Cell Reports, Volume 32

Supplemental Information

The Cdc48 Complex Alleviates

the Cytotoxicity of Misfolded Proteins

by Regulating Ubiquitin Homeostasis

Ryan Higgins, Marie-Helene Kabbaj, Delaney Sherwin, Lauren A. Howell, Alexa Hatcher, Robert J. Tomko Jr., and Yanchang Wang

SUPPLEMENTAL INFORMATION

Figure S1 (related to Figure 1). The proline-rich region in Huntingtin affects its aggregation and degradation. **A.** Cellular localization of Htt103QP-GFP and Htt103Q Δ P-GFP in yeast cells. Yeast cells with *P*_{GAL}*FLAG*-*Htt103QP*-*GFP* (3419-1-1) and *P*_{GAL}*FLAG*-*Htt103Q\DeltaP-GFP* (YYW313-1) were grown in raffinose medium to mid-log phase at 30°C. Galactose (final concentration 2%) was added and cell images were taken after a 6-hour incubation in galactose medium. The GFP signal is shown. Scale bar, 5µm. **B.** The degradation kinetics of Htt103Q Δ P and Htt103Q Δ P. The above yeast strains were grown in raffinose medium to mid-log phase. Galactose (final concentration 2%) was added for 1 hour to induce Htt103QP and Htt103Q Δ P expression, followed by addition of glucose to shut off the induction. Protein samples were prepared over time; Htt103QP and Htt103Q Δ P protein levels were monitored over time with anti-FLAG antibody. Pgk1 was used as a loading control. The experiment was repeated three times and the relative abundance of Huntingtin over Pgk1 is shown in **C** as mean ± SD. The Wilcoxon rank sum test was used to calculate *p*-values, and the difference was considered significant (*) when *p* < 0.05.

Figure S2 (related to Figure 3). Increased Hsp104-positive aggregates in *cdc48-3*, *npl4-1*, and *ufd1-2* mutants. **A.** WT (YYW315-2) and *cdc48-3* (3506-1-1) mutants containing *HSP104-GFP* were grown in YPD (glucose medium) to mid-log phase at 25°C. Cells were then shifted to 34°C for 3 hours. Hsp104-GFP foci in WT and mutant cells were imaged (left) and quantified (right). The result is the average from three independent experiments (mean \pm SD). Two-way ANOVA analysis with Tukey's multiple comparison test was performed (N = 3). *, *p* <0.05; **, *p* < 0.01. Scale bar = 5µm. **B.** The Hsp104-GFP signal in WT (YYW316-1), *npl4-1* (3641-2-2), and *ufd1-2* (3642-1-1) mutants was compared using the same protocol as in (A).

Figure S3 (related to Figure 4). The accumulation of Htt103QP on the proteasome increases in cdc48-3 mutants. WT (3589-1-4), RPN11-3×FLAG P_{GAL}-Htt103QP-GFP (3592-3-3), and cdc48-3 RPN11-3×FLAG P_{GAL}-Htt103QP-GFP (3592-3-1) cells (80 mL) in $pdr5\Delta$ background were grown in YPR (raffinose medium) to mid-log phase at 25°C. Cells were shifted to 34°C and galactose was added for 3 hours. The proteasome inhibitor, MG132, was then added for 1 hour. Cells were harvested and lysed, and Rpn11-3×FLAG protein was immunoprecipitated using M2 anti-Flag beads. Htt103QP-GFP was detected using anti-GFP antibody. A 4% SDS-PAGE was

used to visualize Htt103QP-GFP species associated with proteasome protein Rpn11. In the strains used in this experiment, the Htt103QP construct lacked the FLAG tag that is present in most other experiments.

Figure S4 (related to Figure 4). Deletion of *SAN1* and *UBR1* deletion partially suppresses the accumulation of ubiquitinated proteins on proteasomes. Strains with the indicated genotypes (in *pdr5* Δ background) were grown in YPD (glucose medium) to mid-log phase and then shifted to 34°C for 3 hours. MG-132 (50 µM) was then added for 1 hour. The cells were lysed and Rpn11-3×FLAG protein was immunoprecipitated using M2 anti-FLAG beads and ubiquitinated proteins were detected using anti-Ub antibody. We used 4% SDS-PAGE to visualize ubiquitinated high-molecular-weight protein species. A *pdr5* Δ strain (3589-1-4) was used as a negative control. *cdc48-3* (3592-3-1), *san1* Δ *ubr1* Δ (3625-1-2), and two *cdc48-3 san1* Δ *ubr1* Δ strains (3622-1-3 and 3624-1-1) were used to examine the level of high-molecular-weight species that are associated with proteasome protein Rpn11. These strains contain *RPN11-3×FLAG* and *PGALHtt103QP-GFP* that lacks the N-terminal FLAG tag. In this experiment, yeast cells were grown in glucose medium and no Htt103QP expression is induced.

