
Reviewers' comments: 

 

Reviewer #1 (Remarks to the Author): 

 

The manuscript by Poulos et al. titled “Enabling large-scale proteomics for reproducible research” 

describes a rather large-scale assessment of reproducibility across over 1500 data-independent 

acquisitions of pooled human cancer sample specimen. The study assesses technical replicate 

acquisitions of these pooled samples also across 6 different instruments and over several months. 

The study represents an interesting contribution that is relevant to future high-throughput clinical 

MS-based work. Additionally, some new software algorithms are presented addressing some issues 

identified during the study to improve overall reproducibility and data quality. This is a valuable 

contribution. 

 

Comments: 

- It is unclear how many proteins are identified and quantified in the DIA acquisitions in this study – 

this should be stated. In the methods sections the authors mention that > 6000 proteins are 

identified in DDA acquisitions (using the fractionation). But how many proteins are identified and 

quantified from the DIA acquisitions. 

- In the DDA acquisitions the >6000 proteins – I assume that is the combination of how many 

proteins are identified from yeast and human (how many human proteins overall are identified?) – 

of those how many human proteins were identified and quantified from the DIA acquisitions? 

- I assume there is a 2 peptide minimum applied per protein, that should be specifically stated. 

- The way how the library is built should be explained in the main text also, not just in the methods. 

- On page 6 the authors state that they measure an average of 6 peptides per protein. However, it 

would be more interesting to see for example a histogram indicating the distribution – i.e., how 

many proteins show 2 peptides, 3, 4, 5 etc. 

- The authors state that some acquisitions were excluded that did not fulfill criteria of ‘baseline 

quality control’. What are those criteria (mention in the main text). 

- As different amounts of cancerous tissues as well as yeast are mixed in the various different 

samples – the authors should state if they observed any ‘matrix effects’. Of different complexity 

within the samples. Did that influence the quality of the human identifications and quantification 

(better in the samples that have less yeast? or better in the samples that have more human 

material). Or is the matrix overall no factor here? 

- In Figure 3a the authors describe some reproducibility behavior of a single human peptide, with 

and without normalization – what is that peptide? What protein does it originate from? PSA ? It 



would be informative to have not just one single human peptide analyzed in this way (from 

higher/lower abundant proteins .. ). 

- There should be a supplemental table submitted as part of the supplemental material of this 

manuscript that has all the MS identification details from the search engine that was used to 

generate the spectral library. 

- There should be a specific mention in the methods that the spectral library is provided as part of 

the data upload to Pride, including the Skyline file that the authors mention. That is an important 

resource as part of this manuscript and potentially of great interest for other scientists. 

- The statistical processing and the algorithm RUV III c are very interesting – I understand it relies 

heavily on having peptides that do not change (negative controls). The authors mention in their case 

they choose yeast peptides as negative controls that do not change. Could the authors please 

elaborate or recommend how this should best be done for studies that are 100% human. The 

problem with using house keeping proteins is also to know for sure what is house keeping, what 

really does not change is sometimes difficult to assess. How was this done for the Bruderer et al 

study and for the Collins et al study – this would be important to detail more as this provides insights 

into how to apply this strategy in a broader way … 

- How many negative control peptides do you need to get good statistics for this approach – was 

that assessed. As the authors are using likely many yeast peptides this seems to be working fine – 

how many negative control peptides do the authors use and what is the minimal that does still work 

? 

- It would be important to know how this method RUV III c works overall for low abundant peptides 

– is that more challenging ? 

- The technical replacement strategy is that dependent on the retention time stability. I know the 

authors use iRT standards – it would be worth to discuss this a bit more. 

- Overall the authors focus mainly on the MS metrics and performance – was there an overall effect 

of chromatography performance ? 

- Acquiring 3 technical replicates per sample is often rather challenging for laboratories and many 

laboratories do not have as many instruments available. Typically, as there is so much more 

variability in biological samples it has been considered having more biological replicates is beneficial. 

I do think this is a challenge of this particular design for many labs to implement. If one does have 

enough biological replicates would one not rather acquire data for the biological replicates instead 

of acquiring 3 technical replicates for each biological sample? I can rather see the point with small 

clinical cohorts as the authors point out. 

- just reporting CV's as measure for reproducibility should be extended to also do some 

measurements of true quantification - forming ratios and reporting those. In this study design this is 

possible as different amounts of human material is in each individual sample. Figure 5 mentions 

some of that but rather than just reporting incidence of significance. Could the authors form some 

ratios at different abundance levels and see how those change or maintain significance. What is the 

robustness of quantification which is often much more important than a CV. 



 

 

 

Reviewer #2 (Remarks to the Author): 

 

In the current manuscript, Poulos et al report on the reproducibility of DIA-MS measurements on six 

Sciex QTOF instruments within the ProCan Proteomics facility. On the basis of 1,560 DIA runs using 

samples of controlled composition and acquired over a period of 4 months, the authors first 

determined instrument performance over time and used the data to develop novel methods for data 

normalization and missing value imputation that, according to the authors, substantially improved 

predictive accuracy of sample contents. 

As proteomics is moving towards clinical application, questions regarding robustness and 

reproducibility have to be answered in order to be able to use such data appropriately. In that sense, 

the current study is timely and it likely is the largest such studies performed to date. The authors 

provide an honest account of their data which is very laudable, but this reviewer has a lot of 

questions regarding how the data is presented and does not always agree with the conclusions 

drawn. Overall, this study is useful but needs a lot of work on the text in order to make it clearer / 

more accessible for most readers. In addition, the overall results are quite expected, particularly in 

light of the fact that conceptually similar work has already been published (Collins et al, Mol Cell 

Proteomics 2017) which asks the question why it should be published in Nature Communications 

rather than in a more specialized journal. 

 

Specific points: 

# Study design and data acquisition: The study design and Figure 1 is somewhat confusing. The 

sample numbering in panel 1a does not match the one in panel 1b. That aside, it is unclear why 

samples 1, 2, 7 and 8 were run in duplicate while samples 3, 4, 5 and 6 were run in triplicate (here 

panel 1a and 1b contradict each other regarding sample 2). Is there any particular reason for this 

other than this creates 20 samples? The use of triplicates throughout would have allowed for a 

better intra-batch assessment of reproducibility. In addition, it is not obvious why the scheduling of 

the QC was chosen as it was. Four replicates were performed at the beginning and the end of the 

study but the times in between were different. Did the authors chose this schedule on purpose? The 

main text states that “Mass spectrometer maintenance schedules varied according to each 

individual instrument’s performance”. Does that mean that Fig 1c is just a schematic representation 

and the actual QC runs happened at different schedules for different instruments? What do the 

authors mean by ‘base line controls’? Please clarify. According to the main text, 80% of proteins 

were supported by evidence from at least 2 peptides. This seems unusual for a DIA measurement 

(nowadays, this figure is even reached by DDA) unless proteome coverage was very deep. But this 

does not appear to be the case. Any idea why that is? It would be useful to state in the main text 

roughly how many proteins/peptides were identified in the QC runs (say on average in each and 



collectively in all and how many were shared between all QC runs of the same type) so that readers 

get a better idea about how many data points went into the analysis that follows. 

# Baseline data reproducibility during a single experimental week: For the reproducibility analysis of 

the short term QC samples, why was only the second set of samples used? Does the first set of 

samples show the same results? Fig. 2a: can you comment on what the ‘streaks’ in the PCA plots 

are? Do you already see that the performance within this short period of time shows a trend? The 

statement that “We observed an approximately linear relationship between the intensities of 

ovarian cancer tissue-specific peptides” is clearly not warranted. Fig 2c has no y-axis annotation but 

it is clear that the data follows a (shallow) exponential loss of intensity over the ‘dilution series’. This 

is very surprising as the ‘dilution’ only spans a factor or 16. DIA is supposed to be very quantitative 

but this does not appear to be the case for this particular data. How do the authors explain the 

detection of PSA in sample 7 (no prostate) and the very large variability of the intensity of the four 

different PSA peptides? Is this carry-over ? In addition, even though one can see an association of 

the intensity of TAR DNA-binding protein 43 and the proportion of the amount of ovarian tissue in 

the sample, the relationship is not linear. Does this perhaps imply that the QTOF detector already 

saturates at log2 intensities of 13 or higher? This effect should be analysed more systematically. 

There are thousands of peptides for which this could be done. At this stage, it is preliminary to 

conclude that DIA-MS is generally reproducible. 

# Decrease in instrument sensitivity over time since cleaning: Fig. 2a and 2b show a ~4x variation of 

peptide intensities over just 4 weeks and the authors do point this out. Although this reviewer does 

not question to general validity of the statements made around Fig. 2b, I would be very careful when 

interpreting results of Pearson correlations that only have 4 data points (why was the 50ug sample 

not included?). 

Development of a method for data normalization: It is not clear to this reviewer why the ‘novel’ 

normalization procedure was necessary or if it really improved the results. Looking at Fig 3c and the 

supplementary figures, it at least visually looked as if median centering the data produced better 

intensity normalized results than RUV-III-C. At least when using all pepdies for normalization. Why 

do the authors show the normalization based on the iRT peptides only in the main figure? Again, one 

should be very careful not to over-interpret Pearson correlations on four data points as shown in Fig. 

3d. What is quite puzzling is that the new normalization procedure did not really improve results for 

an individual instrument (Fig. 3f). Hence, the improvements across the entire data set is surprising in 

its extent. 

Technical replacement of missing values: Missing value imputation is a tricky business and the 

authors may want to point this out. The Figure 4a is a good way of showing this but I would suggest 

to add a line that shows the intensity distribution of the high-confidence peptides to be able to see if 

MCAR peptides are similar or dissimilar to the frequently detected peptides. However, I don’t think it 

is necessary to show six almost identical plots to make this point. One could show one or two and 

move the rest to the supplement. Similarly, it would suffice to show one or two instrument panels in 

Fig 4b. I suggest that the extra space generated in this way could be used to illustrate that/how 

imputing missing values improves reproducibility. This is not really captured in Fig.4c but would be 

important to show. The current Fig 4c raises the question as to how important the missing value 

imputation actually is. Even without any ‘technical replacement’, the true positive ISs are already at 



>97% (at 5% FP). Increasing the true positives by just 2% comes at the cost of increasing false 

positives by almost a factor of two. The authors should therefore tone down the importance of this 

imputation (albeit acknowledging that this does not seem to hurt much). 

Simulation of cohort analyses in proteomics: From reading the main text, it is not very clear what Fig. 

5a shows. The same applies to Fig. 5b. While the reviewer can guess what the solid blue lines show, 

the grey areas and the lines in them are not clear. Perhaps I do not get the figure at all but the data 

in 25% ovarian cancer tissue proportion panel in Fig 5b implies that it was impossible to distinguish 

samples with 25% or 50% ovarian cancer content. This would be highly unexpected as this should be 

the easiest of all comparisions. Please clarify. 

Prediction of tissue proportion in a complex mixture: It would indeed be exciting if this approach 

could work. However, the machine learning part is incomprehensible from reading the main text 

and, more importantly, how relevant is it to train such a classifier based on a mixture of two cancer 

types and yeast that are mixed into one sample. Such a situation would never occur when analyzing 

clinical specimen. Furthermore, in light of the data from the previous section, this reviewer seriously 

doubts that that any such predictions can be meaningfully performed on the very limited amount of 

available data used for training. How do the authors make sure that the model is not entirely 

overtrained? In my opinion, a 10-fold cross validation does little/anything to validate the predictions. 

Instead, another data set should have been generated to test the performance of the trained 

classifier. 

 

Other points: 

# This reviewer suggests that the authors came up with an alternative title that better reflects the 

content of the paper. The current one is too general and likely turns away a lot of potential readers. 

# There are a few minor issues with language and grammar that should be fixed. 

# The text could be clearer in places. E.g. in the abstract, it is not clear what ‘control’ is. This 

becomes clear in the main text (HEK293T cells). Also, the term ‘dilution series’ is not accurate for the 

description of samples 1-6. The total peptide content in these samples is the same but the 

proportions of the ovarian cancer and yeast samples are different. 

 

Further comments by members of the reviewer’s laboratory: these are provided for information 

only. 

Co-worker I: 

Major comments: 

- In particular in the first paragraphs there is a lot of repetition of what is already known. 



o For example, the reproducibility chapter was already covered by Collins, et al 2017 in a more 

comprehensive way (intra-day variation, inter-day variation, even inter-lab variation). Other studies 

focus on the reproducibility and repeatability of DDA data (Tabb et al, 2010). 

o Another example is the sensitivity decrease post cleaning chapter. The results are common 

knowledge 

o It would be more desirable if the entire data set is analyzed in terms of long-term reproducibility 

which is novel and interesting! In this case it would be helpful to name the factors that mostly 

influence reproducibility. 

o The RUV-III-C algorithm is a variant of RUV-III. As cited in the manuscript, another group already 

implemented this algorithm for gene expression data. In the present study, the authors transferred 

this knowledge to proteomics data and extended the algorithm to data sets with missing values. 

 

- One selling point of DIA is that it has in general fewer missing values than DDA. Why do the authors 

apply their method not to DDA data or show the difference between DDA and DIA. It would be great 

if the normalization procedures could be applied to all kind of proteomic data sets. This makes an 

even stronger point than comparing the results of two mass spectrometric platforms (Sciex vs 

Orbitrap), because there the output data is very similar. 

 

 

- How long does it take to normalize data and replace missing values with ProNorM? Which 

computational resources are required? Do the authors attempt to include their procedure as an 

option in standard DIA analysis software tools? Is the data first normalized and then imputed or the 

other way around? Why was this order chosen (Karpievitch, 2012 show that the order matters)? 

 

- It would be great if authors could show a biological example where this normalization and 

imputation strategy outperforms standard normalization and imputation strategies. Maybe there 

are examples where without these novel algorithms, no biological conclusion can be drawn. 

 

Minor comments: 

- Introduction and study goal: The study goal is much better outlined in the abstract than in the 

introduction. Major aim was not the evaluation of reproducibility, but the development of a new 

algorithm that improves reproducibility. 

 

- page 6, paragraph 2 and methods section: `Many peptides were consistently identified…` 



Filtering happened before. It would be also great to show how consistent the data is without filtering 

 

- page 6, paragraph 3: Only quantitative evaluation, but what about the quality of the data, e.g. 

repeatability (similar to Tabb et al). What about intra-day, inter-day, inter-instrument analysis? 

Additionally, it would be very helpful to get the acquired data points per peak so that the reader can 

get a feeling of the quality of quantification. 

 

- 

identification and quantification of peptides? 

 

- Page 7, paragraph 1 and 2: What about the abundance of the choosen peptides? 

 

- Page 10, paragraph 1: ‘We then replace missing values … observed for that peptide in a technical 

replicate’. What happens if the replicates do not contain this peptide? This might be a peptide that is 

regulated and might be of interest or is a false identified one. 

 

- Page 11, paragraph 2: what’s the quality of the 25 replicate samples? From which time points were 

they taken (after cleaning, before and after cleaning, etc)? A comparison to standard normalization 

techniques like grand mean normalization would strengthen the conclusion. Comparison to non-

normalized data and a conclusion that the algorithm improves statistical significance is obvious. 

