The establishment of new protein expression system using N starvation inducible promoters in *Chlorella*

Jun-Hye Shin¹, Juyoung Choi¹, Jeongmin Jeon¹, Manu Kumar¹, Juhyeon Lee¹, Won-Joong Jeong², Seong-Ryong Kim^{1*} ¹Department of Life Science, Sogang University, Seoul, South Korea ²Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea Supplementary Table 1. Genes up-regulated by nitrogen starvation obtained from differential expression (DE) analysis using RNA-seq data.

		log2FoldChange
Genes	Functional description	29B_vs_N_3d
scaffold275G00200	amino acid permease (XP_002327371, 2.01E-35)	20.835
scaffold326G00920	urea active transporter-like protein (XP_005645091, 0.00E+00)	11.699
scaffold37G001690	ammonium transporter (XP_002314518, 1.77E-44)	11.639
scaffold164G00210	nitrate transporter NTR (AAK02066, 0.00E+00)	10.301
scaffold326G00270	ammonium transporter (AFV36360, 0.00E+00)	10.096
scaffold326G00910	urea carboxylase (XP_005643671, 0.00E+00)	9.862
scaffold73G00080	GOGAT, glutamate synthase (EMS25597, 0.00E+00)	9.749
scaffold253G00910	acylamide amidohydrolase (WP_019722123, 5.22E-155)	9.394
scaffold11G001150	expressed protein (XP_005843832, 6.69E-07)	8.378
scaffold11G001140	expressed protein (XP_005843832, 4.72E-06)	8.099
scaffold175G00150	late embryogenesis abundant protein homolog (AAA79745, 5.58E-22)	7.732
scaffold301G00550	antifreeze protein (ABR01229, 1.34E-14)	7.407
scaffold305G001070	hypothetical protein CHLNCDRAFT_135268 (XP_005846770, 1.15E-25)	7.26
scaffold10G00510	copper amine oxidase (XP_002959097, 3.69E-179)	7.074
scaffold301G00540	antifreeze protein (ABR01229, 3.39E-13)	6.782
scaffold164G00190	nitrate reductase (ACF22999, 0.00E+00)	6.351
scaffold25G001600	membrane protein containing DUF1538 (EHP30115.1, 6.13E-63)	6.058
scaffold0G00550	(2Fe-2S)-binding protein (WP_006102543, 6.97E-54)	5.909
scaffold80G00050	hypothetical protein CHLNCDRAFT_57598, partial (XP_005848440, 1.37E-165)	5.582
scaffold344G00160	protein serine/threonine kinase, putative, partial (XP_004185680, 1.73E-12)	5.462

Supplementary Table 2. List of primers used in this study.

Primer name	Sequences (5' to 3')	Application
CvUbi-F	GAGTCTTCGGACACCATCGAG	RT-PCR
<i>CvUbi</i> -R	CTTGTCCTGGTTGTACTTGCG	
CvAct1-F	ATGCTTTGCCACATGCCATC	RT-PCR
CvAct1-R	CCGCTGTCTAGCACGATACC	
hG-CSF-F	TCTCTGCCACAGAGCTTCCT	gDNA PCR & RT-PCR
hG-CSF-R	CATCTGCTGCCAGATTGTTG	
CvNDI1-F	TGGTGTTCATTGCCCTGTGT	RT-PCR
<i>CvNDI1</i> -R	GGAGGTCCATAGCAACCGAG	
CvNDI2-F	CGTGGTACCTCACAGGCTTT	RT-PCR
<i>CvNDI2</i> -R	GCGACCACAGGGTAGACAAA	
scaffold73G00080-F	CTGTCACACGAGGTCAGCAA	RT-PCR
scaffold73G00080-R	GTACCGCCGGTCATGTACTC	
scaffold37G001690-F	GCCAAGCCCAGAATCAGTGT	RT-PCR
scaffold37G001690-R	TTGCATCTGCGTCTTTGTCG	
BamH I_UTEX395 SP_CSF-F	CGCGGATCCATGGCCGGCCGCATCACCCTGCTGCTGTGCCTG TGCCTGGTGGCCGGCGCCGCCGCCATGGCAGCCCTCTC	Cloning
Kpn I_CSF-R	GCCGGTACCGGGCTGTGCCAGG	Cloning
BamH I_29B SP_CSF-F	CGCGGATCCATGAAGGGCGCCCTGCTGCTGCTGCTGGC CCTGGCCGCCAGCGCCGCCATCGCCCGCGACATGGCAGCCCT CTC	Cloning

Supplementary Figure 1. RT-qPCR analysis of two candidate genes (*Scaffold326G00910* and *Scaffold326G 00270*) detected in N deprived growth conditions after 0, 6, 12, and 24 h which are represented by N0, N6, N12 and N24.RQ indicates relative quantity, and error bars represent standard error of three replicates.