Figure S5 (related to Figure 4). The increased accumulation of ubiquitinated proteins on proteasomes in *cdc48-3* mutant cells depends on Dsk2 and Rad23. Yeast strains WT (3589-1-4), *RPN11-3×FLAG* (3592-4-4), *cdc48-3 RPN11-3×FLAG* (3592-5-2), and *cdc48-3 rad23 dsk2 RPN11-3×FLAG* (3967-2-4) in *pdr5* background were grown in YPD (glucose medium) to midlog phase and then shifted to 34°C for 3 hours. Proteasome inhibitor MG-132 was then added at 50 μ M for 1 hour. The cell lysates were immunoprecipitated using M2 anti-FLAG beads for Rpn11-3×FLAG protein, and ubiquitinated protein species were detected using anti-Ub antibody. We used 4% SDS-PAGE to visualize ubiquitinated high-molecular-weight protein species. The protein levels of Rpn11-3×FLAG and Pgk1 are shown.

Figure S6 (related to Figure 5). **A.** Western blotting results show HA-Ub induction after switch from raffinose (Raff) to galactose (Gal) using anti-HA antibody. * indicates the HA-fusion peptide generated from the control vector. **B.** High-level ubiquitin expression in *cdc48-3* mutants. A empty vector (pRS416) or a *P*_{ADH1}*RPS31(UBI3)* ubiquitin plasmid was introduced into WT (Y300) and *cdc48-3* (MHY3512) cells, and the transformants were selected on URA dropout plates. Saturated

cultures of the transformants were serially 10-folded diluted and spotted onto URA dropout plates. Images were acquired after incubation at 25°C, 30°C, 34°C and 37°C for 3 days.

Figure S1. Higgins et al.

Fig. S2 Higgins et al.

Figure S3. Higgins et al.

Figure S4. Higgins et al.

1. WT; **2.** *cdc48-3 RPN11-3×FLAG;* **3.** *san1*Δ *ubr1*Δ *RPN11-3×FLAG;* **4.** *san1*Δ *ubr1*Δ *cdc48-3 RPN11-3×FLAG;* **5.** *san1*Δ *ubr1*Δ *cdc48-3 RPN11-3×FLAG*

Figure S5. Higgins et al.

2: RPN11-3×FLAG 3: cdc48-3 dsk2∆ rad23∆ RPN11-3×FLAG 4: cdc48-3 RPN11-3×FLAG

Figure S6. Higgins et al.

V, vector; Ub, P_{ADH1}RPS31 (UBI3)

Α

		•
ORF	NAME	Motif
YAL002W	VPS8	RING finger
YBR062C	YBR062C	RING finger
YBR114W	RAD16	RING finger
YBR158W	AMN1	F-box
YBR203W	COS111	F-box
YBR280C	SAF1	F-box
YCR066W	RAD18	RING finger
YDL013W	SLX5	RING finger
YDL190C	UFD2	U-box
YDR049W	VMS1	Zinc finger, C2H2
YDR103W	STE5	RING finger
YDR131C	YDR131C	F-box
YDR132C	MRX16	BTB
YDR143C	SAN1	RNF-ring finger
YDR219C	MFB1	F BOX
YDR255C	RMD5	RING finger
YDR265W	PEX10	RING finger
YDR266C	HEL2	RING finger
YDR306C	PFU1	F-box
YDR313C	PIB1	RING finger
YDR457W	TOM1	НЕСТ
YER116C	SLX8	RING finger
YGL003C	CDH1	WD40 repeat, APC/C complex component
YGL131C	SNT2	RING finger
YGL141W	HUL5	HECT
YGR003W	CUL3	CULLIN REPEAT
YGR184C	UBR1	RING finger
YHL010C	ETP1	RING finger
YHR115C	DMA1	RING finger
YIL001W	YIL001W	BTB
YIL030C	SSM4 (DOA10)	RING finger
YJL047C	RTT101	CULLIN
YJL149W	DAS1	F BOX
YJL157C	FAR1	RING finger
YJL204C	RCY1	F BOX
YJL210W	PEX2	RING finger
YJR036C	HUL4	HECT
YJR052W	RAD7	F-box
YJR090C	GRR1	F-box
YKL010C	UFD4	НЕСТ
YKL034W	TUL1	RING finger
YKR017C	HEL1	RING finger
YLR024C	UBR2	RING finger
YLR032W	RAD5	RING finger