 

- Page 20, 515, 516: Precipitation of SDC, page 20: no washing 

 

- Page 20, 530; Page 21, 548: Library was generated with 0.5 % FA, DIA measurements with 0.1% FA. 

Any reason for that? 

 

- Page 21, 561: Why using three different search engines? What’s the overlap between them? 

 

- Page 22, 574: ‘peptides (including modified peptides): Use precursors information or use the term 

modified peptides instead 

 



- Page 22: 7.000 proteins from 39.033 peptides. What is total protein/peptide number without all 

the filtering? 

 

- Page 23: 100 variable windows with 3.2 s  

 

- page 24, 620: Why excluding samples with R2 < 0.9 in replicates? This is a study about 

reproducibility. Why excluding files with less than 1.200 proteins, what’s the explanation? 

 

- Page 27, 695: What about propagation of variat

already to this set, 

 

 

Coworker II 

 

Key points in this manuscript 

1. We demonstrate for the first time the reproducibility of large-scale DIA-MS measurements over 

extended periods and across multiple mass spectrometers. 

This is true, but I personally doubt the value of this experimental design. 

2. To reflect real-world operating conditions, approximately 6,500 MS runs were carried out over a 

four-month period, during which the mass spectrometers received minor and major maintenance on 

an as-needed basis. 

I think this is not very meaningful, unless they aim to generate dataset under different MS sensitivity 

at the beginning. The sensitivity loss is well known in proteomics labs. In the real-world operating 

conditions, researchers can easily monitor the machine performance by QC sample, the 

maintenance can be very flexible based on the QC data instead of an as-needed basis. In such big 

project, QC samples must be run to monitor the real time system performance. 

3. We developed a novel strategy for MS data processing called ProNorM, which uses negative 

controls and technical replicates to normalise data from multiple instruments, reducing technical 

variation while strengthening biological signal. 

4. ProNorM rescues approximately 20% of values likely missing for technical reasons, by replacing 

these with plausible intensities from a distribution derived from replicates run on other instruments. 

The ProNorM method was developed to distinguish the real missing values due to low intensity 

(there is a concentration series in sample 1-8, there will be a trend. If the peptides have intensity 



values in high concentration, and NA in the low concert ration, they call it complicately random NA) 

and missing values due to random reasons. 

ProNorM method seems to rely on the technical replicates. However, in the real DIA/SWATH 

analysis, 1) it is time consuming to run lots of duplicates for each sample, 2) the experimental 

intensities of peptide are unknown within different individual samples. Therefore, the ProNorM 

method seems not to work for real samples. 

 

5. DIA-MS data acquired over extended time periods from multiple instruments with differing 

maintenance schedules were reproducible, and changes in low-intensity peptide signals were 

detected in a dilution series comprising known ratios of human cancer tissues. 

I do not which data they used to conclude this. If it is Figure 2c, I will argue the “ovarian cancer-

specific peptides” are mostly high abundant peptides in the ovarian tissue sample. 

 

Real and relative proportion of different samples in each sample ID, generated to understand what 

they are doing. 

Sample ID 1 2 3 4 5 6 7 

Yeast (%) 50 46.875 43.75 37.5 25 0 50 

Ovarian (%) 0 3.125 6.25 12.5 25 50 50 

Prostate (%) 50 50 50 50 50 50 0 

Yeast (%) 16 15 14 12 8 0 16 

Ovarian (%) 0 1 2 4 8 16 16 

Prostate (%) 16 16 16 16 16 16 0 

Human 

peptides amount 16P 16P + 1O 16P + 2O 16P + 4O 16P + 8O 16P + 16O 16O 

 

Comments 

1. Figure 1a/b and Figure 2. The appearance order of yeast/ovarian/prostate in the names of each 

sample is different, making it a little hard to understand the results. 

2. Figure 1b. It is not very easy to understand the experiment design from Figure 1b, the numbers in 

1a and 1b represent different meaning. Considering one 48h period serves as one independent 

cycle, a ring cycle may be a better way to show the workflow. 



3. Figure 2a. It is interesting to see there are some data points of sample 1-7 spreading out the 

grouping area in Figure 2a. How about the PCA analysis results after data normalization? 

4. Page 6, line 154: Figure 2c. 

It is very important to show the intensity distribution of “frequently-observed human peptides” 

across sample 1-7, Figure 2e only show one example. 

5. Page 6, line 158: 

The definition of “Ovarian cancer tissue-specific peptide” is unclear. 

According to my understanding, the definition of “Ovarian cancer tissue-specific peptide” might be: 

1) the “Ovarian cancer tissue-specific peptide” were filtered out based on the human peptides 

identified in both sample 1 and sample 7, all the other datasets from sample 2/3/4/5/6 were not 

used. 

2) In summary, there were 156 runs of sample 1 and 7, respectively. Therefore, the appearance of 

these “Ovarian cancer tissue-specific peptide” should be < 8 runs in sample 1 (not containing ovarian 

tissue), and > 125 runs in sample 7 (not containing prostate tissue). 

It will be much easier to understand the results if the authors describe the definition in details. 

6. Page 7, line 163: Figure 2d 

The numbers of samples containing quantification information of PSA peptides in sample 1 and 6 are 

much lower than sample 2-5 in Figure 2d. This is due to the different DIA-MS runs of sample 1/6 

(n=156), and sample 2-5 (n=234). In order to make the data much clearer, it is better to show the 

relative proportion in each sample instead of absolute numbers in Figure 2d. 

7. Page 7, line 166: Figure 2e 

As the house-keeping protein TARDBP is constitutively expressed, the theoretical mass ratio of 

TARDBP in sample 1/2/3/4/5/6/7 should be 16:17:18:20:24:32:16. Based on the sample design, the 

TARDBP intensity in sample 1 and 7 should be the same. 

However, 1) the intensity of TARDBP in sample 7 is much higher than that of sample 1 in Figure 2e; 

2) the number of samples containing TARDBP quantification information in sample 7 is also much 

higher than sample 1 in Figure 2e. 

How to explain these differences? 

8. Page 7, line 172: Instrument sensitivity 

1) As shown in Figure 3a-b, the instrument sensitivity variation seems to be highly instrument 

specific. For example, “minor instrument clean” did not bring back the sensitivity of M02 and M06. 

However, the sensitivity gain of M05 after the “major instrument clean” is almost neglectful, the 

“minor instrument clean” already kept its sensitivity. 



Data from Figure 3a demonstrates that QC run is very useful to monitor the instrument sensitivity. 

As the authors run lot of other samples alongside this project, it is curious for them not to monitor 

the instrument sensitivity by QC in such big project. It is more meaningful to schedule the 

instrument maintenances based on QC results. 

2) The authors showed the MS2 level sensitivity data in Figure 3, it is very interesting to see the MS1 

level sensitivity data. The reviewers sometimes found the sensitivity loss at MS2 level rather than 

MS1 level from the orbitrap type machine. 

3) How about the quantification dynamic range at both MS1 and MS2 level in this study? 

4) Many researches claim that the sensitivity of DIA/SWATH is higher than DDA. In the original MS1 

spectra, there will be both identified and non-identified peaks. It is interesting to show the precursor 

ions intensity proportion of each identified peptide in the total intensity of peaks in the 

corresponding MS1 spectra. This analysis may give a clear view of the dynamic range of DIA/SWATH. 

9. Page 174 and Figure 3b: The authors should clearly claim that the example human peptide was 

specifically selected from the “ovarian cancer tissue-specific peptides”. 

10. Page 8, line 206: Figure 3f: The theoretically mass of “frequently-observed human peptides” in 

sample 1-7 is different. Although the authors described that the intensity CV of each peptide was 

calculated for each sample in the figure legend, it is still not very clear to understand the data. It is 

better to show some example plots illustrating the intensity CV of each peptide from different 

samples. 

11. Page 11, line 291: Tissue proportion predication is pretty hard, as the real tissue-specific proteins 

and peptides should be used. In this study, the tissue proportion works well when the proportion 

difference of ovarian and prostate is very high, indicating the “Ovarian cancer tissue-specific 

peptide” dataset might be not very “tissue-specific”. 

As the number of ovarian tissue specific proteins may be very small, it is interesting for the authors 

to reduce the numbers of “Ovarian cancer tissue-specific peptide”, for example, only keep the 

peptides show very good linear intensity relationship to ovarian tissue proportion. What about the 

predication performance of this predication tool then? 

By the way, considering the yeast proteins will not be shared by ovarian and prostate tissue. How 

about the “tissue proportion” of yeast sample in sample 2-5? 

12. Page 13, line 328: It is no doubt that increasing the number of technical replicates may be a 

useful strategy for analysis of small clinical cohorts. However, lots of replicates in DIA analysis lose its 

throughput advantage. 

 

Methods: 

13. The DDA data were searched independently with three different search engines to generate the 

spectral library. Are there some MS/MS spectra that are matched to different peptides by the three 



search engines? If one MS/MS spectra was matched to different peptides, how to deal with this 

issue when combining the three results into one dataset? 
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Reviewer #1 
 

Comments: 
1.1 It is unclear how many proteins are identified and quantified in the DIA acquisitions 

in this study – this should be stated. In the methods sections the authors mention 
that > 6000 proteins are identified in DDA acquisitions (using the fractionation). But 
how many proteins are identified and quantified from the DIA acquisitions. 

This detail was provided in the Methods section of the original manuscript and has now been 
added to the Main Text of the revised manuscript (underlined): 

“… 1,527 runs were retained (see Methods; Supplementary Table 1, 2). These files 
comprised data from a total of 17,054 peptides derived from 2,796 proteins, of which 
2,363 were human proteins.”   
-- Results, Study design and data acquisition, Para. 2 

 

1.2 In the DDA acquisitions the >6000 proteins – I assume that is the combination of 
how many proteins are identified from yeast and human (how many human proteins 
overall are identified?) – of those how many human proteins were identified and 
quantified from the DIA acquisitions? 

Of the 6,865 proteins that comprised the spectral library, 5,013 are human proteins. This 
information has been provided in the revised manuscript, as below (underlined): 

“The resulting library contained 31,614 precursors from 6,865 proteins, of which 5,013 
are human proteins.”  
-- Methods, Spectral reference library generation, Para. 4 

There were 2,363 human proteins identified and quantified and this information is now 
provided in the revised manuscript – see Response 1.1.  

 

1.3 I assume there is a 2-peptide minimum applied per protein, that should be 
specifically stated. 

When quoting the overall numbers of proteins, there was no 2-peptide minimum applied. 
Instead, the proportion of proteins quantified by at least two peptides is specified in the text. 
Proteins were only identified by unique peptides, and we now note this in the revised 
manuscript, as below (underlined): 

“All proteins were identified by unique peptides (an average of 6.1 unique peptides were 
identified per protein), and 80% of proteins were supported by evidence from at least two 
peptides (Supplementary Fig. 2a).” 
-- Results, Study design and data acquisition, Para. 2 

Further information regarding the number of peptides per protein is now included in a revised 
Supplementary Figure 2a, shown in Response 1.5. 
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1.4 The way how the library is built should be explained in the main text also, not just in 
the methods. 

We now provide additional details (underlined) regarding spectral library generation in the 
Main Text of the revised manuscript: 

“A spectral library was generated by merging search results from three search engines 
(Mascot37, X!Tandem38 and MSGF+39) using PeptideShaker40 and Skyline41 (see 
Methods). The MS raw data files were then processed with reference to this spectral 
library using OpenSWATH18 and PyProphet19 with 1% FDR at both global peptide and 
protein levels for identification and 5% run-specific peak group FDR for quantification 
(Supplementary Fig. 1c; see Methods).”  
-- Results, Study design and data acquisition, Para. 2 

Further information is provided in the Methods. 

 

1.5 On page 6 the authors state that they measure an average of 6 peptides per protein. 
However, it would be more interesting to see for example a histogram indicating the 
distribution – i.e., how many proteins show 2 peptides, 3, 4, 5 etc. 

This information was provided as cumulative data in Supplementary Figure 2a in the original 
manuscript. To improve clarity and provide more information as requested, we now also 
include a histogram in the revised figure that displays non-cumulative data, as shown:  

 
Supplementary Figure 2. Distribution of non-normalised SWATH-MS data. (a) Cumulative 
(blue; left axis) and actual (red; right axis) numbers of peptides supporting each protein 
identification. Blue dotted lines indicate the point at which the cumulative number of proteins 
have support from at least two peptides.  

 

1.6 The authors state that some acquisitions were excluded that did not fulfil criteria of 
‘baseline quality control’. What are those criteria (mention in the main text).  

In addition to detail about quality control in the Methods, some basic descriptive information 
(underlined) has been added to the Main Text in the revised manuscript:  
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“After removing files (n = 26) that did not pass baseline quality controls such as total 
numbers of proteins identified and correlation with replicate samples (see Methods), and 
discarding a small number of peptides that were inconsistently observed across the 
cohort (n = 934; see Methods), 1,527 runs were retained (Supplementary Table 1, 2). 
These runs comprised data from a total of 17,054 peptides derived from 2,796 proteins, of 
which 2,363 were human proteins.” 
-- Results, Study design and data acquisition, Para. 2 

 

1.7 As different amounts of cancerous tissues as well as yeast are mixed in the various 
different samples – the authors should state if they observed any ‘matrix effects’. Of 
different complexity within the samples. Did that influence the quality of the human 
identifications and quantification (better in the samples that have less yeast? Or 
better in the samples that have more human material). Or is the matrix overall no 
factor here? 

We did not observe any significant matrix effects in the samples analysed in our experiment.  

The potential for sample matrix complexity to impact protein identification was investigated 
by examining the mean proportion of samples across the dilution series in which n = 1,000 of 
the highest and lowest intensity human peptides from a 100% human tissues sample (Sample 
6) were detected. Consistent with an expected dosage effect, we found that some of the 
lowest intensity peptides were inconsistently observed as less human tissue was present in a 
sample (see Revision Figure 1, upper panel). However, if a matrix effect was present, we 
would expect to find that even some of the highest intensity peptides would also be 
inconsistently observed across the dilution series due to ion suppression effects. This did not 
occur (see Revision Figure 1, lower panel), suggesting that matrix effects did not impact our 
ability to identify peptides that should otherwise be easy to observe.  

Moreover, we did not observe any matrix effects relating to our ability to quantify peptides 
across samples of different complexity (see Supplementary Figure 2g).  
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Revision Figure 1 – Mean percentage of samples in which peptides were identified for n = 
1000 of the highest (upper) and lowest (lower) intensity peptides observed in Sample 6.  

  

1.8 In Figure 3a the authors describe some reproducibility behaviour of a single human 
peptide, with and without normalization – what is that peptide? What protein does 
it originate from? PSA? It would be informative to have not just one single human 
peptide analysed in this way (from higher/lower abundant proteins).  

 
Figure 3a depicts n = 29 indexed retention time (iRT) peptides (see Supplementary Table 3). 
This information was provided in the figure title and legend in the original manuscript. 
Supplementary Figure 3a in the original manuscript depicts all peptides. 

