
Reviewer 1 
1. I previously raised the point about whether the increased predictive power was due to unique 
information in mouse sequence data, or whether comparable predictive performance increase 
could be obtained from incorporating additional human data. I pointed out that there are many 
additional sources of human data not being used. In response, the author showed there was 
basically no impact on predictive performances when downsampling the current set of human data 
to 7/8 the size. 

I did not find this analysis fully satisfying for two reasons. One reason is that holding 1/8 of the 
human data sets out amounts to 664 human data sets, while there was 1,643 mouse data sets 
used, thus the comparison of value of additional human vs. mouse data is confounded by the 
number of data sets. The other reason is that the analysis is effectively assuming the current 
human data being considered is representative of all available human data, which is likely not the 
case. I expect that when one gets data from an additional source, even if it is from the same 
species, it will contain more new information compared to data obtained in the same way as the 
data being currently considered. 

The reviewer raises the concern that holding out 664 human datasets is not sufficient to observe a 
a possible decrease in generalization accuracy, given that the mouse data adds 1,643. The 
reviewer previously raised the concern that the improved generalization accuracy for human 
datasets obtained by adding mouse datasets to the multi-task learning problem could be 
attributable to the addition of any new datasets, including more from human, rather than 
specifically ones from a unique genome. Answering the following question would rule out this 
possibility—given that I have 5,313 human datasets, is there any marginal benefit to a new 
dataset? By holding out 664 datasets (1/8), I have demonstrated that there is no marginal benefit 
to 664 new datasets, given 4,649 datasets (7/8). 

The reviewer now raises the concern that holding out 1/8 may not be sufficient in magnitude to 
observe this marginal benefit. To address this concern, I repeated the hold out experiment with 
1/4, 1/3, and 1/2 of the datasets. The latter two experiments both hold out more datasets than the 
1,643 added from mouse. In each of these experiments, human generalization accuracy is stable. I 
revised Supplementary Figure 6 to include these new results. Thus, the multi-task learning benefit 
of novel human datasets has saturated. 

The reviewer raises an additional concern that these human datasets may not be representative of 
all available human data and that human data from additional sources would contain new 
information. I believe this is a very unlikely scenario for the following reasons: 
(1) The human datasets are derived from varied sources (ENCODE, Epigenomics Roadmap, and 

FANTOM consortiums) that are standard in the field due to their having been generated and 
analyzed using carefully vetted experimental protocols and bioinformatic pipelines. They 
represent an enormous variety of tissues and cell lines. 

(2) The mouse datasets are primarily derived from these same sources—1,109 from ENCODE and 
357 from FANTOM). The data were generated by the same experimental protocols and 
bioinformatic pipelines. Thus, any possible benefit due to novel sources of data would be 
minimal. 

(3) The experiment described above in which 1/2 of the data is held out introduces significant data 
source variation, as many tissues and cell lines will be entirely excluded from training. 



Finally, I want to convey that acquiring, processing, and quality control checking data for this type 
of machine learning analysis is a substantial task that has required years of personal work. 
Acquiring and preparing >1,643 novel human datasets that are sufficiently different from the 
existing ones, followed by training and quality control analyzing models on the new data would 
require many months of work. I believe that such work is not a worthy investment for the reasons 
outlined above. 

2. The procedure for the autism analysis was changed to remove variants not within 50kb of a 
TSS, and to weigh negative predictions 10 times more than positive predictions. I did not suggest 
either of those specific changes. While the p-values improved (when everything is compared in 
log10 space), it is now more difficult to interpret the p-values. The reason is that I assume there 
was some type of multiple testing going on in selecting these parameters, but that procedure was 
not described and any additional tests were not reflected in a multiple testing correction, but 
should be. Also, I think it would be informative to report as was done in the original submission 
how well the scores does directly without going through this filtering and reweighting. The reported 
predictive performance at the individual level for the top variant feature might also be inflated by 
multiple testing issues. 

I thank the reviewer for highlighting remaining issues in this analysis. I chose these procedural 
changes after carefully reviewing the procedures of An et al. and Zhou et al. and studying datasets 
from both previous papers. 

As the reviewer points out, the procedure has two hyperparameters—a variant distance to gene 
TSS threshold and a scaling factor for the negative predictions. I did not use a TSS threshold in the 
initial analysis, but learned of the value of such a filter from its application in the Zhou et al. analysis.   
Because the sequence-based machine learning model is gene agnostic, this filter is sensible to 
highlight mutations that are more likely to influence gene expression, in contrast to mutations in 
gene deserts. These distant mutations will still often have nonzero CAGE predictions due to the 
assay’s sensitivity to enhancer RNAs. 

The second hyperparameter to scale the negative predictions is required for an effective analysis 
because negative predictions are clearly more important in these data than positive. Zhou et al. did 
not require an explicit analogous hyperparameter because they study predictions output by a 
random forest classifier that will implicitly learn this property of the variant scores. 

I acknowledge the challenge that the reviewer highlights in evaluating p-values from analyses that 
require hyperparameters. To assuage concerns that the results are sensitive to these 
hyperparameter choices, I have added two additional supplementary figures that display results of 
parameter sweeps for variant distance to TSS (Supplementary Figure 13) and negative predictions 
weight (Supplementary Figure 14). Statistical test results are robust to these parameter choices 
around similar values to those chosen. Under this new procedure, the An et al. statistical tests do 
not produce an FDR significant q-value less than 0.1 without a gene filter <500kb (which includes 
90% of variants). I now note this dependency in the main text. 

