizes.  

 A quantitative analysis of this behaviors is reported in Fig.S16, where we show that the average 

intensity scales as 〈𝐼(𝑄)〉 ~ 𝑑3 [Fig.S16(a)], the peak intensity as 𝐼𝑝𝑒𝑎𝑘 ~ 𝑑4, [Fig.S16(b)], the peak width 

as 𝐼𝐹𝑊𝐻𝑀 ~ 𝑑−1, [Fig.S16(c)] and the diffuse scattering around the peaks as  𝐼𝑑𝑖𝑓𝑓 ~ 𝑑3, [Fig.S16(d)]. All 

this behaviors are characterized by a high dynamic range of variation, implying that kernels of Eq.(1) is 

highly sensitive to the NC sizes.  

 

           
 
Figure S14 – (a) Simulated Bigaussian number input (solid line) distribution of anatase TiO2 nanocrystals characterized by two 

narrow peaks (see text) and corresponding recovered distribution obtained with our inversion algorithm (red circles); (b) 
corresponding input (solid line) and recovered mass distributions (blue squares). 
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Figure S15 – Behaviors of the kernels 𝐼𝑝(𝑄𝑖 , 𝑑𝑝,𝑗) associated to Eq.(1) of the main text for 7 anatase TiO2 NCs with diameters 

ranging between 0.51 and 83.1 nm. Passing from the smallest to the largest sizes, the intensity profiles vary by many orders of 
magnitude and the peaks become increasingly high and narrow. 

 

        

             
 
Figure S16 – Behaviors, as a function of the diameter, of the features characterizing the anatase TiO2 NCs kernels of Fig.S15. (a) 
average intensity; (b) peak intensities of three peaks indicated by the labels of Fig.S15; (c) peak FWHMs; (d) intensity of the diffuse 
scattering around the peaks. 
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 As already mentioned above, the ill-posedness of an inversion problem is highly related to the noise 

level present on the data in comparison with the (r.m.s.) difference between the kernels of two adjacent 

sizes. Fig.S17 shows the relative difference between three couples of adjacent kernels spanning the entire 

range of the anatase TiO2 sizes used in the reconstruction. Before taking the difference, the intensity 

profile of each kernel has been normalized to (𝑑j)
3, so that all the kernels are rescaled to the same 

average intensity. As one can notice, the relative difference is pretty large for the smaller sizes (kernels 4 

and 5 with 𝑑4 =  2.02𝑛𝑚 and 𝑑5 =  2.53𝑛𝑚), whereas becomes increasingly smaller for large sizes 

(kernels 163 and 164 with 𝑑163 =  82.60𝑛𝑚 and 𝑑5 =  83.11𝑛𝑚). The equivalent 𝑆𝑁𝑅𝑒𝑞𝑣 associated to 

such a difference is 𝑆𝑁𝑅𝑒𝑞𝑣 = (∑ 〈𝐼〉𝑖
2𝑁

𝑖=1 ∑ ∆𝐼𝑖
2𝑁

𝑖=1⁄ )
1/2

 where 〈𝐼〉𝑖 = [𝐼1(𝑄𝑖) + 𝐼2(𝑄𝑖)]/2 and ∆𝐼𝑖 =

𝐼2(𝑄𝑖) − 𝐼1(𝑄𝑖) (the suffixes 1 and 2 indicating the members of the couple). Such figures, indicated in the 

legend of Fig.S17, are smaller than the 𝑆𝑁𝑅 of the data for each couple of adjacent kernels spanning the 

entire size range. Thus, the inversion problem is expected to be not severely ill-posed. 

 Finally, when the kernels of different polymorphs are compared, the peaks of the intensity profiles 

show up at rather different Q values (occasionally overlapping, particularly at high Q’s), implying a very 

high (up to ~100%) relative differences. Correspondingly, the  𝑆𝑁𝑅𝑒𝑞𝑣 values of couple of kernels of 

distinct polymorphs are very low, and the problem is clearly not ill-posed. 

 

 

 

       
 
Figure S17 – relative difference between three couples of adjacent kernels for the anatase TiO2 NCs of Fig.S15. Small sizes exhibit 
relative differences much higher than those associated to large sizes. Their corresponding 𝑆𝑁𝑅𝑒𝑞𝑣  (see text) are always smaller than 

typical 𝑆𝑁𝑅 present on the data. 
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