We observed the same trend relating to peptide intensity and instrument performance 
degradation in both the highest intensity (n = 10) and lowest intensity (n = 10) iRT peptides 
(see Revision Figure 2). We conclude that regardless of peptide intensity, the longitudinal 
trends that we describe in our study, and that are associated with instrument performance 
degradation, are the same.  
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Lowest intensity: 
 

 
 

Revision Figure 2 – Intensities of n = 10 of the highest (upper) and lowest (lower) intensity 
indexed retention time calibration peptides before normalisation. Boxplots are coloured by 
instrument, within which data are ordered from earliest experimental day (left) to latest 
experimental day (right). Maintenance schedules of major (red) and minor (blue) instrument 
cleaning are indicated. Data are shown for replicates of Sample 5 and only every sixth 
experimental day is labelled on the horizontal axis. 
 

1.9 There should be a supplemental table submitted as part of the supplemental 
material of this manuscript that has all the MS identification details from the search 
engine that was used to generate the spectral library. 

This information is available via the PRIDE repository in the Result file entitled 
Poulos_et_al_Peptide_intensity_matrix. We have also now uploaded to the PRIDE database 
the Skyline and identification files requested, which relate to the spectral library searches. 
Details for accessing our PRIDE data deposition (PXD015912) are provided in the 
manuscript. Please note that we have chosen not to include these data as Supplementary 
Information because the files are large, and we feel that PRIDE is the most appropriate 
repository for this information.  

 

1.10 There should be a specific mention in the methods that the spectral library is 
provided as part of the data upload to Pride, including the Skyline file that the 
authors mention. That is an important resource as part of this manuscript and 
potentially of great interest for other scientists. 

We now include the following text in the revised manuscript (underlined): 

“The mass spectrometry proteomics data including the spectral library have been 
deposited to the ProteomeXchange Consortium via the PRIDE50 partner repository with 
the dataset identifier PXD015912. 
-- Methods, Data and code availability, Para. 1 
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1.11 The statistical processing and the algorithm RUV III C are very interesting – I 
understand it relies heavily on having peptides that do not change (negative 
controls). The authors mention in their case they choose yeast peptides as negative 
controls that do not change. Could the authors please elaborate or recommend how 
this should best be done for studies that are 100% human. The problem with using 
housekeeping proteins is also to know for sure what is housekeeping, what really 
does not change is sometimes difficult to assess. How was this done for the Bruderer 
et al study and for the Collins et al study – this would be important to detail more as 
this provides insights into how to apply this strategy in a broader way. How many 
negative control peptides do you need to get good statistics for this approach – was 
that assessed. As the authors are using likely many yeast peptides this seems to be 
working fine – how many negative control peptides do the authors use and what is 
the minimal that does still work ? 

In this study, we used n = 1,622 yeast peptides as negative controls. The number of negative 
control peptides is important, and the improvement in correlation coefficient is less 
pronounced with fewer peptides. For example, n = 500 negative control yeast peptides 
confers a median correlation coefficient of 0.29, while n = 1000 negative control yeast 
peptides confers a median correlation coefficient of 0.56. In comparison, the full set of n = 
1,622 yeast peptides confers a median correlation coefficient of 0.62 (see Figure 3e). We 
now include further discussion regarding the selection of negative control peptides in the 
Methods of the revised manuscript, as shown below (underlined). Specifically, we provide 
greater insight into how researchers might select negative controls in other studies, such as 
those that are 100% human, and we point the reader to a few key pieces of literature where 
they will find in-depth discussion of the queries raised by the Reviewer.  

“Negative controls are peptides whose measurements are known, or expected to be, 
unaffected by biological variation in the data (that is, they are not part of the biological 
signal) but will still be affected by unwanted variation. There are no pre-defined rules 
regarding the choice of negative controls, and domain-specific knowledge and human 
judgement are most important28,42,43. Endogenous genes will generally be a better choice 
of negative controls than will spike-ins, because the former reflect more unwanted 
variation in the experiment. For detailed discussion regarding how best to choose 
negative controls, and the optimal numbers of negative controls to use, readers should 
refer to References 28,42,43.” 
-- Methods, Normalisation to remove unwanted variation, Para. 2 

For the Bruderer et al and Collins et al studies, see below (modifications made in the revised 
manuscript are underlined):  

Bruderer et al: 

n = 706 negative control variables were selected by using transitions that differed 
most between batches as measured by a two-sided unpaired t-test. 
-- Supplementary Note, Para. 2  

Collins et al:  
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“For normalisation by RUV-III and RUV-III-C, peptide intensity data were log-
transformed and of the 8,555 human peptides that were detected in every sample, the 
first 500 peptides were held out to assess the quality of the normalisation and the 
remaining 8,055 were used as negative control peptides for normalisation.” 
-- Methods, Multi-laboratory study data analysis, Para. 2 

 

1.12 It would be important to know how this method RUV-III-C works overall for 
low abundant peptides – is that more challenging? 

The improvement in correlation coefficient after application of RUV-III-C is most 
pronounced for high-intensity peptides but is still evident in low-intensity peptides (see 
Revision Figure 3). Lower intensity peptides are observed in fewer samples than higher 
intensity peptides (see Revision Figure 1 in Response 1.7), meaning that there are fewer data 
points available from which to estimate and remove unwanted variation. These findings are 
summarised below, whereby we selected the highest and lowest intensity human peptides (n 
= 1,000) in Sample 6 (containing 100% human tissue) and measured the correlation with the 
human tissue dilution series across the experimental dataset.  

 
Revision Figure 3 – Correlation coefficients from Pearson correlation of n = 1000 of the 
highest abundant (left) and lowest abundant (right) human peptides with human tissue 
dilution proportions. Median Pearson correlation (r) and R2 from each distribution are 
shown in italicised blue text. A black dashed line indicates the median correlation coefficient 
before normalisation. Correlations were calculated using log2-transformed peptide intensities 
and ovarian cancer tissue proportions. 

 

1.13 The technical replacement strategy is that dependent on the retention time 
stability. I know the authors use iRT standards – it would be worth to discuss this a 
bit more. 

We did not find that iRT standards or consideration of retention time stability were required 
for satisfactory results relating to technical replacement. Retention time stability is important 
for peptide detection and alignment between multiple samples (see Parker et al Mol Cell 
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Proteomics 2015), whereas the technical replacement strategy only requires assignment of 
replicates after peptide quantification.  

 

1.14 Overall the authors focus mainly on the MS metrics and performance – was 
there an overall effect of chromatography performance? 

Our experimental design did not enable us to fully differentiate between performance 
degradation of the mass spectrometer and liquid chromatography over the course of the 
experiment. However, in most cases we found that instrument performance improved when 
the mass spectrometer underwent cleaning (see Figure 3a). Further, the minimum retention 
time alignment threshold implemented by OpenSWATH ensures that only files with 
sufficient correlation of iRT peptides are processed. For these reasons, we believe that the 
mass spectrometer was most likely to be the factor driving the observed performance 
degradation. However, we add the following text (underlined) into the Discussion of the 
revised manuscript to make this limitation clear to the reader: 

“Our results have other practical implications for the design of large-scale studies of 
complex samples such as cancer tissues. Our experimental design did not enable the 
effects of MS and liquid chromatography performance to be fully distinguished, and 
performance benefits may be achieved by varying the existing maintenance schedules of 
each of these pieces of equipment.” 
-- Discussion, Para. 4 

 

1.15 Acquiring 3 technical replicates per sample is often rather challenging for 
laboratories and many laboratories do not have as many instruments available. 
Typically, as there is so much more variability in biological samples it has been 
considered having more biological replicates is beneficial. I do think this is a 
challenge of this particular design for many labs to implement. If one does have 
enough biological replicates would one not rather acquire data for the biological 
replicates instead of acquiring 3 technical replicates for each biological sample? I 
can rather see the point with small clinical cohorts as the authors point out.  

The relative merits of biological versus technical replicates in an experiment will be context-
specific (see text below). However, if a researcher chooses that biological replication is more 
valuable to their experimental design, ProNorM can still be applied to improve the 
reproducibility of their experimental data. While technical replacement requires that every 
sample be measured in technical triplicate, RUV-III-C does not. RUV-III-C only requires that 
enough samples in a cohort are replicated in order to adequately measure and subtract the 
unwanted variation. We have modified the Discussion in the revised manuscript (see below, 
underlined) to address this point: 

“Increasing technical replicate MS runs clearly comes at a cost. Increasing the number 
of technical replicates may be a useful strategy for analysis of small clinical cohorts, such 
as those available from rare diseases or clinical trials, or where researchers would 
derive benefit from a data matrix with fewer missing values. In the absence of technical 
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triplicates for all samples, RUV-III-C can still be applied to a cohort independent of 
technical replacement, provided that at least some samples are replicated at various 
points during the experimental period.” 
-- Discussion, Para. 3 

 

1.16 Just reporting CV's as measure for reproducibility should be extended to also do 
some measurements of true quantification - forming ratios and reporting those. In 
this study design this is possible as different amounts of human material is in each 
individual sample. Figure 5 mentions some of that but rather than just reporting 
incidence of significance. Could the authors form some ratios at different abundance 
levels and see how those change or maintain significance. What is the robustness of 
quantification which is often much more important than a CV. 

We found it challenging to identify entirely convincing ovarian-cancer specific peptides. 
Most human peptides are not tissue-specific, but rather are present at varying concentrations 
in different human tissues. We have made some attempts to identify ovarian cancer tissue-
specific peptides (see Figure 2c), but we are careful only to use these peptides to demonstrate 
a linear relationship rather than calculated fold changes. This is because ratios of peptides 
that are not perfectly specific to ovarian cancer tissue will be miscalculated if they are present 
even in low concentrations within the constant prostate cancer tissue background. (We do 
report ratios of yeast peptides before normalisation in Supplementary Figure 2g of the 
original manuscript. However, it is not appropriate to analyse yeast peptides after 
normalisation, as we used these peptides for the purposes of normalisation itself). 

We agree that CVs do not enable researchers to assess the impact of a normalisation approach 
on biological variation and we hope to have highlighted this for the reader in our manuscript: 
“it is possible for normalisation to obscure biological changes when removing technical 
variation.” To quantitatively measure the effects of normalisation beyond CVs, we draw 
attention to our analysis in Figures 3b,d-e in the original manuscript, where we demonstrated 
that “the median Pearson correlation across each peptide increased from 0.25 before 
normalisation to 0.62 after normalisation, consistent with an improvement in specific signal 
detection”. We believe that this is the key measure of quantitative accuracy after 
normalisation, and is preferable to ratios for our experimental design.   
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Reviewer #2 

 

2.1 The overall results are quite expected, particularly in light of the fact that 
conceptually similar work has already been published (Collins et al, Mol Cell 
Proteomics 2017) which asks the question why it should be published in Nature 
Communications rather than in a more specialized journal. 

We note that Collins et al was published in Nature Communications (not Molecular Cellular 
Proteomics). Collins et al assessed DIA-MS reproducibility during a one-week period in 
multiple laboratories for n = 229 non-tumour samples. Our submitted work not only 
addresses large-scale and longitudinal DIA-MS reproducibility, but also proposes novel 
strategies for maximising data reproducibility. It is substantially larger in size, assessing 
DIA-MS reproducibility for processing of 1,560 samples. Our samples primarily comprise 
human cancer tissue. Our data are acquired over an extended period of time (4 months) for 
multiple instruments (n = 6), interspersed with ~5,000 other runs. It is therefore also suitable 
for publication in Nature Communications.  

 
Specific points: 

Study design and data acquisition:  
2.2 The study design and Figure 1 is somewhat confusing. The sample numbering in 

panel 1a does not match the one in panel 1b.  

The numbering in Figure 1b was intended to convey the run order of samples. However, we 
agree with the Reviewer that this apparent inconsistency in numbering may be confusing to 
readers. We have modified Figure 1b to better distinguish between the run order and the 
sample number to improve clarity, as shown below: 

 

681st

3er 48 hour Seriod

61 62 63 64 65 66 67
2nd 3rd 4th 5th 6th 7th 8th

61 62 63 64 65 66 67
9th 10th 11th 12th 13th 14th 15th

62 63 64 65
16th 17th 18th 19th

6820th

These sets of 20 replicate aliTuots were run in
thirteen 48-hour periods on each mass spectrometer

6aPSle:
61 - 0% 2Yary / 50% 3rostatH / 50% YHast
62 - 3.125% 2Yary / 50% 3rostatH / 46.875% YHast
63 - 6.25% 2Yary / 50% 3rostatH / 43.75% YHast
64 - 12.5% 2Yary / 50% 3rostatH / 37.5% YHast
65 - 25% 2Yary / 50% 3rostatH / 25% YHast
66 - 50% 2Yary / 50% 3rostatH / 0% YHast
67 - 50% 2Yary / 0% 3rostatH / 50% YHast
68 - 100% HE.2937 controO cHOO OinH
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Figure 1. Study design. … (b) Twenty mass spectrometry runs during thirteen 48-hour 
periods on each of six instruments. Each run is represented by a coloured panel 
corresponding to each of the eight samples (labelled S1-S8), with the run order indicated in 
the upper left corner. Four samples were run in duplicate and four in triplicate during each 
48-hour period. 
 

2.3 That aside, it is unclear why samples 1, 2, 7 and 8 were run in duplicate while 
samples 3, 4, 5 and 6 were run in triplicate (here panel 1a and 1b contradict each 
other regarding sample 2). Is there any particular reason for this other than this 
creates 20 samples? The use of triplicates throughout would have allowed for a 
better intra-batch assessment of reproducibility. 

The sample set size of 20 was chosen to fit comfortably within a 48-hour period, with 
sufficient flexibility in case of instrument maintenance or unexpected delays.  

We chose to run samples 2, 3, 4, and 5 in triplicate as these samples comprise the core of the 
dilution series (3.125%, 6.25%, 12.5% and 25% ovarian cancer tissue) – increasing the 
numbers of replicates of these samples would be most beneficial for the experiment. The 
remaining samples (1, 6, 7 and 8) consist of comparatively simpler mixtures, with each 
comprising no less than 50% of a given tissue/cell type. For these samples, we determined 
that duplicates would be sufficient. We now add the following to the revised manuscript to 
clarify this rationale: 

“Samples were run either in triplicate (the core of the dilution series) or in duplicate, in a 
defined sequence comprising sets of 20 samples (Fig. 1b).” 
-- Results, Study design and data acquisition, Para. 1 

 

2.4 In addition, it is not obvious why the scheduling of the QC was chosen as it was. 
Four replicates were performed at the beginning and the end of the study but the 
times in between were different. Did the authors choose this schedule on purpose? 
The main text states that “Mass spectrometer maintenance schedules varied 
according to each individual instrument’s performance”. Does that mean that Fig 1c 
is just a schematic representation and the actual QC runs happened at different 
schedules for different instruments?  

We chose the schedule for running samples before commencing the experiment. The 
particular design follows a distinct pattern: 

• A sample set (20 samples) was run every 48 hours for one week 
• A sample set was run every week for the first month 
• A sample set was run every month for three months 
• In the final week, the first experimental week was repeated again. 

