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This supplement consists of three parts. Appendix A contains technical proofs. Appendix

B extends the piecewise linear structure of model (1.1) to piecewise polynomial and presents

an analysis for cumulative confirmed cases in 8 representative countries using a piecewise

quadratic model. Appendix C provides the lag-1 to lag-30 (P)ACF plots of the residuals

for cumulative confirmed cases in the 8 countries presented in Section 4.2.

APPENDIX A: PROOFS

In what follows, we denote ⇒ as the weak convergence on D[ε, 1], the space of functions

on [ε, 1] which are right continuous and have left limits, endowed with Skorohod metric.

Let Xn ∈ Rd with dimension d > 0 be a set of random vector defined in a probability space

(Ω,P,F). For a corresponding set of constants an, we say Xn = Osp(an) if for any ε > 0,

there exists a finite M > 0 and a finite N > 0 such that for n > N ,

P(‖Xn/an‖d > M) + P(‖Xn/an‖d < 1/M) < ε,

where ‖‖d denotes the Ld norm.

Proof of Theorem 2.1 (i) It is a direct application of Theorem 3.1 in Rho and Shao

(2015) and continuous mapping theorem. In particular, the result of (i) in Theorem 3.1 in
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Rho and Shao (2015) corresponds to the case of (i) in Assumption 2.1 for linear processes

while the result of (ii) in Theorem 3.1 in Rho and Shao (2015) corresponds to the case of

(ii) in Assumption 2.1 for nonlinear processes.

(ii) On one hand, note that the continuous mapping theorem indicates that

Ln,δ(1, τττ , n)⇒ Γ2Lδ(κ), and Rn,δ(1, τττ , n)⇒ Γ2Rδ(κ).

and it follows that Vn,δ(1, τττ , n)⇒ Γ2Vδ(κ).

On the other hand,

Dn(1, τττ , n) =κ(1− κ)
√
n
(
β̂ββ1,τττ − β̂ββτττ+1,n + b

)
− κ(1− κ)

√
nb,

and it is clear that

κ(1− κ)
√
n
(
β̂ββ1,τττ − β̂ββτττ+1,n + b

)
⇒κ(1− κ)ΓQ(κ)−1BF (κ)− Γ[Q(1)−Q(κ)]−1[BF (1)−BF (κ)] = ΓD(κ).

Then the continuous mapping theorem indicates that

(n‖b‖22)−1Dn(1, τττ , n)>Vn,δ(1, τττ , n)−1Dn(1, τττ , n)

⇒κ2(1− κ)2(‖b‖−12 b)>Vδ(κ)−1(‖b‖−12 b) = Osp(1).
(A.1)

Here the last equality uses the fact that RHS of (A.1) is greater than 0 with probability 1,

or equivalently, Lδ(κ) and Rδ(κ) is positive definite with probability 1, which will hold by

similar arguments in Lemma A.1 using Cauchy–Schwarz inequality.

Observe that maxk Tn,δ(k) ≥ Dn(1, τττ , n)>Vn,δ(1, τττ , n)−1Dn(1, τττ , n) = Osp(n‖b‖22). The

result follows by noting n‖b‖22 → L and L→∞,

Proof of Theorem 2.2 Note that by (A.1), we have shown that with probability

tending to one, (n‖b‖22)−1Tn,δ(τττ) ≥ κ2(1− κ)2(‖b‖−12 b)>Vδ(κ)−1(‖b‖−12 b) = Osp(1).

Then, let Mn,η = {k : | kn − κ| > η}, it suffices to show that

(n‖b‖22)−1 max
k∈[h,n−h]∩Mn,η

Dn(1, k, n)>Vn,δ(1, k, n)−1Dn(1, k, n) = op(1).
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By symmetricity, we can consider M
(1)
n,η = {k : kn < κ− η}, and on {k ∈M (1)

n,η}, we have

Dn(1, k, n) =
k(n− k)

n3/2

{
[Qn(1)−Qn(

k

n
)]−1[Qn(1)−Qn(

τττ

n
)](βββ(1) − βββ(2))

+ n−1/2Qn(
k

n
)−1Bn,F (

k

n
)− n−1/2

[
Qn(1)−Qn(

k

n
)
]−1[

Bn,F (1)−Bn,F (
k

n
)
]}
.

