

# Supplementary Figure 1: Enhanced disease resistance, enhanced basal defense parameters, and agronomic traits of *slnrc4a* line#2 and *slnrc4a* line#5.

Select parameters from Figure 1- pathogen resistance (a-d), Figure 2- steady state defense parameters (e-g), and Figure 5- agricultural traits (h-n), graphed separately for two independent *slnrc4a* mutant lines: *slnrc4a-2* (black bars) and *slnrc4a-5* (gray bars).

(**a-b**) Lesion area was measured 3 days after inoculation with *B. cinerea* ( $10X^6$  spores/mL), (**a**), or *S. sclerotium* (**b**). *O. neolycopersici* infection was measured as percentage of infected leaf out of total leaf area (**c**). (**d**) Infestation was determined by counting number of insects per leaf and measuring % of infected leaf area two-weeks after *T. absoluta* exposure. (**a-d**) Average  $\pm$  SEM of 3-4 independent replicates is shown. Asterisks represent statistical significance in t-test with Welch's correction (\*, p-value <0.05; \*\*, p-value <0.01; \*\*\*, p-value <0.001). (**e-g**) Ethylene production of M82 and *slnrc4a* samples was measured using gas-chromatography (**e**). M82 average

ethylene production of M82 and *shire4a* samples was measured using gas-chroniatography (e). M82 average ethylene production is defined as 100%. Average  $\pm$  SEM of 5 independent experiments is presented. Letters represent statistical significance in t-test with Welch's correction. (f) Conductivity levels of M82 and *slnrc4a* samples immersed in water for 24 h was measured. Average  $\pm$  SEM of 4 independent replicates is shown (one-way ANOVA, no significant difference (g) Gene expression analysis of pathogen responsive genes in M82 and *slnrc4a* plants was measured by RT-qPCR. Relative expression normalized to M82. Average  $\pm$  SEM of three independent replicates is shown. Asterisks represent statistical significance in t-test with Welch's correction comparing each gene (\*, p-value <0.05; \*\*, p-value <0.01; \*\*\*, p-value <0.001).



**Supplementary Figure 2: Enhanced MAMP-elicited defense responses in** *slnrc4a* gain of function mutants. (a) ROS production of WT (M82) and *slnrc4a* was measured immediately after EIX application and measured every 5 min for 90 minutes using HRP-luminol method. Average  $\pm$  SEM of 4 independent replicates is shown (two-way ANOVA. p-value <0.01). Inset shows total ROS production (one-way ANOVA. \*\*, p-value <0.01). (b) Ethylene induction after EIX elicitation in M82 and *slnrc4a* samples was measured using gas-chromatography. M82 average ethylene production after elicitation is defined as 100%, average  $\pm$  SEM of 5 independent experiments is presented. Asterisks represent statistical significance in t-test with Welch's correction (\*\*, p-value <0.01). (c) Conductivity of M82 and *slnrc4a* samples immersed in water supplemented with EIX for 24 h was measured. Average  $\pm$  SEM of 4 independent replicates is shown (one-way ANOVA. No significant difference) (d) Twenty-four h after EIX elicitation, callose deposition was observed by confocal microscopy after aniline blue staining of M82 and *slnrc4a* leaf discs. Callose deposit size was measured using the object counting tool of ImageJ. Average  $\pm$  SEM of three independent replicates is shown. Asterisks represent statistical significance in t-test with Welch's correction (\*, p-value <0.05; \*\*\*, p-value <0.001).

(e) Callose deposition representative images. Scale bar =  $200 \,\mu m$ .



### Supplementary Figure 3: Cas9-free *slnrc4a* line maintains enhanced MAMP-elicited response.

(a) PCR analysis for *Cas9* and *nptII* presence in tomatoes from the T3 generation lines of *slnrc4a-5* edited line.

(**b**) Alignment of slnrc4a gene sequence of M82 and slnrc4a#5-11 lines, corroborating the editing on 171 nucleotide (CDS).

(c) Ethylene induction in steady-state and after EIX elicitation in M82 and *slnrc4a* samples was measured using gas-chromatography. M82 average ethylene production is defined as 100%. Average  $\pm$  SEM (N<sub>total</sub>=20). Asterisks represent statistical significance in One-way ANOVA, Dunns post-test (p-value <0.05).

(d) Lesion area was measured three days after inoculation with *B. cinerea* ( $10X^6$  spores/mL). Average  $\pm$  SEM ( $N_{total}=70$ ). Asterisk represent statistical significant in t-test with Welch's correction (\*\*\*, p-value<0.001).

(e) Representative image of infection quantified in (d).



