Supporting material

Effect of Selective $I_{K,ACh}$ Inhibition by XAF-1407 in an Equine Model of Tachypacing-induced Persistent Atrial Fibrillation

Running title: IK, ACh Inhibition in an equine model of persistent AF

Fenner MF¹, Carstensen H¹, Nissen SD¹, Hesselkilde EZ¹, Lunddahl C¹, Jensen MA¹, Loft-Andersen AV¹, Sattler SM^{2,3}, Platonov PG⁴, El-Haou S⁵, Jackson C⁵, Tang R⁵, Kirby R⁵, Ford JW⁵, Schotten U⁶, Milnes JT⁵, Sørensen US⁷, Jespersen T⁸, Buhl R¹

¹Department for Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Taastrup, Denmark. ²Department of Cardiology, The Heart Centre, Copenhagen University Hospital,Copenhagen, Denmark. ³Department of Medicine I, University Hospital Munich, Campus Grosshadern, Ludwig-Maximilians University Munich (LMU), Munich, Germany. ⁴Arrhythmia Clinic, Skåne University Hospital and Department of Cardiology, Clinical Sciences, Lund University, Lund, Sweden. ⁵Xention Ltd., Cambridge, UK. ⁶ Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht, The Netherlands. ⁷Acesion A/S, Copenhagen, Denmark. ⁸Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark

Material and Methods:

In-vitro electrophysiology and pharmacology

Maintenance of ion channel expressing cell lines

Experiments were performed on a number of cell lines stably expressing a variety of ion channels. Cell line expressing K_{ir}3.4 was created in-house using standard techniques, of sub-cloning an appropriate DNA sequences into a mammalian expression vector together with a gene for specific antibiotic resistance (see Table S1). Expression constructs were transfected into HEK293 cells prior to selection and sub-cloning before finally being assayed for current expression and validated electrophysiologically. All other cell lines were sourced externally (K_{ir}3.1/3.4, K_{ir}6.2/SUR2A [Prof. Andrew Tinker, UCL], Na_v1.5 [UPenn]; hERG [Cytomyxs or Cytocentrics]; K_v1.5 [BSYS] and K_v4.3, K_{ir}2.1, K_v7.1/KCNE1 [bioFocusDPI]).

All cell lines were grown adhered to T-175 flasks and passaged using an enzymatic agent (Accutase, ICT, Inc.). All the cell lines were plated out onto small sterilised glass coverslips in 35 mm x 10 mm Polystyrene Petri dishes (Corning) containing an appropriate medium, supplemented with 10 % fetal bovine serum (Hyclone Perbio). The cells were incubated at 37 or 30 °C (5 % CO2) for 1-4 days prior to any electrophysiological study.

Cell Culture Conditions

	Media	Serum	Selection Antibiotic	Other Supplements
K _v 1.5	JRH Ex-Cell 302 (JRH Biosciences)	-	2 μg / ml Blasticidin (Invitrogen)	8 mM L-Glutamine (Gibco), 1% HT Supplement
K _v 1.3	Nutrient mixture IMDM#21980	10 % Fatalclone II (HyClone Perbio)	400 μg / ml Geneticin (Gibco)	1% HT Supplement
K _v 4.3	Nutrient mixture F12 (Gibco)	10 % Fatalclone II (HyClone Perbio)	500 μg / ml Geneticin (Gibco)	1% NEAA
Na _v 1.5	Nutrient mixture F12 (Gibco)	10 % Fatalclone II (HyClone Perbio)	500 μg / ml Geneticin (Gibco)	-
K _{ir} 2.1	MEM #31095	10 % Fatalclone II (HyClone Perbio)	300 μg / ml Hygromycine B (Invitrogen)	1% NEAA
K _{ir} 3.x	MEM #31095	10% Invitrogene FBS #16000	182 μg / ml Zeocin (Invitrogen)	-
hERG	Nutrient mixture DMEM	10 % Fatalclone II (HyClone Perbio)	200 μg / ml Geneticin (Gibco)	1% L-Glutamine (Gibco), 1% Na Pyruvate
Ca _v 1.2	Nutrient mixture DMFM F12 #31331	10 % Fatalclone II (HyClone Perbio)	500 μg / ml Geneticin (Gibco)	_

Cloned cardiac ion channel conventional electrophysiology

	K _v 1.5	K 6 3	V 7 1	No 1 5		K _{ir} 2.1	0 mN/ K ⁺
	N _v 4.5	KirO.Z	Kv/.1	Nav1.2	nerg	Kir 5.X	U MIVI K
	(mM)	(mM)	(mM)	(mM)	(mM)	(mM)	(mM)
NaCl	150	150	-	140	140	150	150
КСІ	10	10	-	5	4	10	0
NMDG		-	140	-	-	-	-
K-gluconate	-	-	5	-	-	-	-
CaCl ₂	3	3	2	1	2	3	3
MgCl ₂	1	1	1	1.2	1	1	1
Glucose	-	-	5	11.1	10	-	-
Sucrose	-	-	50	-	-	-	-
HEPES	10	10	10	5	5	10	10
рН	7.4	7.4	7.4	7.4	7.4	7.4	7.4
pH adjusted	NaOH	NaOH	CH₃SO₃H	NaOH	NaOH	NaOH	NaOH