Let ν = lim
n→∞

k
n := lim

n→∞
k(n)
n , then by similar arguments in (i) of Theorem 2.1, we have

(A.2)

n−1/2‖b‖−12 Dn(1, k, n) = ν(1− ν)[Q(1)−Q(ν)]−1[Q(1)−Q(κ)]‖b‖−12 b +Op(n
−1/2‖b‖−12 ).

Next, since k < τττ − nη, we decompose Rn,δ(1, k, n) by

Rn,δ(1, k, n) =
[ τττ+bnδc−1∑
i=k+3+bnδc

+

n−1−bnδc∑
i=τττ+bnδc

](i− 1− k)2(n− i+ 1)2

n2(n− k)2
(β̂ββi,n − β̂ββk+1,i−1)

⊗2

:=Rn,δ,1(1, k, n) +Rn,δ,2(1, k, n).

It follows easily that Vn,δ(1, k, n)−1 ≤ Rn,δ(1, k, n)−1 ≤ Rn,δ,2(1, k, n)−1 where for semi-

positive definite matrices A and B, A ≤ B indicates B −A is semi-positive definite.

In addition, we have

Rn,δ,2(1, k, n) =

n−1−bnδc∑
i=τττ+bnδc

(i− 1− k)2(n− i+ 1)2

n2(n− k)2
(β̂ββi,n − β̂ββk+1,i−1)

⊗2,

where for r ∈ (κ, 1) uniformly, we can show

√
n
(
β̂ββbnrc,n − β̂ββbnνc+1,bnrc−1 − [Q(r)−Q(ν)]−1[Q(κ)−Q(ν)]b

)
⇒Γ[Q(1)−Q(r)]−1[BF (1)−BF (r)]− Γ

[
Q(r)−Q(ν)

]−1[
BF (r)−BF (ν)

]
= Osp(1).

Therefore, if follows that

(n‖b‖22)−1Rn,δ,2(1, k, n)

⇒
∫ 1−δ

κ+δ

(r − ν)2(1− r)2

(1− ν)2

{
‖b‖−12 [Q(r)−Q(ν)]−1[Q(κ)−Q(ν)]b

}⊗2
dr := Rδ,2(ν).

(A.3)
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By Lemma A.1, when ν < κ, Rδ,2(ν) is invertible, hence

(n‖b‖22)−1Dn(1, k, n)>Vn,δ(1, k, n)−1Dn(1, k, n)

=(n‖b‖22)−1
[
n−1/2‖b‖−12 Dn(1, k, n)

]>[
(n‖b‖22)−1Rn,δ,2(1, k, n)

]−1[
n−1/2‖b‖−12 Dn(1, k, n)

]
⇒(n‖b‖22)−1

{
ν(1− ν)[Q(1)−Q(ν)]−1[Q(1)−Q(κ)]‖b‖−12 b

}>
Rδ,2(ν)

×
{
ν(1− ν)[Q(1)−Q(ν)]−1[Q(1)−Q(κ)]‖b‖−12 b

}
⇒ 0

(A.4)

by (A.2) and (A.3).

Lemma A.1. Rδ,2(ν), defined in (A.3), is invertible for ν < κ and ‖b‖2 6= 0.

Proof of Lemma A.1

Note that

[Q(κ)−Q(ν)] =(κ− ν)

 1 κ+ν
2

κ+ν
2

ν2+κ2+κν
3

 ,

[Q(r)−Q(ν)]−1 =12(r − ν)−3

 r2+ν2+rν
3 − r+ν

2

− r+ν
2 1

 .

We first let b = (b1, b2)
>, then

[Q(κ)−Q(ν)]‖b‖−12 b = (κ− ν)‖b‖−12

 b1 + κ+ν
2 b2

κ+ν
2 b1 + ν2+κ2+κν

3 b2

 := (w1, w2)
′.