### Supplementary Figure 4: Members of the NRC4 clade are induced by EIX and B. cinerea

Gene expression analysis of NRC4 clade members in response to EIX treatment (a) and *B. cinerea* inoculation (b) was measured in WT M82 plants by RT-qPCR. Relative expression normalized to M82 Mock. Average  $\pm$  SEM of three independent replicates is shown, N>7 for each treatment. Asterisks represent statistical significance in t-test with Welch's correction comparing each gene (\*, p-value <0.05; \*\*\*, p-value <0.001).



### Supplementary Figure 5: The 67 aa slnrc4a peptide affects LeEIX2 in a ligand independent manner

*N. benthamiana* leaves transiently expressing LeEIX2-GFP and free mCherry (Control), the full SINRC4amCherry, or the predicted 67 amino acid-mCherry (peptide present in the *slnrc4a* mutant) as indicated, were treated with EIX (1  $\mu$ g g<sup>-1</sup> tissue) or water (mock) at the petiole 40 hours after transformation.

(a) LeEIX2-GFP endosomes were visualized by confocal microscopy 15 minutes post EIX treatment. LeEIX2-GFP endosome density with (+) and without (-) EIX was quantified using 3D object counter (Fiji-ImageJ). Error bars represent the average  $\pm$  SEM of four independent replicates, five images each. Letters indicate significant differences from the control, two-tailed t-test.

(b) mCherry, SINRC4a-mCherry, or the predicted 67 amino acid-mCherry protein expression level (mean pixel intensity of mCherry signal) was quantified using FIJI-ImageJ. Sixteen images from four experiments were analyzed. Error bars represent the average  $\pm$  SEM. Asterisk indicates significant difference (two-tailed t-test, P < 0.05).

Data adapted from Leibman-Markus et al., 2018b.



Supplementary Figure 6: Original uncropped image of the blot presented in Figure 7c.

**Supplementary Table 1: Analysis of volatile metabolites in M82 (WT) and** *slnrc4a* **lines.** Concentration of volatile compounds in M82 (WT) and *slnrc4a* plants were quantified using Gas Chromatography (ng per g of fresh weight = ng/gfw). The values are also expressed percentage of the concentration detected in WT. Asterisks represent statistical significance in t-test with Welch's correction (\*\*\*, p-value <0.001; \*\*, p-value <0.01; \*, p-value <0.05).

|                 | Compound                                       | WT                  |        |     | slnrc4a |       |       | T-test Welch's<br>correction |     |
|-----------------|------------------------------------------------|---------------------|--------|-----|---------|-------|-------|------------------------------|-----|
| GROUP           |                                                | Average<br>[ng/gfw] | SD     | %   | Average | SD    | %     | p-<br>Value                  |     |
| Fatty acid      | 2,3- Butanediol                                | 11.6                | 7.3    | 100 | 100.3   | 48.5  | 868.2 | 0.0003                       | *** |
|                 | Penten-3-ol                                    | 42.6                | 17.8   | 100 | 65.2    | 8.0   | 153.0 | 0.0963                       | NS  |
|                 | 1-Penten-3-one                                 | 35.0                | 6.5    | 100 | 61.1    | 24.7  | 174.6 | 0.0125                       | *   |
|                 | Pentanal                                       | 48.8                | 15.3   | 100 | 35.0    | 29.3  | 71.7  | 0.3321                       | NS  |
|                 | Hexanal                                        | 442.7               | 111.4  | 100 | 299.6   | 149.6 | 67.7  | 0.127                        | NS  |
|                 | 2E-Hexenal                                     | 2149.8              | 370.8  | 100 | 2113.1  | 448.9 | 98.3  | 0.8989                       | NS  |
|                 | Hexanol                                        | 245.4               | 51.2   | 100 | 136.1   | 27.2  | 55.4  | 0.0137                       | *   |
|                 | 2E- Heptenal                                   | 153.6               | 49.0   | 100 | 160.4   | 21.3  | 104.4 | 0.8418                       | NS  |
|                 | 2E,4E- Heptadienal                             | 118.3               | 36.5   | 100 | 74.8    | 22.0  | 63.3  | 0.1161                       | NS  |
| Monoterpene     | alpha-Pinene                                   | 669.9               | 280.3  | 100 | 1146.2  | 199.6 | 171.1 | 0.0372                       | *   |
|                 | 3,7,7-trimethyl-<br>1,3,5-<br>Cycloheptatriene | 417.6               | 115.0  | 100 | 684.8   | 80.0  | 164.0 | 0.0086                       | **  |
|                 | b-Pinene                                       | 1238.3              | 208.7  | 100 | 1171.6  | 113.2 | 94.6  | 0.651                        | NS  |
|                 | d- 2-Carene                                    | 1581.0              | 371.2  | 100 | 2511.4  | 245.1 | 158.9 | 0.0055                       | **  |
|                 | $\alpha$ -Phellandrene                         | 685.3               | 151.1  | 100 | 1036.4  | 105.6 | 151.2 | 0.0086                       | **  |
|                 | α-Terpinene                                    | 131.6               | 25.2   | 100 | 179.5   | 21.4  | 136.4 | 0.0235                       | *   |
|                 | p-Cymene                                       | 190.6               | 23.2   | 100 | 269.6   | 32.2  | 141.4 | 0.001                        | **  |
|                 | b- Phellandrene                                | 5879.7              | 1036.4 | 100 | 8824.2  | 847.5 | 150.1 | 0.003                        | **  |
|                 | γ-Terpinene                                    | 60.8                | 7.6    | 100 | 116.6   | 19.5  | 191.8 | <<br>0.0001                  | *** |
|                 | Terpinolene                                    | 23.8                | 4.6    | 100 | 34.0    | 4.1   | 142.4 | 0.012                        | *   |
|                 | Cryptone                                       | 46.2                | 11.4   | 100 | 75.1    | 14.1  | 162.5 | 0.0069                       | **  |
| sesquiterpene   | E-Caryophyllene                                | 119.1               | 21.4   | 100 | 196.3   | 54.7  | 164.8 | 0.0042                       | **  |
|                 | Humulen-(v1)                                   | 39.5                | 9.6    | 100 | 66.1    | 11.3  | 167.2 | 0.0038                       | **  |
|                 | α-Humulene                                     | 86.6                | 8.3    | 100 | 115.7   | 28.0  | 133.6 | 0.0163                       | *   |
| phenylpropanoid | Benzaldehyde                                   | 429.5               | 30.7   | 100 | 249.0   | 59.6  | 58.0  | <<br>0.0001                  | *** |
|                 | Benzyl alcohol                                 | 93.4                | 32.7   | 100 | 113.1   | 27.3  | 121.1 | 0.4169                       | NS  |
|                 | o- Guaiacol                                    | 190.2               | 82.2   | 100 | 212.6   | 73.9  | 111.8 | 0.7122                       | NS  |
|                 | Phenyl ethyl alcohol                           | 384.9               | 31.2   | 100 | 572.3   | 93.9  | 148.7 | 0.0002                       | *** |
|                 | Methyl salicylate                              | 743.4               | 163.4  | 100 | 1004.0  | 113.3 | 135.1 | 0.0471                       | *   |
|                 | Eugenol                                        | 40.0                | 9.7    | 100 | 64.3    | 15.8  | 160.7 | 0.0102                       | *   |
| carotenoid      | b-Cyclocitral                                  | 211.8               | 46.1   | 100 | 305.7   | 33.4  | 144.4 | 0.0169                       | *   |
| derivatives     | b- Ionone                                      | 481.1               | 128.1  | 100 | 627.8   | 116.1 | 130.5 | 0.1418                       | NS  |