Experimental solutions (external (S2) & internal pipette (S3) solution composition)

	K _v 1.5/Kv4.3	K _v 7.1	K _{ir} 2.1	K _{ir} 3.x	K _{ir} 6.2	Na _v 1.5	hERG
	(mM)	(mM)	(mM)	(mM)	(mM)	(mM)	(mM)
КСІ	20	-	110	110	125	-	130
K-gluconate	-	90	-	-	-	-	-
KF	90	20	-	-	-	-	-
CsF	-	-	-	-	-	120	-
NaCl	10	-	20	20	10	15	-
Na-gluconate	-	10	-	-	-	-	-
MgCl ₂	1	1	1	1	1.1	-	1
CaCl ₂	-	-	-	-	0.5	-	-
Mg-ATP	-	-	5	5	3.15	-	5
Na ₂ -ATP	5	5	-	-	-	-	-
HEPES	10	10	10	10	7.5	10	10
Sucrose	10	20	-	-	-	-	-
EGTA	10	10	5	5	7.5	10	5
EDTA	-	10	-	-	-	-	-
GTP-γS	-	-	-	0.9	-	-	-
				(Added fresh)			
рН	7.2	7.2	7.2	7.2	7.2	7.25	7.2
pH adjusted	КОН	КОН	КОН	КОН	КОН	CsOH	КОН

Assessment of cardiac calcium channel activity

Experimental solutions

	Ca _v 1.2	Ca _v 1.2	Ca _v 1.2
	resting solution, RPS	Dye-loading solution	stimulus solution
	(mM)	(mM)	(mM)
NaCl	140	140	90
КСІ	5	5	55
CaCl ₂	5	5	5
MgCl ₂	1	1	1
Glucose	10	10	10
Fluo4 NW	-	10 mg in 12 ml RPS	-
Probenecid	2.5	2.5	2.5
FPL-64176	-		6.1-4-
HEPES	15	15	15
рН	7.4	7.4	7.4
pH adjusted	NaOH	NaOH	NaOH

In-vivo animal model

Animals

Table S5

ID	Sex	Age	Height (cm)	Body weight arrival (kg)	Body weight day 29 (kg) **	Reason for exclusion
horse #1	F	8	160	520	532	
horse #2	F	7	163	455	468	
horse #3	F	5	158	452	446	
horse #4	F	3,5	151	432	450	
horse #5	F	3	152	505		septicaemia
horse #6	F	6	158	432	455	
horse #7	F	5	162	516	581	
horse #8	F	7	160	515	525	
horse #9	F	8	155	430	451	
horse #10	F	5	164	494	530	
horse #11	F	15	158	530		> cut-off age *
horse #12	F	12	155	506	500	
horse #13	F	10	151	320	338	

*The age cut-off for this study was >12 years of age. The day after this horses' arrival, we realised that there was a mismatch between the declared age at purchase and the age that could be deduced from the horses' official identification papers (15 years of age). Therefore, this horse was excluded from the study right from the start.

**Weight changes/gains were expected as inter-individual metabolisation differences become easily recognisable in periods of low exercise. Some horses are "easy keepers" and take on weight easily, others have a higher maintenance and stay at a certain weight level. In terms of horses #3 and #12 it must be assumed, that those actually maintained their weight and the respective 6 kg difference can be accounted for as daily fluctuation.

Results:

XAF-1407: Highly selective *I*_{K,ACh} inhibition

Radioligand binding assessment of pharmacology

XAF-1407 was screened in a commercially available pan-screen against a diverse panel of receptors, GPCR and kinases (Eurofins CEREP France, Celle-Lévescault, France). When less than 50% specific binding was observed at 10µM, these targets as such were not further investigated.