Supplementary Figure 2. Amino acid sequence alignment of CvNDI1. The amino acid sequence predicted based on CvNDI1 gene sequence was aligned along with urea carboxylases (UC) of other microalgae. Clustal omega program (https://www.ebi.ac.uk/ Tools/msa /clustalo/) was used for the alignment. Blue and red boxes mean biotin carboxylation domain and carboxyltransferase domain respectively.

1 CVNDT2		1 100
2 AMT[M.conductrix] 3 AMT[C.sorokiniana]	PAHWPPNQGLANWAMTQRQRI	N -
101		2 200
2 AMT[M.conductrix] 3 AMT[C.sorokiniana]	VARLEGLGVSRPAPTRRLRW	2
201	6	3 300
2 AMT[M.conductrix] 3 AMT[C.sorokiniana]	EAAAVVRSTLQTPGECTGTT	L -
301		4 400
2 AMT[M.conductrix] 3 AMT[C.sorokiniana] 4 AMT[C.sorokiniana]	RSKNAKNIILLNILDACFGC RAKNAKNIILLNILDACFGC RAKNAKNIILLNILDACFGC	
401 1 CVNDI2 AVVIT CARAVCODVOVECONGLEGAEL DAC VAGDATI GOUSA SOCETO VENERALSKI DREMANENE CETEAA TOATTA	SGAVA FROM FROM YELM	5 500
2 AMT[M.conductrix] AWYLTGWAFAYGDPVANAD <mark>C</mark> DAANFTTIKELSVCKYGDFGGSQAFIGNRNFAMSNLDRGTYWDWFFQFTFAATGATI 3 AMT[C.sorokiniana] AWYLTGWAFAYGDPTNQCSANSWDE <mark>A</mark> TC- <mark>AANGGPFPGLSASQAFIGNRNFVMSNMDR</mark> TTYYDWFFQFTFAATGATI	ISGAVAE <mark>RCK</mark> FEAYMLYELA VSGAVAE <mark>RC</mark> RFE <mark>S</mark> YMLYELM	I
		5 600
2 AMT[M.conductrix] 3 AMT[C.sorokiniana] VLFVYPCVAHNVNSPFCWLSPWRNATTAVNOSYVLFAGSGVYDFAGDAAVHMVGGTASLGAAWVLGPRICRFDAAGOPV AMT[C.sorokiniana] VLFVYPVVAHNVNSPFCWLSAMRTVDTASKOSYVLFAGSGVYDFAGDAAVHMVGGLASLAGAWVLGPRICRFDAAGNPV	DMPGHNASLTLLGVFLLWFG DMPGHNASLTLLGVFLLWFG	
601		7 700
2 AMT[M.conductrix] 3 AMT[C.sorokiniana] 4 GFNPGSTLAITY-GIDSFSKVAAAVAVTTIGAASGCIATLFIAMAYOYFTLGVVWDLIIAGNGALAGLVAITGPCA 5 AMT[C.sorokiniana]	FVQTWAAFIIGIIGIIG FVFFV FVQTWAAFIIGAIGG FVYFV FVQSWAAFIIGAIGGIVYFI	4
		8 800
2 AMT[M.conductrix] 3 AMT[C.sorokiniana] 3 AMT[C.sorokiniana]	CILVVGAWTLALMTPFFMLL CILVVGAWTLGIMTPFFMLL	ĸ
2 AMT[M.conductrix] 3 AMT[C.sorokiniana] 4 MG[ERVSDEVEAOGLDVSHHGGSAYPHETKGANGGAKGELCFGIIDEMVDRKIEEALEKMRKQMGTAAV		

Supplementary Figure 3. (a) Amino acid sequence alignment of CvNDI2. The amino acid sequence predicted based on CvNDI2 gene sequence were aligned along with ammonium transporters (AMT) of other microalgae. Clustal omega program (https://www.ebi.ac.uk/Tools/msa /clustalo/) was used for the alignment.

Supplementary Figure 3. (b) The hydropathy profile of CvNDI2. Red color indicates the transmembrane domain, and the inside and outside regions are in respectively blue and cyan.