Therefore we obtain

(r − ν)(1− r)
(1− ν)

[Q(r)−Q(ν)]−1[Q(κ)−Q(ν)]‖b‖−12 b =
12(1− r)

(r − ν)2(1− ν)

 r2+ν2+rν
3 w1 − r+ν

2 w2

− r+ν
2 w1 + w2


:=
(
g1(r, ν, κ, b1, b2), g2(r, ν, κ, b1, b2)

)>
.

Then, since

Rδ,2(ν) =

∫ 1−δ

κ+δ

(
(g1(r, ν, κ, b1, b2), g2(r, ν, κ, b1, b2)

)>(
(g1(r, ν, κ, b1, b2), g2(r, ν, κ, b1, b2)

)
dr,
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the invertibility of Rδ,2(ν) is equivalent to that det(Rδ,2(ν)) > 0 (as Rδ,2(ν) is clearly

semi-positive definite), i.e.∫ 1−δ

κ+δ
g1(r, ν, κ, b1, b2)

2dr

∫ 1−δ

κ+δ
g2(r, ν, κ, b1, b2)

2dr−[

∫ 1−δ

κ+δ
g1(r, ν, κ, b1, b2)g2(r, ν, κ, b1, b2)dr]

2 > 0,

which is implied by Cauchy–Schwarz inequality as long as

g1(r, ν, κ, b1, b2)

g2(r, ν, κ, b1, b2)
=

2(r2 + ν2 + rν)w1 − 3(r + ν)w2

−6(r + ν)w1 + 12w2
(A.5)

is not a constant for all r ≥ κ.

To see this, suppose Rδ,2(ν) is not invertible, then (A.5) is a constant for all r ≥ κ. Note

that the numerator and the denominator of RHS of (A.5) can be written in a quadratic

form of r as

2w1r
2 + (2νw1 − 3w2)r + (2ν2w1 − 3νw2),(A.6)

0r2 − 6w1r + (−6νw1 + 12w2),(A.7)

respectively.

Therefore, comparing coefficients of the quadratic functions (A.6) and (A.7) w.r.t r, it

must hold that w1 = 0, and hence w2 = 0, i.e.

b1 +
κ+ ν

2
b2 = 0, and

κ+ ν

2
b1 +

ν2 + κ2 + κν

3
b2 = 0.

Solving these equations for b1 and b2 we obtain that b1 = b2 = 0, contradiction.

Hence, Rδ,2(ν) is invertible.

APPENDIX B: PIECEWISE POLYNOMIAL TREND MODEL

In this section, we extend the piecewise linear structure in model (1.1) of the main text

to a piecewise polynomial structure. We further apply a piecewise quadratic trend model

to analyze the cumulative confirmed cases in 8 representative countries as in Section 4.2.
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B.1. Model formulation and inference. We extend the piecewise linear trend

model (1.1) by allowing higher order polynomial terms. Specifically, let the time series

{Yt}nt=1 admit

Yt = βββ>t F
(p)
t + ut = β0,t + β1,t(t/n) + · · ·+ βp,t(t/n)p + ut, t = 1, · · · , n,(B.1)

(β0,t, · · · , βp,t)> = βββ(i) = (β
(i)
0 , · · · , β(i)p )>, τi−1 + 1 ≤ t ≤ τi, for i = 1, · · · ,m+ 1,

where F
(p)
t = (1, t/n, · · · , (t/n)p)> and βββt = (β0,t, · · · , βp,t)> are the coefficients at time

t with fixed p ≥ 1. Same as in model (1.1), {ut} is a weakly dependent stationary error

process, τττ = (τ1, · · · , τm) denotes the m ≥ 0 change-points with the convention that τ0 = 0

and τm+1 = n, and we require βββ(i) 6= βββ(i+1), i = 1, · · · ,m. Model (B.1) extends the piecewise

linear model by allowing for polynomial trends and provides more flexibility of modeling

observations in each segment.

The estimation procedure of model (B.1) is essentially the same as the one for model

(1.1). Given the grid parameter ε, we let h = bεnc. Define F (p)(s) = (1, s, · · · , sp)>. For

1 ≤ i < j ≤ n, we denote β̂ββi,j =
[∑j

t=i F
(p)(t/n)F (p)(t/n)>

]−1∑j
t=i F

(p)(t/n)Yt as the

OLS estimator of βββ based on {Yt}jt=i. Let the trimming parameter satisfy 0 ≤ δ < ε/2.