This pattern was described in the original manuscript, as shown: 

“The 20-sample set was run on each instrument 13 times at spaced intervals over a four-
month period (Fig 1c), where each data collection occurred over 48 hours. At study 
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commencement, the 20-sample set was run four times in succession (days 1, 3, 5 and 7), 
then once per week for the remainder of the month (commencing on days 14, 21 and 28), 
and then once per month for the remainder of the first three months (commencing on days 
56 and 84) (Fig. 1c). After each instrument underwent a major clean, sample sets were 
run a further four times in succession (commencing on days 101, 103, 105 and 107) (Fig 
1c).” 
-- Results, Study design and data acquisition, Para. 1 

The Reviewer’s interpretation of Figure 1c is correct. This figure is a schematic 
representation of what was intended for each instrument. The actual times at which 
instrument maintenance was undertaken vary for each instrument. Instrument maintenance 
during this period was performed on an as-needed basis (i.e., depending on the impact on 
instrument performance had by the different samples run on the instruments on the 
intervening days between data collection for the purposes of this study). This reflects the real-
world operation of a large-scale mass spectrometry facility. This is reflected in the original 
manuscript text, as follows: 

In Main Text: “Mass spectrometer maintenance schedules varied according to each 
individual instrument’s performance”. 
-- Results, Study design and data acquisition, Para. 1 

In Figure 1c: “Instrument maintenance as required”.  

To make this clearer for the reader, we have modified the Figure 1c legend in the revised 
manuscript, as shown (underlined): 

“Figure 1. Study design. … (c) Mass spectrometer scheduling. Days on which 48-hour 
periods of data collection commenced are indicated with a black bar, and the intended 
instrument cleaning schedule is also indicated.” 

Note that the actual days of maintenance for each instrument are shown in Supplementary 
Figure 1b. We have further modified the revised manuscript to make this clearer, as shown 
(underlined): 

“Actual days of instrument maintenance and a few minor deviations from experimental 
design are shown in Supplementary Fig. 1b.” 
-- Results, Study design and data acquisition, Para. 1 
 

2.5 What do the authors mean by ‘base line controls’? Please clarify.  
 

Detail about quality controls is provided in the Methods. Some basic descriptive information 
has now also been added to the Main Text of the revised manuscript, as shown (underlined):  

“After removing files (n = 26) that did not pass baseline quality controls such as total 
numbers of proteins identified and correlation with replicate samples (see Methods), and 
discarding a small number of peptides that were inconsistently observed across the 
cohort (n = 934; see Methods), 1,527 runs were retained (Supplementary Table 1, 2). 
These runs comprised data from a total of 17,054 peptides derived from 2,796 proteins, of 
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which 2,363 were human proteins.” 
-- Results, Study design and data acquisition, Para. 2 

 
2.6 According to the main text, 80% of proteins were supported by evidence from at 

least 2 peptides. This seems unusual for a DIA measurement (nowadays, this figure 
is even reached by DDA) unless proteome coverage was very deep. But this does not 
appear to be the case. Any idea why that is?  

This particular ratio relies on many factors, including the original complexity of the tissue 
proteomes extracted by pressure cycling technology and the underlying features of the 
library. The spectral library used in this study comprised approximately 70% of proteins with 
support from two or more peptides. For this reason, the reported value of 80% of proteins 
quantified with two or more peptides does not seem unusual. The majority of proteins 
quantified in our study were supported by two or more peptides. To clarify this, we now 
provide additional information in Supplementary Figure 2a of the revised manuscript so that 
the reader can find both individual and cumulative statistics regarding peptide support for 
each protein, as shown: 

 
Supplementary Figure 2. Distribution of non-normalised SWATH-MS data. (a) Cumulative 
(blue; left axis) and actual (red; right axis) numbers of peptides supporting each protein 
identification. Blue dotted lines indicate the point at which the cumulative number of proteins 
have support from at least two peptides.  

 

2.7 It would be useful to state in the main text roughly how many proteins/peptides were 
identified in the QC runs (say on average in each and collectively in all and how 
many were shared between all QC runs of the same type) so that readers get a better 
idea about how many data points went into the analysis that follows. 

The following text (underlined) is now included the revised manuscript: 

“Many peptides were consistently identified in technical replicates (Supplementary Fig. 
2c) and peptide intensities were broadly consistent across the six instruments and the 
eight samples (Supplementary Fig. 2d, e). Of 13,485 likely true-positive peptides (i.e., 
peptides observed in > 10% of n = 151 replicates of Sample 8, derived from HEK293T 
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Instrument :  005
Instrument :  006

cells), n = 10,109 peptides (75%) were observed in at least 75% of the replicates.” 
-- Results, Study design and data acquisition, Para. 2 

 

Baseline data reproducibility during a single experimental week:  
2.8 For the reproducibility analysis of the short term QC samples, why was only the 

second set of samples used? Does the first set of samples show the same results?  

Our experimental design specified that where possible, days 101, 103, 105 and 107 should 
occur after each instrument underwent a major clean. The relationship of the first week of 
data collection (days 1, 3, 5, 7) to a prior major instrument clean was more variable, so the 
second set of samples was preferentially used for reproducibility analysis. However, results 
reported using data acquired only on days 1, 3, 5 and 7, are highly comparable, as shown in 
Revision Figure 4.    
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Zero values in sample matrix :  3000 - 4500
Zero values in sample matrix :  4500 - 6000
Zero values in sample matrix :  6000 - 7500
Zero values in sample matrix :  7500 - 9000
Zero values in sample matrix :  9000 - 10500
Zero values in sample matrix :  10500 - 12000
Zero values in sample matrix :  12000 - 13500

Revision Figure 4. Baseline DIA-MS data reproducibility. Data shown in all plots were 
acquired during the first experimental week (days 1, 3, 5 and 7) and were not normalised. (a) 
Principal component analysis of log2-transformed experimental data, with data points 
coloured by sample (left) and instrument (right). Missing values were filled with zeros. (b) 
Coefficient of variation (CV) per instrument in the HEK293T control cell line [Sample 8]. CV 
was calculated using frequently-observed peptides (n = 2,950). A black dashed line marks a 
CV of 20% for reference. (c) Mean log2-transformed intensities per sample of ovarian cancer-
tissue specific peptides (upper) and peptides from yeast proteins (lower), coloured by 
instrument. The mean peptide intensity from each sample was adjusted so that relative 
intensities are comparable, by dividing each value by the overall mean peptide intensity. 
Ovarian cancer tissue and yeast proportions are plotted on the log2-scale. (d, e) Intensities of 
all peptides identified from the (d) prostate-specific antigen (PSA) protein encoded by KLK3 
and (e) the housekeeping protein encoded by TARDBP. Boxplots show peptide intensity, with 
bar plots indicating the proportion of replicate samples in which each peptide was observed. 
Plots are coloured according to sample, using colour-codes as shown in (a).  
 
 
2.9 Fig. 2a: can you comment on what the ‘streaks’ in the PCA plots are? 

The streaks in the PCA plot corresponding to Principal Component 2 primarily represent the 
number of zero values present in each sample (see Revision Figure 5). As noted in the legend 
of Figure 2a, we fill missing values with zero for the purposes of calculating and plotting this 
figure. Some of these missing values will represent true zero values (i.e., true negative), 
where a peptide is not present in the mixture, or the peptide is not present above the limit of 
detection. In other cases, these missing values will be false negatives in which features were 
not identified despite ions being present at detectable concentrations.  

 
 
Revision Figure 5 – Principal component analysis of log2-transformed experimental data, 
with data points coloured by the number of zeros. Missing values were filled with zeros. 
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2.10 Do you already see that the performance within this short period of time shows a 
trend?  

No, we do not see a significant performance trend over the short period of time analysed in 
the final experimental week (see Revision Figure 6): 

 
Revision Figure 6 – Intensities of human peptides before normalisation. Boxplots are 
coloured by instrument, within which data are ordered from earliest experimental day (left) to 
latest experimental day (right) within an experimental week after cleaning (Days 101, 103, 
105 and 107). Data are shown for replicates of Sample 5. 

 

2.11 The statement that “We observed an approximately linear relationship between 
the intensities of ovarian cancer tissue-specific peptides” is clearly not warranted. 
Fig 2c has no y-axis annotation but it is clear that the data follows a (shallow) 
exponential loss of intensity over the ‘dilution series’. This is very surprising as the 
‘dilution’ only spans a factor or 16. DIA is supposed to be very quantitative but this 
does not appear to be the case for this particular data.  

We believe that the shallow exponential loss of intensity in this figure was attributable to the 
data-processing method that we applied for adjusting peptide intensities in order for their 
concentrations to be comparable in peptides spanning large intensity ranges. In Figure 2c, the 
concentration of each peptide is adjusted by dividing by its overall mean intensity in the 
experiment. In the original manuscript, we performed log2-transformation before dividing by 
the overall mean intensity. In the revised manuscript, we now adjust the raw peptide intensity 
before performing log2-transformation. Adopting this revised approach, we find that the 
apparent loss of intensity in ovarian peptides over the dilution series is no longer observed. 
(Irregularity in yeast peptide intensity curves over small concentration changes are likely 
attributed to experimental rather than measurement variation). We include this revised Figure 
2c (shown below) in the revised manuscript. Y-axis annotation is now provided.   
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Figure 2. Baseline DIA-MS data reproducibility. ... (c) Relative log2-transformed intensities 
per sample of ovarian cancer-tissue specific peptides (upper) and peptides from yeast 
proteins (lower), coloured by instrument. The mean peptide intensity from each sample was 
adjusted so that relative intensities are comparable, by dividing each value by the overall 
mean peptide intensity measured on a given instrument during the period. Ovarian cancer 
tissue and yeast proportions are plotted on the log2-scale. 

 

2.12 How do the authors explain the detection of PSA in sample 7 (no prostate) and 
the very large variability of the intensity of the four different PSA peptides? Is this 
carry-over? In addition, even though one can see an association of the intensity of 
TAR DNA-binding protein 43 and the proportion of the amount of ovarian tissue in 
the sample, the relationship is not linear. Does this perhaps imply that the QTOF 
detector already saturates at log2 intensities of 13 or higher? This effect should be 
analysed more systematically. There are thousands of peptides for which this could 
be done. At this stage, it is preliminary to conclude that DIA-MS is generally 
reproducible. 

The PSA peptides in Sample 7 (containing no prostate cancer tissue) are most likely to be 
false positive discoveries. This is because (a) these peptides were found at lower intensities 
than in other samples and (b) these peptides were observed in far fewer samples. We have 
modified the revised manuscript to note this observation, as shown (underlined): 

“To investigate consistent detection of the basal tissue matrix, we examined prostate-
specific antigen (PSA; the protein used in prostate cancer screening26), and found similar 
intensities among PSA peptides in Samples 1-6 containing 50% prostate cancer tissue, 
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along with some likely false positive observations in Sample 7 containing no prostate 
tissue (Fig. 2d).” 
-- Results, Baseline data reproducibility during a single experimental week, Para. 1 

Figures 2d and 2e were generated using data that were not normalised and included 
measurements derived from six different instruments. Therefore, some level of variability 
should be expected in these measurements. After normalisation, the variability in PSA 
peptide intensities is far lower, and the dilution effect in peptides from the TAR DNA-
binding protein 43 more closely matches expectations (see Revision Figure 7):  

 

 
 

 
Revision Figure 7 - Intensities after normalisation of all peptides identified from the 
prostate-specific antigen (PSA) protein encoded by KLK3 (upper) and the housekeeping 
protein encoded by TARDBP (lower). Boxplots show peptide intensity, with bar plots 
indicating the number of replicate samples in which each peptide was observed. 

 

Importantly, Figure 2 represents initial qualitative analysis that serves to orientate the reader 
to the dataset. We perform the systematic analyses requested by the Reviewer subsequently 
in the manuscript. For example, in Figure 3e we provide correlations with the human tissue 
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dilution series for 2,904 peptides. To make this clearer to the readers, we have modified the 
following text in the revised manuscript as shown (underlined): 

“From these initial qualitative analyses, we conclude that DIA-MS data obtained over a 
short time-period are generally reproducible and can support discriminative accuracy 
between human tissues prior to normalisation.” 
-- Results, Baseline data reproducibility during a single experimental week, Para. 1 

 

Decrease in instrument sensitivity over time since cleaning:  
2.13 Fig. 2a and 2b show a ~4x variation of peptide intensities over just 4 weeks and 

the authors do point this out. Although this reviewer does not question to general 
validity of the statements made around Fig. 2b, I would be very careful when 
interpreting results of Pearson correlations that only have 4 data points (why was 
the 50ug sample not included?) … Again, one should be very careful not to over-
interpret Pearson correlations on four data points as shown in Fig. 3d.  

Please note that we assume the Reviewer is intending to refer to Figure 3 rather than Figure 
2, and we respond accordingly.  

These Pearson correlations relate to datapoints within one of four categories, but they are 
calculated on many more than four data points. Importantly, variance of these data points 
around the mean is reflected in the calculation of Pearson correlation. Moreover, Pearson 
correlation is only one of the metrics used for assessing the success of our normalisation 
approach. The others are CV (Figure 3f) and significant differences in peptide intensities 
(Figures 5a, 5b and Supplementary Figures 5a, 5b). To address this point, we have modified 
the revised manuscript as shown (underlined): 

“The effectiveness of RUV-III-C in normalizing replicate data was assessed with a 
variety of metrics, such as median experiment-wide CV of frequently-observed human 
peptides which decreased from 37% to 13%, and dilution linearity which improved from 
0.25 to 0.67 Pearson correlation (see also Fig. 5 and Supplementary Fig. 5).” 
-- Discussion, Para. 2 

Regarding the “50ug sample” queried by the Reviewer, two samples in our cohort contained 
50% ovarian cancer tissue (Samples 6 and 7) but neither of these samples is suitable for the 
correlation analyses performed in Figure 3b. Sample 7 contained no prostate cancer tissue 
and therefore the intensity of human peptides in this sample should not follow a linear 
relationship when compared with Samples 2-5. Sample 6 was discarded prior to 
normalisation as it did not contain the yeast peptides that were necessary negative controls.  

 

Development of a method for data normalization: 
2.14 It is not clear to this reviewer why the ‘novel’ normalization procedure was 

necessary or if it really improved the results. Looking at Fig 3c and the 
supplementary figures, it at least visually looked as if median centering the data 
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produced better intensity normalized results than RUV-III-C. At least when using 
all peptides for normalization. Why do the authors show the normalization based on 
the iRT peptides only in the main figure?  

Median normalisation works by setting the overall median for each sample to the same value 
across a cohort. Hence, it is entirely unsurprising that the results of this procedure produce 
the best-looking normalisation results in Supplementary Figure 3c. However, as stated in our 
original manuscript, “it is possible for normalisation to obscure biological changes when 
removing technical variation. This is a particular risk when cohorts comprise complex 
samples such as heterogeneous human tissues.” For this reason, in our original manuscript 
we sought to also examine (a) iRT peptides (see Figures 3a and 3c) and (b) correlations 
between human peptide intensity and human tissue concentration (see Figures 3b, d-e). These 
metrics both demonstrate the superiority of RUV-III-C when compared with median 
normalisation. To make clearer that we do not intend for the reader to conclude from 
Supplementary Figure 3c that median normalisation was successful, we have modified the 
related text in the revised manuscript as shown below (underlined):  

“Median normalisation and median normalisation plus ComBat29 for batch effect 
removal at first appeared to successfully normalise the entire set of peptides 
(Supplementary Fig. 3c), but importantly, variability remained in the intensities of 
individual peptides (Supplementary Fig. 3d). Further, correlation with the dilution series 
was only minimally improved (0.32 and 0.40, respectively; Fig. 3e).” 
-- Results, Development of a method for data normalisation, Para. 3 

The variation that we observed in iRT peptides indicated that subsets of peptides are more 
informative for determining the success of each normalisation approach than the entire set of 
peptides. For this reason, we included these in the main Figure 3, and the plots of all peptides 
are shown in the Supplementary Figure 3.  

