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Description of the numerical scheme.

Continuously deforming domains. We model the continuously deforming domain Ω(t) for time

t > t0 as

Ω(t) = {x : x = X(x̂, t) for some x̂ ∈ Ω̂}.

where X(x̂, t) is the push-forward map from the reference domain Ω̂ = Ω(t0) to time t > t0. The push-forward

map is given by the parametric ordinary differential equation

dX

dt
(x̂, t) = v(X(x̂, t), t), X(x̂, t0) = x̂, (1)

where v : Ω(t)× t→ Rd is a differentiable velocity field. Thus, the continuously deforming domain is given

by the reference domain and the velocity field.

Strong form of the reaction-diffusion equation. The reaction-diffusion equation results from con-

servation of mass. Let ω(t) ⊆ Ω(t) denote an arbitrary subdomain moving with the deformation (movement

of points in ω is given by the push-forward map X). Conservation of a scalar quantity in ω(t) is stated by

d

dt

∫
ω(t)

u(x, t) dx = −
∫
∂ω(t)

F (x, t) · ν(x, t) ds−
∫
ω(t)

f
(
u(x, t), x, t

)
dx

= −
∫
ω(t)

(
∇ · F (x, t) + f

(
u(x, t), x, t

))
dx,

1



where u(x, t) is the density of the quantity to be conserved, f(u, x, t) is a source/sink/reaction term and

F (x, t) is the flux of the conserved quantity given by Fick’s law

F (x, t) = −D(x, t)∇u(x, t)

since ω(t) moves with the flow. Inserting the flux law and employing Reynolds’ Transport Theorem, we

move the temporal derivative under the integral to obtain∫
ω(t)

(∂u
∂t

(x, t) +∇ · (u(x, t)v(x, t))−∇ ·D(x, t)∇u(x, t) + f
(
u(x, t), x, t

))
dx = 0.

Since ω(t) was arbitrary the integrand must be zero pointwise (fundamental theorem of calculus) and we

obtain the strong form of the reaction-diffusion equation on deforming domains:

∂u

∂t
(x, t) +∇ · (u(x, t)v(x, t))−D(x, t)∇u(x, t)) + f(u(x, t), x, t) = 0 x ∈ Ω(t). (2)

This equation is supplemented with initial conditions and boundary conditions which we assume to be of

Neumann type for simplicity of notation:

u(x, t0) = u0(x) (x ∈ Ω(t0)),
∂u(x, t)

∂~n
= 0 (x ∈ ∂Ω(t)).

Weak form of the reaction-diffusion equation. We first need to derive some auxiliary results. The

inverse of the push-forward map is denoted by X−1(x, t). It maps point x at time t to a point in the reference

domain. We assume the following identities hold (invertibility of push-forward map):

X−1(X(x̂, t), t) = x̂ ⇔ X(X−1(x, t), t) = x (t ∈ [t0, t0 + TI ]). (3)

Differentiating the identity on the right by t and using the chain rule we obtain

∂X

∂t
(X−1(x, t), t) + ∇̂X(X−1(x, t), t)

∂X−1

∂t
(x, t) = 0

where ∇̂ denotes the jacobian differentiating with respect to coordinates in the reference domain. Rearranging

and using the definition of X from (S1) we obtain

∂X−1

∂t
(x, t) = −

(
∇̂X(X−1(x, t), t)

)−1

v(x, t) = −∇X−1(x, t)v(x, t) (4)

where used ∇X−1(X(x̂, t), t) =
(
∇̂X(x̂, t)

)−1

in the last step which is obtained from differentiating the left

identity in (S3) w.r.t. to all coordinates.

Next, consider a function w(x, t) on the continuously deforming domain by linking it to a function ŵ(x̂, t)

defined on the reference domain and any time, i.e.:

w(x, t) = ŵ(X−1(x, t), t) ⇔ w(X(x̂, t), t) = ŵ(x̂, t). (5)
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Applying the chain rule to the second identity we obtain the well-known transformation formula for gradients

∇w(X(x̂, t), t) =
(
∇̂X(x̂, t)

)−T

∇̂ŵ(x̂, t) (6)

which allows to compute the gradient of a w on the deformed domain from the gradient of ŵ and the jacobian

of the push-forward map at time t.