## Supplementary Table 2: Primers used in this work.

| Locus          | Name                   | Forward                     | Reverse               | Reference              |
|----------------|------------------------|-----------------------------|-----------------------|------------------------|
| Solyc01g106620 | PR1a                   | CTGGTGCTGTGAAGATGTGG        | TGACCCTAGCACAACCAAGA  | (Harel et al., 2014)   |
| Solyc00g174340 | PR1b                   | GTGTCCGAGAGGCCAAGCTA        | AGGACGTTGTCCGATCCAGTT |                        |
| Solyc01g097270 | Pathogen<br>induced 1  | TGCTTAAGGGTGACAAATACA<br>CG | ACATTCACATTGTCACCGCA  |                        |
| Solyc03g020050 | Proteinase inhibitor 2 | CGACGTGTTGCACTGGTTAC        | TGCCAATCCAGAAGATGGAC  | (Harel et al., 2014)   |
| Solyc10g055800 | Chitinase 2            | AATGGTGGCCTAGAACGTGG        | AGCTGAGTCCAACAGACTACA |                        |
| Solyc01g060020 | beta-1,3-<br>glucanase | TCGAACAGGAGGAGGATCTG        | TCCAGGCTTTCTCGGACTAC  | (Harel et al., 2014)   |
| Solyc02g077370 | Pti 5                  | GACATGGTGCGAGAGTATGG        | CTGAAACAGAGGCGTTCACT  | (Harel et al., 2014)   |
| Solyc07g008600 | LRR-RLK-<br>EXS        | TCAGTAGGGCTCGCTAACCT        | GAAGAGGAGGGCCACATAGC  |                        |
| Solyc03G123860 | RLK-<br>INRPK1c        | TGCTACTCTAGGCCAGCTCA        | TGCAACTGGGTGAGTGATCC  | (Yang et al., 2017)    |
| Solyc02G070890 | FLS2                   | GGGTTGGGGGCAGTTATCCAA       | GGTGGAATGGCACCTGAGAA  |                        |
| Solyc08G016310 | LRR-RLP                | TCACTGGGGAGATTCCGAGA        | GTTCCAGTCCACCACCAAT   | (Yang et<br>al., 2017) |