Table S1. Yeast deletion mutants used to screen the E3 ligase for Htt103QP (related to Figure 2A)

YLR097C	HRT3	F-box
YLR108C	YLR108C	BTB
YLR224W	UCC1	F-box
YLR247C	IRC20	RING finger
YLR352W	LUG1	F-box
YLR368W	MDM30	F-box
YLR427W	MAG2	RING finger
YML068W	ITT1	RING finger
YML088W	UFO1	F-box
YMR026C	PEX12	RING finger
YMR119W	ASI1	RING finger
YMR247C	RKR1	RING Zinc finger
YMR258C	ROY1	F-box
YNL008C	ASI3	RING finger
YNL023C	FAP1	RING finger
YNL116W	DMA2	RING finger
YNL230C	ELA1	F-box
YNL311C	SKP2	F-box
YOL013C	HRD1	RING finger
YOL054W	PSH1	RING finger
YOL138C	RTC1	RING finger
YOR080W	DIA2	F-box
YOR191W	ULS1	RING finger
YPL046C	ELC1	ELONGIN C, BTB, SKP1 COMPPNENT
YPR093C	ASR1	RING finger
YMR247C	RKR1	RING finger
YMR080C	NAM7	CH-rich domain (RING-related domain)

Strains	Genotype	Reference
Y300 (WT)	Mata ura3-1, his3-11,15 leu2-3,112 trp1-1, ade2-1, can1-100	Lab Stock
MHY3512	Mata cdc48-3 ura3-52 leu2-3, 122 ade2-1 trp1-1 his3	Hochstasser
1126	Mata npl4-1	R.H. Chen
1122	Mata ufd1-2	R.H. Chen
3419-1-1	Mata P _{GAL} FLAG-Htt103QP-GFP::URA3	This study
3598-2-3	Mata cdc48-3 P _{GAL} FLAG-Htt103QP-GFP::URA3	This study
3387-3-4	Mata npl4-1 P _{GAL} FLAG-Htt103QP-GFP::URA3	This study
3385-4-4	Mata ufd1-2 P _{GAL} FLAG-Htt103QP-GFP::URA3	This study
RH142	Mata san1::Sphis5 ⁺ P _{GAL} FLAG-Htt103QP-GFP::URA3	This study
3301-2-2	Mata san1::KanMX P _{GAL} FLAG-Htt103QP-GFP::URA3	This study
3522-4-4	Mata ubr1::KanMX P _{GAL} FLAG-Htt103QP-GFP::URA3	This study
3287-1-1	Mata ltn1::KanMX P _{GAL} FLAG-Htt103QP-GFP::URA3	This study
3288-1-3	Mata ufd2::KanMX P _{GAL} FLAG-Htt103QP-GFP::URA3	This study
2925-3-2	Mata HTA1-mApple-HIS3 P _{GAL} FLAG-Htt103QP-GFP::URA3	This study
3222-1-1	Mata dsk2::TRP1 P _{GAL} FLAG-Htt103QP-GFP::URA3	This study
3514-1-2	Mata dsk2::TRP1 san1::KanMX P _{GAL} FLAG-Htt1030P-GFP::URA3	This study
FY-13-1	Mata Y300 (P _{GAL} HA-CLB5::URA3)	This study
3504-3-2	Mata cdc48-3 (P _{GAI} HA-CLB5::URA3)	This study
3580-1-3	Mata cdc48-3 san1::TRP1 ubr1::Sphis5 ⁺ (P _{GAI} HA-CLB5::URA3)	This study
3660-1-4	Mata cdc48-3 ubr2::KanMX (P _{GAI} HA-CLB5::URA3)	This study
229-3-2	Mata CLB5-HA	Lab stock
3968-4-3	Mata cdc48-3 san1::TRP1 ubr1::Sphis5 ⁺ CLB5-HA	This study
3968-5-1	Mata cdc48-3 CLB5-HA	This study
3969-4-4	Mata ubr2::KanMX	This study
3655-2-4	Mata cdc48-3 ubr2::KanMX	This study
3658-1-4	Mata npl4-1 ubr2::KanMX	This study
3659-1-2	Mata ufd1-2 ubr2::KanMX	This study
3550-5-3	Mata cdc48-3 san1::TRP1	This study
3550-6-3	Mata <i>cdc48-3 ubr1::Sphis5</i> ⁺	This study
3550-2-1	Mata cdc48-3 san1::TRP1 ubr1::Sphis5 ⁺	This study
3555-5-1	Mata npl4-1 san1:TRP1 ubr1::Sphis5 ⁺	This study
3556-3-3	Mata ufd1-2 san1:TRP1 ubr1::Sphis5 ⁺	This study
3556-1-1	Mata ufd1-2 san1::TRP1	This study
3556-2-3	Mata ufd1-2 ubr1::Sphis5 ⁺	This study
YYW14	Mata dsk2::TRP1	This study
3553-2-4	Mata <i>rad23::Sphis5</i> +	This study
3553-5-3	Mata dsk2:TRP1 rad23::Sphis5 ⁺	This study
3553-10-3	Mata cdc48-3 rad23::Sphis5+	This study
3553-7-2	Mata cdc48-3 dsk2::TRP1	This study
3553-3-2	Mata cdc48-3 rad23::Sphis5 ⁺ dsk2::TRP1	This study
RH156	Mata Y300 (<i>p1217</i> , empty vector <i>TRP1</i>)	This study
RH157	Mata Y300 (P _{GAL} HA-Ub-TRP1)	This study
RH158	Mata <i>cdc48-3</i> (<i>p1217</i> , empty vector <i>TRP1</i>)	This study
RH159	Mata <i>cdc48-3</i> (<i>P_{GAL}HA-Ub-TRP1</i>)	This study
RH160	Mata <i>npl4-1</i> (<i>p1217</i> , empty vector <i>TRP1</i>)	This study
RH161	Mata $npl4-1$ ($P_{GAL}HA-Ub-TRP1$)	This study
RH162	Mata ufd1-2 (p1217, empty vector TRP1)	This study
RH163	Mata $ufd1-2$ ($P_{GAL}HA-Ub-TRP1$)	This study
3589-1-4	Mata pdr5::KanMX	This study
3592-4-4	Mata pdr5::KanMX RPN11-3×FLAG::HIS3	This study
3592-5-2	Mata pdr5::KanMX cdc48-3 RPN11-3×FLAG::HIS3	This study