Applying the chain rule to the time derivative of the first identity in (S5) and using the identities derived

above yields the following important formula:

∂w

∂t
(x, t) =

dŵ

dt
(X−1(x, t), t)

=
∂ŵ

∂t
(X−1(x, t), t) + ∇̂ŵ(X−1(x, t), t) · ∂X

−1

∂t
(x, t)

=
∂ŵ

∂t
(X−1(x, t), t)− ∇̂ŵ(X−1(x, t), t) ·

[(
∇̂X(X−1(x, t), t)

)−1

v(x, t)

]
=
∂ŵ

∂t
(X−1(x, t), t)−

[(
∇̂X(X−1(x, t), t)

)−T

∇̂ŵ(X−1(x, t), t)

]
· v(x, t)

=
∂ŵ

∂t
(X−1(x, t), t)−∇w(x, t) · v(x, t).

(7)

Using this result we derive a corollary of the Reynolds transport theorem. Formally applying the Reynolds

transport theorem to the product u(x, t)w(x, t), where the dependence of w on time is assumed to be only

due to domain deformation, i.e. w(x, t) = ŵ(X−1(x, t)), yields

d

dt

∫
Ω(t)

u(x, t)w(x, t) dx

=

∫
Ω(t)

(∂(uw)

∂t
(x, t) +∇ ·

(
u(x, t)w(x, t)v(x, t)

))
dx

=

∫
Ω(t)

(∂u
∂t

(x, t)w(x, t) + u(x, t)
∂w

∂t
(x, t) +∇ ·

(
u(x, t)w(x, t)v(x, t)

))
dx

=

∫
Ω(t)

(∂u
∂t

(x, t)w(x, t)− u(x, t)∇w(x, t) · v(x, t) +∇ ·
(
u(x, t)w(x, t)v(x, t)

))
dx

=

∫
Ω(t)

(∂u
∂t

(x, t)w(x, t) +∇ ·
(
u(x, t)v(x, t)

)
w(x, t)

)
dx.

We are now in a position to derive the weak formulation of (S2). Multiplying by a test function w(·, t) ∈
H1(Ω(t)) (depending on time only via the deformation of the domain), integrating by parts and using the
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corollary of Reynolds’ transport theorem yields:∫
Ω(t)

[
∂u

∂t
(x, t) +∇ ·

(
u(x, t)v(x, t)−D(x, t)∇u(x, t)

)
+ f

(
u(x, t), x, t

)]
w(x, t) dx

=

∫
Ω(t)

(∂u
∂t

(x, t)w(x, t) +∇ ·
(
u(x, t)v(x, t)

)
w(x, t)

+ (D(x, t)∇u(x, t)) · ∇w(x, t) + f
(
u(x, t), x, t

)
w(x, t)

)
dx

=
d

dt

∫
Ω(t)

u(x, t)w(x, t) dx

+

∫
Ω(t)

((
D(x, t)∇u(x, t)

)
· ∇w(x, t) + f

(
u(x, t), x, t

)
w(x, t)

)
dx.

Setting U(t) = H1(Ω(t)) and V (t) = H1(Ω(t)), the weak formulation seeks u ∈ L2([t0, t0 + T ];U(t)) such

that for all t ∈ (t0, t0 + T ]

d

dt

∫
Ω(t)

u(x, t)w(x, t) dx+

∫
Ω(t)

(
D(x, t)∇u(x, t)

)
· ∇w(x, t) dx

+

∫
Ω(t)

f
(
u(x, t), x, t

)
w(x, t) dx = 0 ∀w(·, t) ∈ V (t).

(8)

Observe that we chose to keep the temporal derivative outside of the integral.

Finite element formulation. The FEM approximates the solution in a finite-dimensional subspace

defined on a mesh. Here we assume that a mesh is obtained for the reference domain Ω(t0) which is then

continuously deforming with the domain. The time-dependent mesh is denoted by its elements

Th(t) = {T0(t), . . . , Tm−1(t)}

and the nodal positions

Nh(t) = {N0(t), . . . , Nn−1(t)}.