CGCGGTTGGCCACCAGCAGCTTGGTGATGGGAGCCTGGGTCATGGCGACTGGGTCTGCAG GGCAACGCGAGCAAAAAGGGAGCGGTTGAGCAGGCAGTGCCGCCGCCAGCTGCCGGGAGC GTGTGCTCACAACACGCTGACAGCGAAAAACCGACGCAGAACCCCCACACAGGCCGGGGTGC CCCCTCCCGCCCTTGCTGCGTCTGCCGGCCGCATCAGTTTATCATTGATGTCACGATGCA TGCATTTGCTATGAGGCCCTGCTCCCAAAACTAGGGCTCTGCCCCGTGCATCACCTGCGC AGTCCCTCTCGCGATGCGCAGGCGCACCACAATGGTGCCAATGCTGCAGAGAAGATACAA CCAAGAAGATACAACCAAGAGGAGGAGAAGCGGCCATCGTTGGGTCCATCACCGACTGCC GCTGGCCTGTGCTCAACACGCCCTTTACCTATCCTCTTCGCCGCCACAATCAGTGTCCCCA CATTTGTGAGTGCAAGCCGAGCCCAACCGGATTTCATTTACGCATGACCGCCTACACGCC TGCGGTTGCGGCGCTGCGCCGAGTGCGTCACTCGTTTTTACAGCGACCCACACCACG GCACTCTGTAGGGAGCATCAACTGAGCCCACCGTCGTCCGATCCCGTCAACATCACCTGG GGAAGCTGCTGCCTGAAAAAGGATGTGACCCTGGTACCAACTTTTCTGCCCCCTCTGAC GGGGCGGTGGTCTCTCATGCATTGGGTTCACCCATATATTGCGCGGGCACACACTCCGCC CCCCATTCTTTTCAACTCTCACTCCTCATCCCCCAGGCACGTTGCCACCGCTCAGCAGGG CCGGGGAGCTCCCATCACCTTGGCGAA

>CvNDI2 promoter

GGGCTCTGGGTCCACCTGAAAAGTGGGTCGCCTTTGTGCTTGTTCATCAAAGTTCTTTCA CTCTACCCACTGGCCGCCATGTCTTCGAGACGGCATCATGATGGAATGGAATGTTACATG CATCAGTGATGCAAACAAGCCTACACAACCCATTATGTGCGCTGCGCTGATCAAGCTGGA TCCCCGTCCCCCTCGCACCCCAGCACCCCCCAAGCAGTCCGCGATCCACCAATTCCTGC ACCAAGCCTCTGGGCCAGCCTGTGGGCCAGCCCAGACCTTTGTACCACAGCACCGCAGCGCCA ACCTCGGCTGCCGACAGCCTTTGAGCGGCACTTGGCCCCGCCCTTGAGGCACTTTCGCCG AGCACTAGGAGTGCATAGGCAGCTTGCAGCCCCAGGCAGTCGATTACGGTATCTAACGCT GCAAGCCGTCGTTGATGGCAACGACTCAGCTGCAGCTGCTGGTTGCGAGCCATGCCCAGA CACAGCAGCGCAACAGCGTCATGTTGCACTGCAGCAACTCCTCAACACTCGACTGCACAG GCGCCAGCCTGCCCGCTGCCACTGGTGCAGCTGGAACGAGGCCCAGGCACGCAAGCCGT CGCCGGCAGGGAGAGGTGCGCTCAGCAGGTCCCCATCACGCTGCTGGTGCAGCTCACAGA GCTGAGTGTAGCGGCGGTCCCACCGGCCCTCCCTTGGGT

Supplementary Figure 4. Promoter sequences of CvNDI1 and CvNDI2 genes.

>Cellulase (UTEX 395) MAGRITLLLCLCLVAGAAAAPIDAATACSKMPATWKPVETVPDEVSWAVYSAAYDRY AGSGLDIDWTSYYCAEPTYSYDGCYAVSSTPLLARLPAR

>Ras-related RABF1 (ArM0029B)

MKGALLLLLALAASAAIARDLETWGHHGKKKVKVVPVVVKPKPVVVVKPKPVVVVK PKPVVVVKPKPAVVVVAKPEQKYPVCDGAVLASCCYLPIQYDYYGKAASTCKIVDKVA VPIHPWYPKKMVAKEVVKHLYLASYPPPVYTDGASFACVCPTACEVPSPCSPYPCTVH MPDCGGYGK

Supplementary Figure 5. Amino acid sequences of cellulase and Ras-related RABF1. Bold letters indicate predicted signal peptide sequences.