Specific binding was <50% at 10μ M for 78 of the 81 targets:

<u>Receptors</u>	GAL1, GAL2	Opioid and opioid-like $\delta 2$
Adenosine A1 ,A2A, A3	PDGF	(DOP), κ (KOP) μ (MOP),
Adrenergic α_1 , α_2 , β_1 , β_2	Chemokines CCR1. CXCR2	NOP (ORL1)
Angiotensin-II AT1 , AT2	(IL-8B)	PAC ₁ (PACAP)
BB (non-selective)	Cytokines TNF-α	EP ₂ , EP ₄
Bradykinin B ₂	Histamine H1 , H2	IP (PGI ₂)
CGRP	Melanocortin MC ₄	5-HT _{1A} , 5-HT _{1B} , 5-HT _{2A} , 5-
		НТ _{2В} , 5-НТ _{2С} ,5-НТ ₃ , 5-НТ _{5а}
Canabinoid CB1	Melatonin MT ₁	,5-HT ₆ , 5-HT ₇
Cholecystokinin CCK1 (CCKA),	Muscarinic M_1 , M_3 , M_4 , M_5	sigma (non-selective)
CCK ₂ (CCK _B)	Neurokinin NK1 , NK2 , NK3	sst (non-selective)
Dopamine D ₁ , D _{2S} , D _{4.4} , D ₅	Neuropeptide-Y Y1,Y2	GR
Endothelin ET_A , ET_B	NTs1 (NT1)	VPAC1 (VIP1)
GABA (non-selective)		

Vasopressin V _{1 a}	lon & ligand-gated channels	Purinergic Channels P2X ,
Nuclear Receptors	GABA BZD (central), BZD	P2Y
Non-steroid nuclear receptors	(peripheral) CI- channel	<u>Transporters</u>
PPARγ	(GABA-gated)	Norepinephrine transporter
	Potassium channel SK _{Ca}	Dopamine transporter
	channel	
		5-HT transporter
	Glutamate Channels PCP	

However, specific binding curves revealed IC₅₀ and K_i of 7.4 μ M and 1.6 μ M for the human recombinant dopamine D₃ receptor, and 8.9 μ M and 6.2 μ M for the human recombinant muscarinic M₂ receptor. High specific binding was furthermore observed for the sigma receptor (IC₅₀ 0.1, K_d 0.1 μ M). Function studies revealed no functional, neither agonist nor antagonist, effect on guinea-pig vas deferens contraction at concentrations up to 1 μ M, though.

	IC ₅₀	Ki	пн
D ₃ (nM)	7400	1600	0.7
M ₂ (nM)	8900	6200	0.6
δ (nM)	100	100	

Cloned cardiac ion channel conventional electrophysiology

The effect of a range of concentrations of XAF-1407 on recombinant $K_{ir}3.x$ and $K_{ir}2.1$ ion channels (Fig S1), other cardiac inward rectifiers ($K_{ir}6.2$ /SUR2A), voltage dependent sodium ($Na_v1.5$) (Fig S2A) and potassium channels ($K_v11.1$, $K_v1.5$, $K_v4.3$, $K_v7.1$) (Fig S2B and Fig S3) was tested with standard giga seal whole cell patch clamp techniques. The effect of XAF-1407 on Na^+ channels was investigated at 1 Hz and 5 Hz and at RMPs of -70 mV and -100 mV and due to a lack of appreciable effect, full concentration response relationships were not investigated for $Na_v1.5$, $K_v11.1$ as well as $K_v4.3$ (10 and 3 μ M).

XAF-1407 potently inhibited inward K_{ir}3.1/3.4 current (Fig S1A) and K_{ir}3.4/3.4 current (Fig S1B) at 10 nM measured at -140 mV, with minimal effect on K_{ir}2.1 inward current at 30 μ M (Fig S1C). Concentration dependent effects on the remaining functionally important cardiac ion channels were first recorded at XAF-1407 concentrations >2000 times higher than concentrations effectively inhibiting K_{ir}3.1/3.4 current (Fig S2 and S3).

Figure S1: Effect of XAF-1407 on recombinant potassium inward rectifier currents. Original K_{ir}3.1/3.4 (**A**), K_{ir}3.4/3.4 (**B**) and K_{ir}2.1 (**C**) current traces are shown in the absence and presence of XAF-1407 and following removal of external K⁺ to assess passive leak. Schematic of the voltage protocol used is shown at the bottom of the figure. A dashed line shows zero current.

Figure S2: Effect of XAF-1407 on recombinant K_v11.1 (hERG) and Na_v1.5 current. Panel A shows the effect of 3 μ M XAF-1407 on Na_v1.5 at different holding potentials (-70mV lower panel or 100 mV upper panel) and frequencies (1 Hz left panel and 5 Hz right panel).

Panel **B** shows original Kv11.1 current records in the absence and presence of 3 and 10 μ M XAF-1407 record from the same cell. A schematic of the voltage protocol is shown inset at the top of each figure. A dashed line shows zero current.

Figure S3: Effect of XAF-1407 on recombinant K_v **ionic current**. Panel **A** shows original K_v1.5 current records in the absence and presence of 1, 3, 10 and 30 μ M XAF-1407 record from the same cell. Panel **B** shows original K_v4.3 current records in the absence and presence of 10 μ M XAF-1407. Panel **C** shows original K_v7.1/KCEN1 current records in the absence and presence of 10 and 30 μ M XAF-1407. A schematic of the voltage protocol is shown above each original trace. A dashed line shows zero current.