The connectivity of elements to nodes is given by the local to global map

gT : {0, . . . , n̂− 1} → {0, . . . , n− 1}

mapping the n̂ node numbers of the reference element T̂ to global node numbers. The local to global

numbering does not change throughout the computation and it is assumed that the quality of the mesh does

not deteriorate with time (a reasonable assumption for the problem here).

Setting up the finite element problem is done by a pull-back to the reference element T̂ as usual. To that

end define the map

µT (x̂, t) =

n̂−1∑
l=0

ψ̂l(x̂)NgT (l)(t) (9)

mapping a point x̂ in the reference element T̂ to the mesh element T at time t. Here, ψ̂i(x̂) are the (multi-)

linear Lagrange shape functions on the reference element. Consequently, the approximation Ωh(t) of the
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domain Ω(t) is polygonal (this could be easily extended to higher order elements but we refrain from doing

so in order to keep the notation simple).

Now we are in a position to define the lowest order conforming finite element space on the continuously

deforming mesh via the element transformation map:

Vh(t) = {w ∈ C0(Ω(t)) : w|T = p ◦ µ−1
T , T ∈ Th(t), p ∈ Q1} (10)

with Q1 the multi-linear polynomials in dimension d (simplicial grids and piecewise linear can be used as well).

For the test and ansatz functions we employ the subspace and affine subspace: Wh(t) = Vh(t) and Uh(t) =

Vh(t). The time-continuous finite element problem now consists in finding u(x, t) ∈ L2([t0, t0 + T ];Uh(t))

such that for all t ∈ (t0, t0 + T ]

d

dt

∫
Ωh(t)

uh(x, t)w(x, t) dx+

∫
Ωh(t)

(
D(x, t)∇uh(x, t)

)
· ∇w(x, t) dx

+

∫
Ωh(t)

f
(
uh(x, t), x, t

)
w(x, t) dx = 0 ∀w(·, t) ∈Wh(t).

(11)

Choosing a basis representation

Vh(t) = span{ϕi(·, t) : 0 ≤ i < n}

and inserting the ansatz

uh(x, t) =

n−1∑
j=0

zj(t)ϕj(x, t).

in (S11) results in a system of ordinary differential equations (ODE) for the unknown coefficients zj(t).

For discretization in time introduce the possibly non-equidistant time steps

t0 = t0 < t1 < . . . < tq = t0 + T, τk = tk+1 − tk. (12)

Denoting position of node i at time tk by Nk
i nodal positions are interpolated in time

Ni(t) =

q∑
k=0

ξk(t)Nk
i

where the ξk(t) are the one-dimensional, piecewise linear basis functions on the subdivision (S12).

Given discrete nodal positions Nk
i at tk and Nk+1

i at tk+1, nodal positions are interpolated linearly

Ni(t) =
tk+1 − t
τk

Nk
i +

t− tk

τk
Nk+1

i

and we solve the system of ODEs using a second-order accurate diagonally implicit Runge-Kutta (DIRK)

method. The required integrals are computed efficiently with the pull-back to the reference element given in

(S9).

Operator splitting scheme for coupled problem. Above nodal positions Nk
i were given. We now

treat the case where the nodal positions depend on the solution of the PDE. In the problem considered in
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this paper the domain is a circle with time-dependend radius r(t) centered at the origin. The change in

radius is given a relation of the form

dR

dt
(t) =

∫
Ω(t)

G(u(x, t), x, t) dx (13)

with some function G(u, x, t).

Coupling of the PDE and the domain growth is rather weak and we use first-order operator splitting

scheme in time and explicit Euler for solving (S13):

1. Generate mesh Th(t0) with nodal positions N0
i for Ω(t0) and initialize uh(·, t0) from initial value u0.

Set k = 0 and choose a fixed time step τk = τ .

2. Given nodal positions Nk
i and uh(·, tk), compute a new radius via

R(tk+1) = R(tk) + τk
∫

Ω(t)

G(uh(x, tk), x, tk) dx

as well as new nodal positions

Nk+1
i = Nk

i + τk
Nk

i

r(tk)

r(tk+1)− r(tk)

τk
= Nk

i

(
1 +

r(tk+1)− r(tk)

r(tk)

)
using the explicit Euler scheme.

3. Solve the PDE problem in (tk, tk+1] and go to 2.
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