 

2.15 What is quite puzzling is that the new normalization procedure did not really 
improve results for an individual instrument (Fig. 3f). Hence, the improvements 
across the entire data set is surprising in its extent. 

The single instrument results in Figure 3f in the original manuscript reflect a single week of 
data collection. There is very little to normalise when data relate only to a single operating 
week on a single instrument (see Revision Figure 6), so the impact of RUV-III-C in these 
circumstances is limited. Importantly, when data are combined across all instruments in a 
single week, or across the entire experimental period, the reduction in CV is much more 
pronounced. This is the significant contribution of our approach, and we have modified the 
text to highlight this in the revised manuscript as shown (underlined): 

“Most importantly, our unique study design enabled insights into the sources of technical 
variation in high-throughput MS, leading to the development of the ProNorM 
methodology that can mitigate these effects particularly over long periods and/or across 
multiple instruments.”  
-- Discussion, Para. 1 
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To further address the Reviewer’s comment, we have modified Figure 3f in the revised 
manuscript. The revised figure (see below) now shows CVs for each sample type across the 
experiment averaged over six instruments, which should be more informative for readers. 

 
Figure 3. Peptide intensity variation during the experimental period and normalisation 
approaches. … (f) Coefficient of variation (CV) of frequently-observed human peptide 
intensities, calculated for each sample during the experimental period across all instruments. 
A black dashed line marks a CV of 15% for reference. 

 

Technical replacement of missing values:  
2.16 Missing value imputation is a tricky business and the authors may want to point 

this out. The Figure 4a is a good way of showing this but I would suggest to add a 
line that shows the intensity distribution of the high-confidence peptides to be able 
to see if MCAR peptides are similar or dissimilar to the frequently detected 
peptides. However, I don’t think it is necessary to show six almost identical plots to 
make this point. One could show one or two and move the rest to the supplement.  

We have incorporated the following text into our revised manuscript (underlined): 

“The numbers of peptides observed across replicates varied up to three-fold during 
the study, with highest peptide numbers recorded after instrument cleaning (Fig. 4b). 
Adequately dealing with missing values in a large dataset can be challenging. We 
developed a new method termed technical replacement that leverages technical 
replicates at different phases of instrument maintenance, to replace missing values 
with plausible intensities.” 
-- Results, Technical replacement of missing values, Para. 2 

Please note that we use the term ‘replacement’ in our manuscript to differentiate our method 
from traditional ‘imputation’ methods that use model-based estimates generated in silico. 

Peptides defined as likely missing completely at random (MCAR) are in fact frequently 
detected peptides. MCAR peptides were defined as such if they were missing in an average of 
£ one of six replicates, across random groups of six replicates. Figure 4a demonstrates that 
MCAR peptides were generally present at high intensities in our cohort.  
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We have moved some of the panels from Figure 4a to Supplementary Figure 4, as shown: 

 

Revised Figure 4a 

 
Figure 4. Missing values and results from technical replacement. (a) Distribution of 
median non-missing intensity of each peptide designated as likely missing completely at 
random (MCAR) and missing not at random (MNAR) in Samples 1 and 2. 
 

Revised Supplementary Figure 4a 

 
Supplementary Figure 4. Missing values and peptide identifications after technical 
replacement. (a) Distribution of median non-missing intensity of each peptide designated as 
likely missing completely at random (MCAR) and missing not at random (MNAR) in Samples 
3, 4, 5 and 7. 
 

2.17 Similarly, it would suffice to show one or two instrument panels in Fig 4b.  

We agree with the Reviewer that all six instrument panels are not required for adequate 
interpretation of Figure 4b. However, we feel that as currently shown, Figure 4b maintains 
an important consistency with Figure 3a.  
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2.18 I suggest that the extra space generated in this way could be used to illustrate 
that/how imputing missing values improves reproducibility. This is not really 
captured in Fig.4c but would be important to show. The current Fig 4c raises the 
question as to how important the missing value imputation actually is. Even without 
any ‘technical replacement’, the true positive ISs are already at >97% (at 5% FP). 
Increasing the true positives by just 2% comes at the cost of increasing false 
positives by almost a factor of two. The authors should therefore tone down the 
importance of this imputation (albeit acknowledging that this does not seem to hurt 
much).  

We have reduced the size of Figure 4c and incorporated a new figure (Figure 4d) in the 
revised manuscript. Figure 4d demonstrates the manner in which technical replacement 
improves reproducibility, as described below in the revised text (underlined): 

“When technical replacement was applied across replicates acquired on three 
instruments (where missing values were only replaced when a peptide was observed in 
two replicates), ~20% of missing values could be replaced with plausible non-zero 
intensities. Technical replacement became more effective as samples comprised 
increasing proportions of ovarian cancer tissue (Fig. 4d), likely because higher peptide 
intensities led to more reliable detection of each peptide in at least two replicates.” 
-- Results, Technical replacement of missing values, Para. 2 

 

 
Figure 4. Missing values and results from technical replacement. … (d) Proportion of 
missing values replaced in each sample after technical replacement. Data are shown for 
triplicates with missing values replaced when a peptide was observed in two of three replicates, 
i.e., 3MS (≥2 MS).  
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Figure 4c is intended to show the true and false positive rates resulting after different 
methods of technical replacement. The reader should then infer from this figure which 
method is most suitable. We have modified the text below (underlined) to make this clearer 
in the revised manuscript: 

“We defined likely true and false positives (see Methods) and, after technical 
replacement, the likely true positive rate increased from 97.2% to over 99% (Fig. 4c). 
With no constraints on replacement, the likely false positive rate increased with each 
subsequent technical replicate, from 4.8% to 24.6% with six replicates (Fig. 4c). Hence, 
to constrain false positive accumulation, missing values are best replaced only when a 
peptide is observed in more than one replicate. Only in this manner can the true positive 
rate be increased without considerably impacting upon the false positive rate.” 
-- Results, Technical replacement of missing values, Para. 2 

To satisfy the Reviewer’s comment regarding the importance of technical replacement, we 
have modified the related text in the revised manuscript to provide a more nuanced 
discussion of when technical replacement might provide benefit, as shown (underlined):  

“Increasing technical replicate MS runs clearly comes at a cost. Increasing the number 
of technical replicates may be a useful strategy for analysis of small clinical cohorts, such 
as those available from rare diseases or clinical trials, or where researchers would 
derive benefit from a data matrix with fewer missing values. In the absence of technical 
triplicates for all samples, RUV-III-C can still be applied to a cohort independent of 
technical replacement, provided that at least some samples are replicated at various 
points during the experimental period.” 
-- Discussion, Para. 3 

 

Simulation of cohort analyses in proteomics:  
2.19 From reading the main text, it is not very clear what Fig. 5a shows. 

We now incorporate the following additional text into the revised manuscript to improve 
clarity for the reader regarding Figure 5a (underlined): 

“Examining frequently-observed human peptides and averaging across technical 
triplicates, we found that ProNorM conferred a vast improvement on our ability to detect 
and quantify significant differences in human peptide intensities between samples 
containing different proportions of human tissue (P < 0.0001 by unpaired t-test; Fig. 
5a).” 
-- Results, Simulation of cohort analyses in proteomics, Para. 1 

 

2.20 The same applies to Fig. 5b. While the reviewer can guess what the solid blue 
lines show, the grey areas and the lines in them are not clear. Perhaps I do not get 
the figure at all but the data in 25% ovarian cancer tissue proportion panel in Fig 5b 
implies that it was impossible to distinguish samples with 25% or 50% ovarian 
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cancer content. This would be highly unexpected as this should be the easiest of all 
comparisons. Please clarify. 

We have simplified Figure 5b in the revised manuscript. We have also added additional 
labelling and detail in the legend. We now also provide Supplementary Figure 5b, to allow 
for further information to be shown. Please see the revised plots below.  
 

 
Figure 5. Simulation of cohort analyses for discovery proteomics. … (b) Percentage of 
frequently-observed human peptides that were significantly different (vertical axis) in 
simulated cohorts of varying sizes (horizontal axis). Plots show comparison between Sample 2 
(containing 3.125% ovarian cancer tissue) and Samples 2-5 (containing 3.125% to 25% 
ovarian cancer tissue), without normalisation (left) and after ProNorM (right). Shading 
denotes 95% confidence intervals derived from ten iterations of random selections of replicates 
of each sample. 
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Supplementary Figure 5. Simulation of cohort analyses for discovery proteomics across 
normalisation methods. … (b) Percentage of frequently-observed human peptides that were 
significantly different (vertical axis) in simulated cohorts of varying sizes (horizontal axis). 
Plots show comparison between Sample 4 (containing 12.5% ovarian cancer tissue) and 
Samples 4-5 (containing12.5% and 25% ovarian cancer tissue), without normalisation (left) 
and after ProNorM (right). Shading denotes 95% confidence intervals derived from ten 
iterations of random selections of replicates of each sample. 
 

Prediction of tissue proportion in a complex mixture: 
2.21 It would indeed be exciting if this approach could work. However, the machine 

learning part is incomprehensible from reading the main text and, more 
importantly, how relevant is it to train such a classifier based on a mixture of two 
cancer types and yeast that are mixed into one sample. Such a situation would never 
occur when analysing clinical specimen. Furthermore, in light of the data from the 
previous section, this reviewer seriously doubts that that any such predictions can be 
meaningfully performed on the very limited amount of available data used for 
training. How do the authors make sure that the model is not entirely overtrained? 
In my opinion, a 10-fold cross validation does little/anything to validate the 
predictions. Instead, another data set should have been generated to test the 
performance of the trained classifier.  

The intention of the analysis described in Figure 6 is to demonstrate that DIA-MS data are 
suitable for creating a model that can accurately predict the underlying composition of a 
peptide mixture. When analysing clinical specimens, we can use the same strategy to re-train 
a model that is based on the clinical cohort of interest. The results reported in our current 
study suggest that with appropriate training data, data obtained by DIA-MS could be 
successfully used to develop a model that could predict, for example, the proportion of cancer 
cells in a tissue biopsy in a real-world clinical scenario. 

Our machine learning predictions were made using only human peptides (not human and 
yeast peptides) from different cell types, making our simulated scenario more similar to what 
might take place in a real-world clinical setting. We have modified the text in the revised 
manuscript to clarify this for the reader (see below, underlined).  

Regarding the Reviewer’s comments suggesting limited data and over-training, we do not 
believe that these are valid criticisms of our model. We applied an MLP regressor which is 
regularized – a technique to mitigate overfitting/over-training. Furthermore, we developed 
four separate models, each trained on three concentrations of ovarian cancer tissue and tested 
on the remaining concentration, which was entirely unseen by the regressor. For example, to 
assess the prediction performance of the model for 3.125% ovarian cancer tissue 
concentration (n = 225 samples x 13,721 peptides), the regressor was trained using data only 
from samples containing 6.25%, 12.5% and 25% ovarian cancer tissue (n = 695 samples x 
13,721 peptides). Thus, the reported errors were out-of-sample or generalisation errors. We 
also note the large numbers of data points for both training and testing, which should be a 
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sufficient sample sizes for this analysis. Ten-fold cross-validation was only employed for 
parameter tuning, as described in the original manuscript.  

We have further modified the text (underlined) to improve clarity for the reader, as follows: 

“The ability to estimate the proportion of a specific tissue component in a complex 
sample could have diagnostic utility (for example, the proportion of cancer cells in a 
tissue biopsy)31. To demonstrate whether such an analysis might be possible using DIA-
MS data, we applied machine learning to estimate the proportion of ovarian cancer tissue 
among the prostate cancer tissue background after ProNorM. We trained four 
regularized regression models on the entire set of human peptides measured in three 
concentrations (for example, 6.25%, 12.5% and 25% ovarian cancer tissue; n = 695 
samples) to avoid overfitting. Hyperparameters were tuned by ten-fold cross validation, 
and we report out-of-sample errors after testing the models on the remaining independent 
concentration (for example, 3.125% ovarian cancer tissue concentration; n = 225 
samples; see Methods; Fig. 6 and Supplementary Fig. 6). Our models successfully 
predicted ovarian cancer tissue proportions with a mean absolute error of as low as 0.8% 
(Fig. 6). Therefore, with appropriate training data, DIA-MS could be applied to measure 
tissue proportions in a complex background, demonstrating significant potential for 
clinical proteomics.” 
-- Results, Prediction of tissue proportion in a complex mixture, Para. 1 
 

Other points: 

2.22 This reviewer suggests that the authors came up with an alternative title that 
better reflects the content of the paper. The current one is too general and likely 
turns away a lot of potential readers.  

We have modified the title of the revised manuscript, which now reads: 

“Strategies to enable large-scale proteomics for reproducible research” 

 

2.23 There are a few minor issues with language and grammar that should be fixed. 

We have corrected any language and grammatical errors discovered during the revision 
process. 

 

2.24 The text could be clearer in places. E.g. in the abstract, it is not clear what 
‘control’ is. This becomes clear in the main text (HEK293T cells). Also, the term 
‘dilution series’ is not accurate for the description of samples 1-6. The total peptide 
content in these samples is the same but the proportions of the ovarian cancer and 
yeast samples are different.  

We now specify in the abstract of the revised manuscript that our control was HEK293T 
cells. We have also clarified wherever appropriate that we intend to refer specifically to a 
dilution series of either ovarian cancer or human tissue.   
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Co-worker I 
 

Major comments:  
3.1 In particular in the first paragraphs there is a lot of repetition of what is already 

known. For example, the reproducibility chapter was already covered by Collins, et 
al 2017 in a more comprehensive way (intra-day variation, inter-day variation, even 
inter-lab variation). Other studies focus on the reproducibility and repeatability of 
DDA data (Tabb et al, 2010). Another example is the sensitivity decrease post 
cleaning chapter. The results are common knowledge. 

The Introduction is written to give the reader background knowledge relating to the field. 
This allows our manuscript to be clearly placed within the existing literature.  

 

3.2 It would be more desirable if the entire data set is analysed in terms of long-term 
reproducibility which is novel and interesting! In this case it would be helpful to 
name the factors that mostly influence reproducibility.  