Table S2. Yeast strains used in this study (related to Star Methods)

	Mata pdr5::KanMX cdc48-3 RPN11-3×FLAG::HIS3 P _{GAL} Htt103QP-	This study
3592-3-1	GFP::URA3	
3592-3-3	Mata pdr5::KanMX RPN11-3×FLAG::HIS3 P _{GAL} Htt103QP-GFP::URA3	This study
	Mata pdr5::KanMX san1::TRP1 ubr1:: Sphis5+ RPN11-3×FLAG::HIS3	This study
3625-1-2	P _{GAL} Htt103QP-GFP::URA3	
	Mata pdr5::KanMX cdc48-3 san1::TRP1 ubr1:: Sphis5 ⁺ RPN11-	This study
3622-1-3	3×FLAG::HIS3 P _{GAL} Htt103QP-GFP::URA3	
	Mata pdr5:Kan cdc48-3 san1::TRP1 ubr1::Sphis5+RPN11-3×FLAG::HIS3	This study
3624-1-1	P _{GAL} Htt103QP-GFP::URA3	
3967-2-4	Mata pdr5:Kan cdc48-3 dsk2::TRP1 rad23::Sphis5 ⁺ RPN11-3×FLAG::HIS3	This study
YYW315-2	Mata HSP104-GFP::TRP1	This study
3506-1-1	Mata cdc48-3 HSP104-GFP::TRP1	This study
YYW316-1	Mata HSP104-GFP::Sphis5 ⁺	This study
3641-2-2	Mata npl4-1 HSP104-GFP::Sphis5+	This study
3642-1-1	Mata ufd1-2 HSP104-GFP::Sphis5+	This study
YYW313-1	Matα P _{GAL} Htt103Q-GFP::URA3	This study
PHY648	Mata <i>ppz1::KANMX ppz2::NATMX</i>	MacGurn lab
4023-1-1	Mata cdc48-3 ppz1::KANMX	This study
4023-2-4	Mata cdc48-3 ppz1::KANMX ppz2::NATMX	This study
4023-8-4	Mata cdc48-3 ppz1::KANMX ppz2::NATMX	This study