I also want to emphasize that the objective of this section of the manuscript is to evaluate the 
hypothesis “that predictions using models trained on mouse data would also distinguish [autism] 
and perhaps provide additional insight via novel developmental profiles”. I accept the 



commendable prior work performed by An et al. and Zhou et al., and do not argue that I have 
achieved better results. I do not intend to position this analysis as a contribution to the autism 
research field, and I have not highlighted it in the title, abstract, introduction, or discussion which 
are dedicated to demonstrating and evaluating multi-genome training for regulatory sequence 
activity prediction models. Instead, I aim to explore whether previous results can be reproduced 
through the lens of the mouse data and report my experience. Accordingly, I have removed all text 
highlighting the magnitude of the p-values and explicitly do not compare the p-value magnitudes to 
prior work with these data. I have also added a statement to the text to caution readers, “P-value 
magnitudes should be interpreted cautiously given the challenge of multiple hypothesis correction 
in an exploratory analysis with hyperparameters.” 

3. Related to the previous point, in the original submission there was emphasis on brain being the 
important cell/tissue type, but now the emphasis is on earlier development stages and the brain 
does not standout. It is concerning the biological conclusions are that sensitive to these specific 
parameter choices. Further raising concern, the text mentions ‘whole body embryo E16’ being the 
leading dataset, but according to Supplementary Table 2, ‘whole body embryo E16’ is third most 
significant and ‘urinary bladder, adult’ is actually the most significant. 

I share the reviewer’s concern that some observations changed between the first and final version 
of this analysis. Suggestions that the reviewer made during the first round of reviewer were 
extremely helpful to focus on robust observations from the strongest possible analysis. In particular, 
studying the Zhou et al. processing of this data alongside the An et al. processing guided me away 
from initial analysis choices that were not optimal. I believe this represents the review process 
working at its best. 

In the current version, I have studied this data comprehensively, including from the following angles: 
(1) Two separate processing pipelines of the whole genome sequencing data. 
(2) CAGE and active chromatin datasets. 
(3) Mouse and human datasets. 
(4) With and without a coding gene filter. 
(5) Parameter sweep over variant distance to gene TSS filters. 
(6) Parameter sweep over negative prediction scale factors. 
Thus, I believe that the current report represents accurate and robust observations. As I described 
in my response above, I intended to evaluate the hypothesis “that predictions using models trained 
on mouse data would also distinguish [autism] and perhaps provide additional insight via novel 
developmental profiles”. I believe this thorough analysis accomplishes that objective. 

I have changed the language around the whole body embryo E16 dataset to correctly describe its 
status relative to other datasets as “a leading developmental dataset”. 

4. The author asked for clarification on the point about parental age. An et al described in their 
paper their procedure for controlling for parental age and provide parental age annotations with it. 
Zhou et al did not correct for parental age, but did show that parental age was not correlated with 
their score. While the author’s score might not be correlated with age, that was not shown. Zhou et 
al not seeing a correlation with parental age for their score, does not imply that the authors’ scores 
is not correlated with parental age, though does make that possibility more likely. 



I have added Supplementary Figure 15, which verifies using regression analysis similarly to Zhou et 
al., that there is not evidence that the variant effect predictions depend on the mother or father’s 
age at birth. 

5. On the point about annotating unknown clusters from Cusanovich et al. I don’t think its been 
shown that the author’s procedure is actually leading to better annotations opposed to being willing 
to annotate a cluster when there is still more uncertainty. For example for cluster 5.6, a number of 
different brain regions rank highly in Fig. 4b of the author's manuscript, but from the tissue type 
annotations of the cluster in Fig 2d of Cusanovich et al, it was already clear this cluster was related 
to the brain. 

I thank the reviewer for their feedback that this analysis is not sufficiently compelling; I have 
removed the suggestion that unknown clusters can be labeled by this procedure. 

6. I felt the added comparison with EIGEN and FunSeq2 is confounding two different questions. 
One question is whether the features produced by Basenji add value to variant prediction over 
features considered by other variant prioritization methods. The other question is whether there is 
an advantage to integrating a set of features in task-specific ways that is optimized for the 
evaluation of the task. Only the Basenji features were integrated in task-specific ways, but it is 
possible integrating the features of EIGEN or FunSeq2 in a way that is optimized for the evaluation 
would have led to even better performance than what is being reported for Basenji features. 

I agree with the reviewer that these two questions are confounded in thus analysis. I did not intend 
to answer the second question regarding “integrating a set of features in task-specific ways that is 
optimized for the evaluation of the task”. Therefore, I have removed EIGEN and FunSeq2 from the 
figures and text. 

Reviewer 2 
The author addressed my major concerns on the performance evaluation by including an extra 
section of the comparison with DeepSEA, another state-of-the-art machine learning-based model 
for regulatory variant interpretation, which demonstrates the advantage of this approach. The 
author elaborated on the differences of this work's object with the goal of the existing work and 
released the noncoding variant prediction results which clarify the contribution of this work. The 
author did improve the quality of the figures to a certain extend. However, I still think the font size of 
Figure 1,3,4 is too small. The authors and the editors should work together to ensure the quality of 
the figure. 

I have further increased the smaller font sizes in Figures 1, 3, and 4 and commit to working with the 
editor to ensure their quality in a final version. 