The main focus of this manuscript is reproducibility over-time and we have identified 
instrument maintenance as the key contributing factor. This is outlined in the Introduction in 
the original manuscript, as shown: 

“When measurements are acquired over short experimental periods, DIA-MS data 
collected across different laboratories can be adequately combined. However, to achieve 
datasets of sufficient size to support robust discovery, data collected from multiple 
instruments over long periods must be effectively integrated. It is therefore imperative 
that the impact of factors affecting the reproducibility of peptide quantitation are known, 
and that data analysis techniques are developed to optimise reproducibility under these 
circumstances.” 
-- Introduction, Para. 3 

To address the Co-Worker’s comment, we have modified the revised manuscript to further 
clarify our aims, as shown (underlined): 

“To enable acquisition of reproducible large-scale data for studies of cancer and other 
diseases, the aim of this study was to document the degree of long-term inter-instrument 
and temporal variation in the discriminative proteomic profiles of cancer tissues analysed 
in a high-throughput facility, and to develop methods to improve reproducibility.” 
-- Introduction, Para. 4 

 
3.3 The RUV-III-C algorithm is a variant of RUV-III. As cited in the manuscript, 

another group already implemented this algorithm for gene expression data. In the 
present study, the authors transferred this knowledge to proteomics data and 
extended the algorithm to data sets with missing values.  

This statement is correct. 
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3.4 One selling point of DIA is that it has in general fewer missing values than DDA. 
Why do the authors apply their method not to DDA data or show the difference 
between DDA and DIA. It would be great if the normalization procedures could be 
applied to all kind of proteomic data sets. This makes an even stronger point than 
comparing the results of two mass spectrometric platforms (Sciex vs Orbitrap), 
because there the output data is very similar.  

The purpose of our analysis was to assess the reproducibility of large-scale DIA-MS data. For 
this reason, we designed this large-scale study to acquire 1,560 MS runs on six instruments 
across a four-month period. We agree that analysis of DDA-MS data might be of interest, but 
it is outside the scope of this present study. Our analysis of DIA-MS data from both SCIEX 
(see Supplementary Figures 3e and 3f) and Orbitrap (see Supplementary Note) instruments 
importantly demonstrates the applicability of ProNorM beyond our specific experimental 
design.  

 

3.5 How long does it take to normalize data and replace missing values with ProNorM? 
Which computational resources are required?  

In brief, the time required to run RUV-III-C and perform technical replacement will naturally 
depend on the size of the dataset being analysed. Unless a dataset is extremely large, both 
processes can be completed on a standard laptop or desktop computer, and we do not expect 
computational resources to be a limiting factor. In cases where researchers do find 
themselves reaching the limits of their in-house computational resources, researchers can 
utilise cloud computing platforms to great success.  

To provide a quantitative answer for the Co-Worker, we adopt big-O notation, which 
describes the rate at which computational requirements change as the input grows. For 
example, O(n) indicates that a doubling of input size doubles the computational requirements. 
O(n2) indicates that a doubling of input size multiplies computational requirements by four 
times. For each peptide, RUV-III-C first computes an orthogonal projection, which in 
practice will have the complexity O(num_per_peptide3) of matrix multiplication, where 
num_per_peptide is the number of mass spectrometer runs in which the current peptide is 
detected. We then compute the first k singular values of a num_per_peptide x 
num_per_peptide symmetric matrix. Complexity will therefore depend on k and 
num_per_peptide. Given that num_per_peptide will be less than the number of samples, a 
very conservative upper bound for the runtime of the entire algorithm will be 
O(num_samples3 x num_peptides). The computational resources required for technical 
replacement are trivial, and this method requires O(n) time. As reported in our manuscript, 
technical replacement was implemented using Python code. Each iteration of technical 
replacement reported in Figure 4c was completed in under an hour using a standard laptop 
computer. 

To address the comment raised by the Co-Worker, we have added the following text to the 
revised manuscript (underlined): 
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“We will execute as many runs of RUV-III on different subsets of acquisitions as there 
are peptides that we wish to normalise. Unless a dataset is extremely large, we do not 
expect computational resources to be a limiting factor.” 
-- Methods, Normalisation to remove unwanted variation, Para. 4 

 

3.6 Do the authors attempt to include their procedure as an option in standard DIA 
analysis software tools?  

We would greatly encourage the inclusion of our methods in standard DIA analysis software 
tools. However, we have not developed any such tools ourselves, and we therefore do not 
have the option to incorporate ProNorM into these software tools. Once our method becomes 
accepted by the scientific community through publication of our manuscript, we would 
encourage ProNorM to be integrated into standard tools. In the meantime, our methods are 
clearly described in our manuscript, and we have made RUV-III-C available as a public 
package for other researchers to utilise in their own pipelines.  

 

3.7 Is the data first normalized and then imputed or the other way around? Why was 
this order chosen (Karpievitch, 2012 show that the order matters)?  

Data are normalised first and imputed second. By doing so, we ensure that any datapoints 
transferred during technical replacement are first made to be comparable across replicates 
and instruments.  

 

3.8 It would be great if authors could show a biological example where this 
normalization and imputation strategy outperforms standard normalization and 
imputation strategies. Maybe there are examples where without these novel 
algorithms, no biological conclusion can be drawn. 

It is challenging to obtain public DIA-MS datasets (a) of sufficiently large-scale and (b) in 
which a clear biological endpoint can be determined that is not yet known. Many existing 
large-scale studies were conducted for the purposes of exploratory research, and unknown 
biological distinctions are not trivial to discover. Most importantly, conclusions about the 
validity of a novel normalisation method cannot be drawn unless the underlying biology is 
known. Figures 5 and 6 are intended to serve as a proxy for biological examples, 
demonstrating how ProNorM might enable conclusions to be drawn that would not otherwise 
have been possible without this algorithm. Our experiment is specifically designed to 
determine whether our normalisation method works as expected. Many previous studies 
focusing on quality-control and reproducibility also use standard samples as the most ideal 
reference point for assessment (for example, see Navarro et al Nat Biotechnol 2016).  

We expect that as ProNorM, together with our recommendations for experimental design, are 
adopted by researchers conducting large-scale DIA-MS studies into the future, that our 
methods will enable novel biological discoveries to enter the literature.    
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Minor comments:  
3.9 Introduction and study goal: The study goal is much better outlined in the abstract 

than in the introduction. Major aim was not the evaluation of reproducibility, but 
the development of a new algorithm that improves reproducibility. 

We have modified the Introduction in the revised manuscript to more clearly state the aim of 
our study, using language similar to that used in the Abstract, as shown (underlined): 

“To enable acquisition of reproducible large-scale data for studies of cancer and other 
diseases, the aim of this study was to document the degree of inter-instrument and temporal 
variation in the discriminative proteomic profiles of cancer tissues analysed in a high-
throughput facility and to develop methods to improve reproducibility.” 
-- Introduction, Para. 4 

 

3.10 Page 6, paragraph 2 and methods section: `Many peptides were consistently 
identified…` Filtering happened before. It would be also great to show how 
consistent the data is without filtering. 

This information was provided in the Methods of the original manuscript. Here we described 
that filtering excluded only a small number of samples (n = 26) and peptides (n = 934), 
leaving 1527 samples and 17,054 peptides for analysis. These figures demonstrate that very 
minimal filtering was performed given the scale of this study, giving the reader an indication 
of the consistency of the dataset prior to filtering. We have modified the main text in the 
revised manuscript to provide further information, as shown (underlined): 

“After removing files (n = 26) that did not pass baseline quality controls such as total 
numbers of proteins identified and correlation with replicate samples (see Methods), and 
discarding a small number of peptides that were inconsistently observed across the 
cohort (n = 934; see Methods), 1,527 runs were retained (Supplementary Table 1, 2). 
These runs comprised data from a total of 17,054 peptides derived from 2,796 proteins, of 
which 2,363 were human proteins.” 
-- Results, Study design and data acquisition, Para. 2 

 
3.11 Page 6, paragraph 3: Only quantitative evaluation, but what about the quality of 

the data, e.g. repeatability (similar to Tabb et al). What about intra-day, inter-day, 
inter-instrument analysis?  

We intend for Figure 2 to be only a general introduction to our dataset. Inter-instrument and 
qualitative analyses have been performed in detail in subsequent figures (see specifically 
Figures 3 and 4). To make the intended purpose of Figure 2 clearer for the reader, we have 
modified the text of the revised manuscript as follows (underlined): 

“We next investigated longitudinal variation in experimental data over the entire study 
period, as was the primary aim of this study.” 
-- Results, Decrease in instrument sensitivity over time since cleaning, Para. 1 
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As noted by this Co-Worker in Comment 3.1, the requested elements of intra-day and inter-
day analysis have been discussed by Collins et al (Nat Commun 2017) and Tabb et al (J Prot 
Res 2010). We do not feel that additional analysis in this area would add value to our 
manuscript, as the primary stated purpose of our study is to assess long-term reproducibility.  

 

3.12 Additionally, it would be very helpful to get the acquired data points per peak so 
that the reader can get a feeling of the quality of quantification. 

The average peak width in this study was 40.87 seconds. With a cycle time of 3.2 seconds, 
we therefore acquired an average of 12.8 data points per peak. We now provide this 
information in the Methods of the revised manuscript, as shown (underlined): 

“MS2 spectra were collected in the range 100-2000 m/z for 30 ms in high resolution 
mode and the total cycle time was 3.2 seconds. The average peak width was 40.87 
seconds, meaning that an average of 12.8 data points were acquired per peak.” 
-- Methods, DIA-MS data acquisition, Para. 2 

 

3.13 Page 6/7: What about chromatographic stability à easy check with iRTs, does 
this influence the identification and quantification of peptides? 

Retention times were generally very stable during the experimental period (see Revision 
Figure 8). We observed only minor changes in retention time associated with probe, 
analytical column or trap column changes, which occurred infrequently during the 
experimental period.  
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Revision Figure 8 – Observed retention time of indexed retention time peptides (n = 29) in 
Sample 5 during the experimental period. Times of instrument maintenance are indicated 
with coloured vertical lines and results from each instrument are shown in separate panels. 

 

3.14 Page 7, paragraph 1 and 2: What about the abundance of the chosen peptides? 

This information is provided in Figure 3b, where the y-axis indicates the intensity of the 
chosen peptide in each sample.  

 

3.15 Page 10, paragraph 1: ‘We then replace missing values … observed for that 
peptide in a technical replicate’. What happens if the replicates do not contain this 
peptide? This might be a peptide that is regulated and might be of interest or is a 
false identified one. 

We only replace a missing value if it is observed (i.e., identified by the OpenSWATH 
pipeline) in a technical replicate. We have modified the relevant text in the revised 
manuscript to make this clearer for the reader, as follows (underlined): 

“We then replaced missing values with a value sampled from a normal distribution 
centred around the mean normalised intensity observed for that peptide if it were 
identified in a technical replicate (see Methods).” 
-- Results, Technical replacement of missing values, Para. 2 

 

3.16 Page 11, paragraph 2: what’s the quality of the 25 replicate samples? From 
which time points were they taken (after cleaning, before and after cleaning, etc)? A 
comparison to standard normalization techniques like grand mean normalization 
would strengthen the conclusion. Comparison to non-normalized data and a 
conclusion that the algorithm improves statistical significance is obvious.  

We used all samples that contained 25% ovarian cancer tissue for Figure 5b, regardless of 
time since cleaning. Please note that we have modified Figure 5b to simplify the contents and 
provide more detailed labelling and legend in the revised manuscript (see Response 2.20). To 
provide further explanation here, Figure 5b functions much like a power analysis – extending 
the results in Figure 5a and Supplementary Figure 5a by simulating scenarios in which we 
might have smaller numbers of samples in a cohort. Supplementary Figure 5a compares the 
results of ProNorM with data normalised using other approaches (i.e., median normalisation 
and median normalisation plus ComBat). This figure demonstrates that ProNorM conferred 
the greatest improvement in statistical significance when compared with data normalised by 
other methods, and not only when compared to non-normalised data.  

 
3.17 Page 20, 515, 516: Precipitation of SDC, page 20: no washing 

We clarify that the queried step relates to precipitation of SDC, not peptides. Hence, no 
washing step was required. Furthermore, samples were subjected to C18 SPE clean-up prior 
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to mass spectrometer analysis. We refer the Co-Worker to the Methods of the original 
manuscript, which describes these steps in detail.  

 

3.18 Page 20, 530; Page 21, 548: Library was generated with 0.5 % FA, DIA 
measurements with 0.1% FA. Any reason for that? 

We have corrected the relevant Methods text in the revised manuscript to indicate that the 
fractions were resuspended in 0.1% FA rather than 0.5%. 

 

3.19 Page 21, 561: Why using three different search engines? What’s the overlap 
between them? 

Three complementary search engines were used to increase the confidence and sensitivity of 
our identifications when compared with single-search engine processing. The utility of this 
approach has been demonstrated in the literature and is commonly used in other studies (see 
Shteynberg et al Mol Cell Proteomics 2013, Nesvizhskii et al J Proteomics 2010 and Stewart 
et al Nat Commun 2019). 

We observed significant overlap between the spectral libraries generated by each search 
engine when considering peptides from prostate and ovarian cancer tissue (Revision Figure 
9). However, we found that Mascot identified far higher numbers of both total and unique 
PSMs from yeast than did X!Tandem and MS-GF+ (Revision Figure 9). This demonstrates 
both the importance and utility of adopting a multiple complementary search engine approach 
to spectral library generation, as was the case in this study.  

 
 

 

 

 

 

 

 

Revision Figure 9 – Numbers of total (left) and unique (right) PSMs identified by each 
search engine for each sample indicated.  

 

3.20 Page 22, 574: ‘peptides (including modified peptides): Use precursors 
information or use the term modified peptides instead. 

We have modified the relevant text in the revised manuscript, as shown (underlined): 
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“The resulting library contained 31,614 precursors from 6,865 proteins, of which 5,013 
are human proteins.” 
-- Methods, Spectral reference library generation, Para. 4 

 

3.21 Page 22: 7.000 proteins from 39.033 peptides. What is total protein/peptide 
number without all the filtering?  

These data were provided in the Methods of the original manuscript. We have now added this 
information to the Main Text in the revised manuscript – see Response 3.10.  

 

3.22 Page 23: 100 variable windows with 3.2 sec cycle time à dp/peak? 

See Response 3.12. 

 

3.23 Page 24, 620: Why excluding samples with R2 < 0.9 in replicates? This is a study 
about reproducibility. Why excluding files with less than 1.200 proteins, what’s the 
explanation? 

In a large study acquiring > 1,500 MS runs, we naturally expect that some data will be of 
particularly poor quality and beyond that which is due to general instrument variation and 
performance degradation. As would typically be done in other experiments, we chose to 
remove any files that appeared to be particularly poor (i.e., outliers) before proceeding with 
normalisation. The limits of 0.9 Pearson correlation and 1,200 proteins were data-driven 
thresholds, below which were only a handful of files (n = 26 / 1,560). We reasoned that 
removing such files enabled a fairer assessment of DIA-MS reproducibility, as it would 
mimic the data pre-filtering process that other laboratories would typically go through when 
conducting a large-scale biological study. To ensure transparency, this is clearly documented 
in both the Main Text and Methods, and the discarded files remain available for download via 
PRIDE under the accession number PXD015912.   