For any 1 ≤ t1 < k < t2 ≤ n, given the subsample {Yt}t2t=t1 and a potential change-point

k, we define a contrast statistic D
(p)
n (t1, k, t2), and the self-normalizer V

(p)
n,δ (t1, k, t2) =

L
(p)
n,δ(t1, k, t2) +R

(p)
n,δ(t1, k, t2) in the same spirit as (2.1), (2.2) and (2.3) by:

D(p)
n (t1, k, t2) =

(k − t1 + 1)(t2 − k)

(t2 − t1 + 1)3/2
(β̂ββt1,k − β̂ββk+1,t2),

L
(p)
n,δ(t1, k, t2) =

k−p−1−bnδc∑
i=t1+p+bnδc

(i− t1 + 1)2(k − i)2

(k − t1 + 1)2(t2 − t1 + 1)2
(β̂ββt1,i − β̂ββi+1,k)

⊗2,

R
(p)
n,δ(t1, k, t2) =

t2−p−bnδc∑
i=k+2+p+bnδc

(i− 1− k)2(t2 − i+ 1)2

(t2 − t1 + 1)2(t2 − k)2
(β̂ββi,t2 − β̂ββk+1,i−1)

⊗2.

Then, the test statistic targeting against the one change-point alternative is defined as:

G(p)
n = max

k∈{h,··· ,n−h}
T
(p)
n,δ (k), T

(p)
n,δ (k) = D(p)

n (1, k, n)>V
(p)
n,δ (1, k, n)−1D(p)

n (1, k, n).
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Define Q(p)(r) =
∫ r
0 F

(p)(s)F (p)(s)>ds and B
(p)
F (r) =

∫ r
0 F

(p)(s)dB(s) where B(·) is a

standard Brownian motion. The following theorem extends Theorem 2.1 in the main text.

Theorem B.1. Suppose Assumption 2.1 holds. Then,

(i) under H0, we have

G(p)
n

D−→ G(p)(ε, δ) := sup
η∈(ε,1−ε)

D(p)(η)>V
(p)
δ (η)D(p)(η),

where D(p)(η) and V
(p)
δ (η) = L

(p)
δ (η) + R

(p)
δ (η) have the similar expression as given in

Theorem 2.1, except F (·) and Q(·) are replaced by F (p)(·) and Q(p)(·) respectively.

(ii) under Ha, given that n‖b‖22 → L, we have

lim
L→∞

lim
n→∞

G(p)
n =∞, in probability.

The proof is a simple extension of Appendix A, hence omitted.

B.2. Analysis of cumulative confirmed cases in 8 representative countries.

We use the piecewise quadratic trend model, i.e. model (B.1) with p = 2 to re-analyze

the cumulative confirmed cases in the 8 countries as in Section 4.2. Figure B.1 gives the

estimated models for each country. As can be seen, compared to Figure 4.1 in the main

text, the estimated number of change-points decreases for every country, which is intuitive

as more flexibility is brought into the model. For most countries, a piecewise quadratic

model with one or two change-points fits the data reasonably well.

However, compared to the piecewise linear trend model, the quadratic model losses its

interpretability as the parameters of each segment cannot be naturally linked to growth

rate. Thus the meaning of “change-point” needs a more delicate definition. Moreover,

within each segment, the growth rate of the virus still changes from day to day, making it

difficult to interpret the behavior of the estimated segments. For example, we find that most

estimated change-points can hardly be associated with the initiations of emergency public

health measures, as the intervention effect may have been absorbed into the quadratic

function. Therefore, we prefer the piecewise linear trend model for the analysis.
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APPENDIX C: ACF AND PACF PLOTS OF RESIDUALS (AFTER FITTING

PIECEWISE LINEAR TREND MODEL) FOR CUMULATIVE

CONFIRMED CASES IN 8 COUNTRIES
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Fig C.1. ACF plot of residuals for 8 representative countries
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Fig C.2. PACF plot of residuals for 8 representative countries
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