 

3.24 Page 27, 695: What about propagation of variation when scaling? à 
Normalization is applied already to this set, 

Any variation inherent to these yeast peptides will be present when intensities are scaled. 
RUV-III-C uses the variation in negative control peptides (which are otherwise expected to 
be unchanging across the experimental period) to estimate and then subtract unwanted 
variation from the remainder of the cohort. Negative control peptides are un-normalised at 
the time of input into RUV-III-C.  
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Coworker II 

 

Key points in this manuscript 

4.1 We demonstrate for the first time the reproducibility of large-scale DIA-MS 
measurements over extended periods and across multiple mass spectrometers. This is true, 
but I personally doubt the value of this experimental design. 

This experiment presents a unique quality control assessment, reflecting how a large centre 
might run clinical samples on a daily basis, while ensuring statistical rigor. We believe that 
the results presented in this manuscript, along with the improvements made after this review 
cycle, will be a testament to the value of our experimental design.  

 

4.2 To reflect real-world operating conditions, approximately 6,500 MS runs were carried 
out over a four-month period, during which the mass spectrometers received minor and 
major maintenance on an as-needed basis. I think this is not very meaningful, unless they 
aim to generate dataset under different MS sensitivity at the beginning. The sensitivity 
loss is well known in proteomics labs. In the real-world operating conditions, 
researchers can easily monitor the machine performance by QC sample, the 
maintenance can be very flexible based on the QC data instead of an as-needed basis. In 
such big project, QC samples must be run to monitor the real time system performance. 

As indicated, our goal was to “reflect real-world operating conditions” (i.e., operating 
conditions where the mass spectrometer operated above minimum quality thresholds but still 
with varying sensitivity). For this reason, we could not specify a maintenance schedule at the 
outset, but instead we performed instrument maintenance when required according to QC 
data. We have modified the text of the revised manuscript to clarify for the reader that we did 
indeed use QC samples to monitor instrument performance. We defined “as-needed” by 
reference to these QC samples, as follows (underlined): 

“To reflect real-world operating conditions, approximately 6,500 MS runs were carried 
out over a four-month period, during which the mass spectrometers received minor and 
major maintenance on an as-needed basis, indicated by quality control measures.” 
-- Key Points 

 

4.3 We developed a novel strategy for MS data processing called ProNorM, which uses 
negative controls and technical replicates to normalise data from multiple instruments, 
reducing technical variation while strengthening biological signal. 

No response required. 

 

4.4 ProNorM rescues approximately 20% of values likely missing for technical reasons, by 
replacing these with plausible intensities from a distribution derived from replicates 
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run on other instruments. The ProNorM method was developed to distinguish the 
real missing values due to low intensity (there is a concentration series in sample 1-8, 
there will be a trend. If the peptides have intensity values in high concentration, and 
NA in the low concert ration, they call it completely random NA) and missing values 
due to random reasons. ProNorM method seems to rely on the technical replicates. 
However, in the real DIA/SWATH analysis, 1) it is time consuming to run lots of 
duplicates for each sample, 2) the experimental intensities of peptide are unknown 
within different individual samples. Therefore, the ProNorM method seems not to 
work for real samples. 

See Response 4.18. 

 

4.5 DIA-MS data acquired over extended time periods from multiple instruments with 
differing maintenance schedules were reproducible, and changes in low-intensity 
peptide signals were detected in a dilution series comprising known ratios of human 
cancer tissues. I do not which data they used to conclude this. If it is Figure 2c, I will 
argue the “ovarian cancer-specific peptides” are mostly high abundant peptides in 
the ovarian tissue sample. 

The data used to support this conclusion are shown in Figures 3 and 5.  

 

Comments: 
 

4.6 Figure 1a/b and Figure 2. The appearance order of yeast/ovarian/prostate in the 
names of each sample is different, making it a little hard to understand the results. 
Figure 1b. It is not very easy to understand the experiment design from Figure 1b, 
the numbers in 1a and 1b represent different meaning. Considering one 48h period 
serves as one independent cycle, a ring cycle may be a better way to show the 
workflow. 

We have revised the ordering of panels in Figure 1a in the revised manuscript to be more 
consistent with the rest of the manuscript, as shown below.  

Modifying Figure 1b to depict a cycle as suggested may give the impression that samples 
were run continuously throughout the four-month period, which was not the case. Instead, we 
have modified the figure to indicate the run order alongside the sample number in the revised 
manuscript. We have also modified the sample numbering in Figure 1b so that it is consistent 
with the numbering used in the rest of the manuscript, as shown below. 
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Figure 1. Study design. (a) Composition of the eight samples analysed repeatedly throughout 
the study. 

 

 
Figure 1. Study design. … (b) Twenty mass spectrometry runs during thirteen 48-hour 
periods on each of six instruments. Each run is represented by a coloured panel 
corresponding to each of the eight samples (labelled S1-S8), with the run order indicated in 
the upper left corner. Four samples were run in duplicate and four in triplicate during each 
48-hour period. 
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4.7 Figure 2a. It is interesting to see there are some data points of sample 1-7 spreading 
out the grouping area in Figure 2a. How about the PCA analysis results after data 
normalization? 

We provide Revision Figure 10 below to show PCA plots using data after normalisation, 
coloured by sample (left) and instrument (right). 

 
Revision Figure 10 – Principal component analysis of log2-transformed experimental data 
after normalisation, with data points coloured by sample (left) and instrument (right). 
Missing values were filled with zero. 

 

4.8 Page 6, line 154: Figure 2c. It is very important to show the intensity distribution of 
“frequently-observed human peptides” across sample 1-7, Figure 2e only show one 
example. 

The purpose of Figure 2 is to introduce the dataset to the reader, and to show some 
qualitative figures that demonstrate the dilution series in our data. In Figure 2c, we show data 
that are summarised from hundreds of peptides, in addition to the single peptide data 
presented in Figures 2d and 2e. Most importantly, in Figure 3 we show the correlation of n = 
2,904 frequently-observed human peptides with the proportion of human tissue.  

 

4.9 Page 6, line 158: The definition of “Ovarian cancer tissue-specific peptide” is 
unclear. According to my understanding, the definition of “Ovarian cancer tissue-
specific peptide” might be (1) the “Ovarian cancer tissue-specific peptide” were 
filtered out based on the human peptides identified in both sample 1 and sample 7, 
all the other datasets from sample 2/3/4/5/6 were not usedl or (2) In summary, there 
were 156 runs of sample 1 and 7, respectively. Therefore, the appearance of these 
“Ovarian cancer tissue-specific peptide” should be < 8 runs in sample 1 (not 
containing ovarian tissue), and > 125 runs in sample 7 (not containing prostate 
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tissue). It will be much easier to understand the results if the authors describe the 
definition in details. 

Ovarian cancer tissue-specific peptides are defined in the Methods: 

 “Ovarian cancer tissue-specific peptides (n = 849) were defined as peptides derived 
from human proteins that were present in more than 80% of runs containing ovarian 
cancer tissue but not prostate cancer tissue (Sample 7) and less than 5% of runs 
containing prostate cancer tissue but not ovarian cancer tissue (Sample 1).” 
-- Methods, Data analysis and interpretation, Para. 3 

 

4.10 Page 7, line 163: Figure 2d The numbers of samples containing quantification 
information of PSA peptides in sample 1 and 6 are much lower than sample 2-5 in 
Figure 2d. This is due to the different DIA-MS runs of sample 1/6 (n=156), and 
sample 2-5 (n=234). In order to make the data much clearer, it is better to show the 
relative proportion in each sample instead of absolute numbers in Figure 2d. 

We have modified Figures 2d and 2e in the revised manuscript, as suggested. The revised 
figures are shown below, with modified legend (see underlined text): 

 

 
 

 
Figure 2. Baseline DIA-MS data reproducibility. … (d, e) Intensities of all peptides 
identified from the (d) prostate-specific antigen (PSA) protein encoded by KLK3 and (e) the 

8

10

12

14

16

Pe
St

id
e 

in
te

ns
ity

 (l
og

2)

Prostate-sSecific antigen (PSA)

L6EPAEL7DAVK FL5PGDD66HDL0LL5 H64PW4VLVA65 F0LCAG5
PeStides froP Srostate-sSecific antigen Srotein (encoded by KLK3)

0

25

50

75

100

Sa
P

Sl
es

 (%
)

10

11

12

13

14

15

3H
St

id
H 

in
tH

ns
ity

 (l
Rg

2)

HRusHNHHSing SrRtHin

FGG13GGFG1
4GGFG1S5

GISVHIS1AE3K 7SDLIVLGL3WK F7EYE74VK LVEGILHA3D
AGWG1LVYVV1Y3K

3HStidHs frRP TAR DNA-binding SrRtHin 43 (HncRdHd by TARDBP)

0

25

50

75

100

SD
P

Sl
Hs

 (%
)



 42 

housekeeping protein encoded by TARDBP. Boxplots show peptide intensity, with bar plots 
indicating the proportion of replicate samples in which each peptide was observed. 
 

4.11 Page 7, line 166: Figure 2e. As the house-keeping protein TARDBP is 
constitutively expressed, the theoretical mass ratio of TARDBP in sample 
1/2/3/4/5/6/7 should be 16:17:18:20:24:32:16. Based on the sample design, the 
TARDBP intensity in sample 1 and 7 should be the same. However, 1) the intensity 
of TARDBP in sample 7 is much higher than that of sample 1 in Figure 2e; 2) the 
number of samples containing TARDBP quantification information in sample 7 is 
also much higher than sample 1 in Figure 2e. How to explain these differences? 

TARDBP is expressed in multiple human tissues. However, our data suggest that it is not 
expressed at the same intensity in both ovarian and prostate cancer tissues. This conclusion 
explains both observations noted, namely (a) the different intensity observed in Sample 1 and 
Sample 7 and (b) the different number of samples in which the peptides were quantified 
(more highly abundant peptides are generally quantified with fewer missing values). We have 
removed the term “constitutively-expressed” in the revised manuscript to avoid any 
confusion regarding the expected intensity of these peptides across tissue-types.  

 

4.12 Page 7, line 172: Instrument sensitivity. 1) As shown in Figure 3a-b, the 
instrument sensitivity variation seems to be highly instrument specific. For example, 
“minor instrument clean” did not bring back the sensitivity of M02 and M06. 
However, the sensitivity gain of M05 after the “major instrument clean” is almost 
neglectful, the “minor instrument clean” already kept its sensitivity. Data from 
Figure 3a demonstrates that QC run is very useful to monitor the instrument 
sensitivity. As the authors run lot of other samples alongside this project, it is 
curious for them not to monitor the instrument sensitivity by QC in such big project. 
It is more meaningful to schedule the instrument maintenances based on QC results. 

We were not surprised to find that maintenance had differing effects on the restoration of 
instrument performance. Where performance was restored after a minor instrument clean, we 
suggest that issues with the Q-jet or Q0 were the cause of the original performance 
degradation. In such circumstances, no further cleaning was required. Where maintenance of 
the Q-jet or Q0 was not sufficient to restore instrument performance, a major instrument 
clean was performed to target the Q1 or TOF entrance lens.  

Instrument performance was indeed monitored by QC samples and metrics, and the results of 
running these QC samples indicated when instrument maintenance was required. For 
example, BSA protein is run every four samples for the purposes of mass calibration and to 
monitor MS/MS intensity. A sample of HEK293T is run every 16 samples to further monitor 
intensity. After instrument maintenance, instruments are checked using manufacturer 
provided standards to ensure that the instrument passes manufacturer specifications. To make 
this clearer to the reader, we now incorporate the following additional text into the revised 
manuscript (underlined): 
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“To reflect real-world operating conditions, approximately 6,500 MS runs were carried 
out over a four-month period, during which the mass spectrometers received minor and 
major maintenance on an as-needed basis, indicated by quality control measures.” 
-- Key Points 

 

4.13 The authors showed the MS2 level sensitivity data in Figure 3, it is very 
interesting to see the MS1 level sensitivity data. The reviewers sometimes found the 
sensitivity loss at MS2 level rather than MS1 level from the orbitrap type machine. 
How about the quantification dynamic range at both MS1 and MS2 level in this 
study? 

In our laboratory, we monitor the total ion current (TIC) for each run of the mass 
spectrometer, along with monitoring of MS2 intensities from separate BSA and HEK293T 
digests, which are run for QC purposes. If we observe a drop in MS2 signal while the MS1 
signal remains consistent, the instrument is cleaned to restore signal intensity. While DIA-
MS does enable both MS1 and MS2 quantification, MS2 quantification is most commonly 
used. This topic has been reviewed in Pappireddi, Martin & Wühr Chembiochem 2019 (see 
also Gillet et al Mol Cell Proteomics 2012, Rardin et al Mol Cell Proteomics 2015 and 
Collins et al Mol Cell Proteomics 2017). Further examination of this topic is out of the scope 
of this study. 

 

4.14 Many researches claim that the sensitivity of DIA/SWATH is higher than DDA. 
In the original MS1 spectra, there will be both identified and non-identified peaks. It 
is interesting to show the precursor ions intensity proportion of each identified 
peptide in the total intensity of peaks in the corresponding MS1 spectra. This 
analysis may give a clear view of the dynamic range of DIA/SWATH. 

We suggest that the key difference between DIA-MS and DDA-MS is not sensitivity, but 
rather is the lack of stochasticity. DIA-MS identifications will be limited by what spectral 
library is available for analysis. Even if a peak is present in the MS1, it will not be identified 
unless it is also present in the spectral library. Our purpose was to develop methods to ensure 
the reproducibility of the data obtained by large-scale DIA-MS, and not to identify all peaks 
that could be observed at the MS1 level. While we appreciate that exploring this question 
might be of interest, we feel that it is also beyond the scope of our study.  

 

4.15 Page 174 and Figure 3b: The authors should clearly claim that the example 
human peptide was specifically selected from the “ovarian cancer tissue-specific 
peptides”. 

As requested, we have modified the revised manuscript to specify this, as shown: 

“To demonstrate the effects of long experimental periods on peptide intensities, a single 
human peptide that appeared to be ovarian cancer tissue-specific was examined in 
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detail.” 
-- Results, Decrease in instrument sensitivity over time since cleaning, Para. 1 

 

4.16 Page 8, line 206: Figure 3f: The theoretically mass of “frequently-observed 
human peptides” in sample 1-7 is different. Although the authors described that the 
intensity CV of each peptide was calculated for each sample in the figure legend, it is 
still not very clear to understand the data. It is better to show some example plots 
illustrating the intensity CV of each peptide from different samples. 

We have modified Figure 3f in the revised manuscript to provide experiment-wide CVs per 
sample, rather than at different time points and instruments across the experiment, as shown: 

 

 
Figure 3. Peptide intensity variation during the experimental period and normalisation 
approaches. … (f) Coefficient of variation (CV) of frequently-observed human peptide 
intensities, calculated for each sample during the experimental period across all instruments. 
A black dashed line marks a CV of 15% for reference. 

 

4.17 Page 11, line 291: Tissue proportion predication is pretty hard, as the real tissue-
specific proteins and peptides should be used. In this study, the tissue proportion 
works well when the proportion difference of ovarian and prostate is very high, 
indicating the “Ovarian cancer tissue-specific peptide” dataset might be not very 
“tissue-specific”. As the number of ovarian tissue specific proteins may be very 
small, it is interesting for the authors to reduce the numbers of “Ovarian cancer 
tissue-specific peptide”, for example, only keep the peptides show very good linear 
intensity relationship to ovarian tissue proportion. What about the predication 
performance of this predication tool then? By the way, considering the yeast 
proteins will not be shared by ovarian and prostate tissue. How about the “tissue 
proportion” of yeast sample in sample 2-5? 

Tissue-specific peptides were not used for the prediction of tissue proportions in Figure 6. 
We used the entire set of identified human peptides as input for the machine learning 
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algorithm. The model uses these input data along with the known proportion of ovarian 
cancer tissue for each sample in the training set to develop a model that can predict the 
proportion of ovarian cancer tissue in samples in the test set. We have modified the text to 
clarify this (underlined), as shown below. For more information, see Response 2.21.  

“To demonstrate whether such an analysis might be possible using DIA-MS data, we 
applied machine learning to estimate the proportion of ovarian cancer tissue among the 
prostate cancer tissue background after ProNorM. We trained four regularized 
regression models on the entire set of human peptides measured in three concentrations 
(for example, 6.25%, 12.5% and 25% ovarian cancer tissue; n = 695 samples) to avoid 
overfitting. Hyperparameters were tuned by ten-fold cross validation, and we report out-
of-sample errors after testing the models on the remaining independent concentration (for 
example, 3.125% ovarian cancer tissue concentration; n = 225 samples; see Methods; 
Fig. 6 and Supplementary Fig. 6).” 
-- Results, Prediction of tissue proportion in a complex mixture, Para. 1 

Regarding yeast proportions, these peptides are unsuitable for use after normalisation because 
we used yeast peptides for the purposes of normalisation. 

 

4.18 Page 13, line 328: It is no doubt that increasing the number of technical 
replicates may be a useful strategy for analysis of small clinical cohorts. However, 
lots of replicates in DIA analysis lose its throughput advantage.  

To provide more consideration of this point, we have modified the related text in the revised 
manuscript, as shown (underlined): 

“Increasing technical replicate MS runs clearly comes at a cost. Increasing the 
number of technical replicates may be a useful strategy for analysis of small clinical 
cohorts, such as those available from rare diseases or clinical trials, or where 
researchers would derive benefit from a data matrix with fewer missing values. In the 
absence of technical triplicates for all samples, RUV-III-C can still be applied to a 
cohort independent of technical replacement, provided that at least some samples are 
replicated at various points during the experimental period.” 
-- Discussion, Para. 3 

 

Methods:  
4.19 The DDA data were searched independently with three different search engines 

to generate the spectral library. Are there some MS/MS spectra that are matched to 
different peptides by the three search engines? If one MS/MS spectra was matched 
to different peptides, how to deal with this issue when combining the three results 
into one dataset? 

These important questions have been addressed using published statistical frameworks and 
tools such as iProphet (Shteynberg et al Mol Cell Proteomics 2011) and PeptideShaker 
(Vaudel et al Nat Biotechnol 2015), and are widely used. In our study, the results from the 
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three search engines were merged using the PeptideShaker algorithm, as stated in the original 
manuscript. In brief, PeptideShaker converts the scores of the different search engines into 
Posterior Error Probability (PEP) values using a target/decoy strategy. Peptides mapping to 
both target and decoy are excluded. The product of search engine PEPs is given as a score for 
every peptide candidate. In cases where a MS/MS spectrum is matched to different peptides 
by multiple search engines, the best (i.e., the lowest scoring) peptide is selected. If two 
peptides are scored equally, then they are discriminated by:  

(i) the occurrence of their parent protein in the dataset;  
(ii) the number of search engines supporting the peptide;  
(iii) the number of fragment ions annotated in the spectrum; and 
(iv) the precursor mass error.  

Further details regarding the PeptideShaker algorithm can be found in Vaudel et al Nat 
Biotechnol 2015. 



Reviewers' comments: 

 

Reviewer #1 (Remarks to the Author): 

 

I think the authors addressed the comments by the reviewers. Thank you for addressing the reviews 

in this thorough fashion. 

 

 

Reviewer #2 (Remarks to the Author): 

 

While the authors have carefully responded to all the points raised in my original review, I am now 

even more sceptical about the suitability of the work for publication in Nature Communications. 

Rather than re-iterating the major points, the following three items may summarize my concerns. 

a) the most original contribution is the software for data normalisation/missing value replacement. 

Yet, this software currently only works in the hands of the authors and it is unclear if it will be picked 

up by anyone producing more widely used data processing packages. Hence, the foreseeable impact 

beyond the contributing lab is unclear 

b) The depth and quality of the data provided is actually quite low. Perhaps the choice of the Sciex 

hardware platform was not the right one but proteome coverage is not good by today's standards. 

This became clearer in the revision where the authors give details about how many 

peptides/proteins are in a sample. In their defense, the authors do report what they find and are not 

glossing over anything to make the data look better than it is. But the message that sticks to this 

reviewer is: "monitor your instrument performance regularly and keep it clean". This is entirely 

unsurprising and any large project would build in QC samples for this reason. It is not really clear 

how this manuscript "...enables large-scale proteomics...". 

c) Perhaps the most disappointing part is that the manuscript implies that DIA is under-delivering on 

its many promises. The extent of missing data is actually quite high thus calling into question the 

perhaps most significant promise of DIA. If this is just down to the hardware/software used in this 

study, then the paper still does not make a strong point for DIA. Even though the authors do not 

agree, the data implies that sensitivity is also a real issue (in addition to data missing for 

software/peak detection reasons). Perhaps more important still, the data the authors present in 

terms of reprducible proteome coverage is in stark contrast to the figures reported by some of the 

leading DIA laboratories. 

The authors clearly made the very laudable effort to analyse instrument related performance over 

quite a long time. In that sense, the work should be published. But this reviewer cannot see the 

impact commensurate with doing so in Nature Communications. 



 1 

Point-by-point Response to Reviewers’ Comments 
 

Strategies to enable large-scale proteomics for 

reproducible research 
 

Authors: 

Rebecca C. Poulos1#, Peter G. Hains1#, Rohan Shah1#, Natasha Lucas1, Dylan Xavier1, Srikanth S. 
Manda1, Asim Anees1, Jennifer M. S. Koh1, Sadia Mahboob1, Max Wittman1, Steven G. Williams1, 
Erin K. Sykes1, Michael Hecker1, Michael Dausmann1, Merridee A. Wouters1, Keith Ashman2, Jean 
Yang3, Peter Wild4, Anna deFazio5, Rosemary L. Balleine1, Brett Tully1, Ruedi Aebersold6, Terence 
P. Speed7, Yansheng Liu8, Roger R. Reddel1, Phillip J. Robinson1, Qing Zhong1* 

 

Affiliations: 
1 ProCan®, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of 
Sydney, Westmead, NSW, Australia. 
2 Sciex, 2 Gilda Court, Mulgrave, VIC, Australia.  
3 School of Mathematics and Statistics, The University of Sydney, Sydney, Australia. 
4 Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Frankfurt am Main, 
Germany; and Department of Pathology and Molecular Pathology, University Hospital Zurich, 
Zurich, Switzerland. 
5 Centre for Cancer Research, Westmead Institute for Medical Research, Westmead, NSW, Australia; 
Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia; and 
Department of Gynaecological Oncology, Westmead Hospital, Westmead, NSW, Australia.   
6 Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland; 
and Faculty of Science, University of Zürich, Zürich, Switzerland. 
7 Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 
Australia; and Department of Mathematics and Statistics, University of Melbourne, Melbourne, VIC, 
Australia. 
8 Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA; and Yale 
Cancer Biology Institute, Yale University, West Haven, CT, USA. 

 

Notes: 

# These authors contributed equally; * Correspondence.  
 
 



 2 

Reviewer #1  
 

Comments: 
1.1. I think the authors addressed the comments by the reviewers. Thank you for 

addressing the reviews in this thorough fashion. 

No response required.  

 
 

Reviewer #2 
 
Comments: 
While the authors have carefully responded to all the points raised in my original 
review, I am now even more sceptical about the suitability of the work for publication in 
Nature Communications. Rather than re-iterating the major points, the following three 
items may summarize my concerns. 

2.1.The most original contribution is the software for data normalisation/missing value 
replacement. Yet, this software currently only works in the hands of the authors and 
it is unclear if it will be picked up by anyone producing more widely used data 
processing packages. Hence, the foreseeable impact beyond the contributing lab is 
unclear. 

 

Our novel normalisation method is available alongside our manuscript as a standard R 
package, which will be released via CRAN upon publication. The usage instructions are 
clearly outlined in the package documentation. The RUV family of methods has widespread 
adoption in other ‘omic fields and our research is vital in ensuring its utility for proteomic 
research. Furthermore, we demonstrate in our manuscript that our method can be successfully 
applied to independent datasets obtained from other laboratories, including Collins et al 2017 
(see Fig S3e-f) and Bruderer et al 2019 (see Supplementary Note). The above comment 
implies (correctly) that our method is independent from other data processing pipelines. This 
is a strength of our work and will lead to more widespread adoption than if our method was 
confined to a single data processing pipeline used by only a subset of researchers. Analysing 
large-scale proteomic data of this kind routinely requires the integration of a number of 
standalone tools (see Fig S1c). 

We also note that our research garnered significant interest at the Human Proteome (HUPO) 
World Congress 2019 and the Lorne Proteomics Symposium 2020, where we received 
repeated requests for access to our methods prior to publication. Our study has also been 
chosen for oral presentation at the American Society for Mass Spectrometry (ASMS) 
Conference 2020. By all available indications, our novel tool will be of great interest to the 
scientific community. 
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We have modified the revised manuscript to highlight the availability of our R package via 
CRAN, as follows: 

“The RUV-III-C implementation is available as an R package in Supplementary File 2, 
which will be stored at the Comprehensive R Archive Network (CRAN) upon 
publication.” 
-- Methods, Data and code availability, Para. 1   

 

2.2.The depth and quality of the data provided is actually quite low. Perhaps the choice 
of the Sciex hardware platform was not the right one but proteome coverage is not 
good by today's standards. This became clearer in the revision where the authors 
give details about how many peptides/proteins are in a sample. In their defense, the 
authors do report what they find and are not glossing over anything to make the 
data look better than it is. But the message that sticks to this reviewer is: "monitor 
your instrument performance regularly and keep it clean". This is entirely 
unsurprising and any large project would build in QC samples for this reason. It is 
not really clear how this manuscript "...enables large-scale proteomics...". 

 

We did not undertake a study aimed at showing that DIA (or Sciex) measurements are 
reproducible across instruments in terms of the greatest possible numbers of protein 
identifications. This has been attempted by others. Our purpose was to develop approaches to 
improve the reproducibility of large-scale, high-throughput DIA-MS measurements, thus 
enabling quantitative accuracy across instruments and over extended periods of time. We 
intentionally undertook this in the context of realistic operating conditions in a large cancer 
facility. We assessed reproducibility by analysing complex human cancer tissue samples, 
rather than using ideal fresh tissue or synthetic dilutions of simple peptide mixtures. Thus, 
there were trade-offs to achieve our objective. We required a large amount of peptides to 
obtain sufficient material for thousands of identical runs. We therefore utilised exceptionally 
large tumour samples comprising connective tissue, necrotic regions, even ink and other 
contaminants. The starting samples were not carefully dissected for optimum tumour content, 
nor were the highest peptide loads used. We do not attempt to demonstrate how our 
instruments might perform at protein depth of coverage, and it is therefore unsurprising that 
we detected fewer proteins than observed in other cohorts. This does not reflect poor data 
quality, and we do not attempt to make a statement regarding the technology or choice of MS 
vendor. We routinely identify more than 7,500 proteins in our spectral libraries and quantify 
more than 5,000 proteins by SWATH-MS when analysing higher quality micro-dissected 
samples or cell lines under standard conditions in our laboratory, with identical instrument 
loadings. Therefore, the depth of our data here reflects the actual samples analysed and is not 
relevant to the message of our manuscript. To make this point more explicit in the revised 
manuscript, we have modified the following text (underlined): 

“This study of data collected from 1,560 DIA-MS runs of complex samples, in a single 
facility over four months, provided an unprecedented opportunity to develop new 
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approaches that enable large-scale tissue proteomic data to be mined for improved 
reproducibility over time and between instruments. Tissue samples were selected to 
ensure that a sufficient amount of peptide was available to complete the large number 
of MS runs, and the experiment was not optimised for an in-depth analysis of the 
prostate or ovarian cancer proteome.” 

-- Discussion, Para 1. 

It is not correct that the main message of our manuscript is to “monitor your instrument 
performance regularly and keep it clean”. We required the instruments to operate in a real-
world scenario that included the need for cleaning. This was an experimental parameter, 
rather than a goal that we were aiming to improve. Our instruments operated in a high-quality 
setting and well above minimum QC levels. In the proteomics field, it is simply axiomatic 
that instrument performance degrades with time after cleaning. MS performance needs to be 
balanced with the cleaning schedule, as it is impractical to run such a large number of 
samples when constant cleaning is required. This represents a major barrier to the generation 
of large datasets, which is a critical point that currently limits the advancement of the whole 
proteomics field. The significance that has been overlooked is that our new computational 
approach shows how to overcome this barrier to enable accurate and reproducible large-scale 
proteomics, regardless of time and instrument cleaning schedules. We have modified the 
revised manuscript to improve the clarity of our message. Please refer to the marked 
manuscript for details of these specific changes.  

 

2.3.Perhaps the most disappointing part is that the manuscript implies that DIA is 
under-delivering on its many promises. The extent of missing data is actually quite 
high thus calling into question the perhaps most significant promise of DIA. If this is 
just down to the hardware/software used in this study, then the paper still does not 
make a strong point for DIA. Even though the authors do not agree, the data implies 
that sensitivity is also a real issue (in addition to data missing for software/peak 
detection reasons). Perhaps more important still, the data the authors present in 
terms of reproducible proteome coverage is in stark contrast to the figures reported 
by some of the leading DIA laboratories. The authors clearly made the very laudable 
effort to analyse instrument related performance over quite a long time. In that 
sense, the work should be published. But this reviewer cannot see the impact 
commensurate with doing so in Nature Communications. 
 

We do not believe that it is a valid concern that the publication of a study that has relatively 
low proteome coverage will turn people away from DIA as a technology. We fully accept 
that other carefully micro-dissected samples can and do yield higher numbers of protein IDs. 
We have addressed this in Response 2.2 above, and have modified the revised manuscript 
accordingly. Further, we do not attempt to make quantitative statements about what 
proportion of missing values might be acceptable in a dataset (this has been addressed by 
others; see Bruderer et al 2017 and Selevsek et al 2015). Our study significance is that we 
provide a method for reducing the extent of data missingness by effectively utilising technical 
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replicates, in a manner not previously envisaged. The above comment overlooks the purpose 
of the paper, which is that we have developed a method to overcome a key limitation of mass 
spectrometers, to enable, for the first time, the normalisation and quantitation of large-scale, 
reproducible proteomic datasets, using multiple instruments across considerable periods of 
time and with disparate cleaning states. It is currently not possible to effectively do this using 
existing approaches. We therefore anticipate that our approach will become widely used, and 
thus we consider that this manuscript is highly suitable for publication in Nature 
Communications. 


