Supporting Information:

Precision Mapping of O-Linked N-Acetylglucosamine Sites in Proteins using Ultraviolet Photodissociation Mass Spectrometry

Edwin E. Escobar, ^{\ddagger,\dagger} Dustin T. King, ^{$\ddagger,\#$}, Jesús E. Serrano-Negrón, [#] Matthew G. Alteen, [#] David J. Vocadlo, ^{&,#,*} Jennifer S. Brodbelt^{&,†}

[†]Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States

[#]Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada

*Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada

Table of Contents

Section S1 Methods	2
Preparation of O-GlcNAc modified peptides	2
Section S2 Supplementary Figures	3
Figure S1: HPLC and MS1 spectra for O-GlcNAcylated peptides	
Figure S2: HCD-produced oxocarbenium ions from TAB1-O-GlcNAc	4
Figure S3: Expansions of MS/MS spectra for the TAB1-O-GlcNAc glycopeptide (biotin-	
PVSVPYS _(g) SAQSTS, 2+, <i>m/z</i> 869.90) corresponding to the spectra in Figure 2A,B	5
Figure S4: HCD oxocarbenium ion triggered EThcD mass spectrum of TAB1-O-GlcNAc	6
Figure S5: Optimization of pulse number and laser energy for 193 nm UVPD	7
Figure S6: HCD induces robust production of oxocarbenium ions across multiple precursor	charge
states	8
Figure S7: MS/MS comparison of CKII-O-GlcNAc standard glycopeptide	9
Figure S8: Optimization of electron activation period and supplemental collision energy fo	r EThcD
Figure S9: Anti-O-GlcNAc immunoblots confirm O-GlcNAcylation of TAB-1 and Ph1397-158	9 11
Figure S10: Typical liquid chromatographic traces	12
Figure S11: LC-MS/MS analysis of TAB1-O- GIcNAc protein	
VYPVSVPS395(g1)S396(g2)AQS399(g3)TS401(g4)K glycopeptide	
Figure S12: MS/MS comparison of LWSVDHGEQSVV1[+203]AP glycopeptide	14
FIGURE 513. UVPD analysis of TSVTI SUVMDSOCOMVNCAUSASTI DEATDTI TNOSDTI TI OSTNTUTOSSSSSSDCCI ED alveopor	tida 15
Figure S14 . EThcD analysis of VYPVSVPS395(σ 1)S396(σ 2) Δ OS399(σ 3)TSK glycopentide	16 Internation
Figure S15: Ph1397-1589 construct sequence with identified O-GlcNAc sites	
Figure S16 : HCD oxocarbenium ion-triggered 193 nm UVPD mass spectrum of glycosylated	nentide
GSS[+203]HHHHHHSSGLVPR	
Figure S17: MS/MS comparison of GSSHHHHHHS[+203]SGLVPR glycopeptide.	
Figure S18: MS/MS comparison of	
LSESFPILGASTEVPPMS[+203]LPVQAAISAPSPLAMPLGSPLSVALPTLAPLSVVTSGAAPK glycoper	otide 20
Figure S19: HCD oxocarbenium ion-triggered UVPD mass spectra of an O-GlcNAc-modified	isoform
of peptide LSESFPILGASTEVPPMSLPVQAAISAPSPLAMPLGSPLSVALPTLAPLSVVTSGAAPK glyc	opeptide
Figure S20. MS/MS comparison of SSEV/NGTDRPPIS[+203]SW/SV/DDV/SNFIR glycopentide	21 27

Section S3 Supplementary Tables
Table S1: Summary of O-GlcNAc-containing peptides identified using HCD-triggered-EThcD
Table S2: Complete list of ions generated by HCD of TAB1-O-GlcNAc peptide 24
Table S3: Complete list of ions generated by UVPD of TAB1-O-GlcNAc peptide
Table S4: Complete list of ions generated by EThcD of TAB1-O-GlcNAc peptide
Table S5: Complete list of ions generated by UVPD of HCF-OGlcNAc peptide 28
Table S6: Complete list of ions generated by UVPD of CKII-OGIcNAc peptide
Table S7: Complete list of ions generated by EThcD of HCF-OGlcNAc
Table S8: Complete list of ions generated by EThcD of CKII-OGlcNAc peptide
Table S9 : Complete list of ions generated by UVPD of a tryptic peptide from TAB1
Table S10: Complete list of ions generated by UVPD of a tryptic peptide from TAB1 glycoprotein . 35
Table S11: Complete list of ions generated by UVPD of a tryptic peptide from TAB1 glycoprotein . 37
Table S12 : Complete list of ions generated by UVPD of a tryptic peptide from TAB1
Table S13: Complete list of ions generated by UVPD of a tryptic peptide from TAB1 glycoprotein . 41
Table S14: Complete list of ions generated by UVPD of a tryptic peptide from TAB1 glycoprotein . 43
Table S15: Complete list of ions generated by UVPD of a tryptic peptide from TAB1 glycoprotein . 47
Table S16 : Complete list of ions generated by EThcD of a tryptic peptide from TAB1 glycoprotein 49
Table S17 : Complete list of ions generated by EThcD of a tryptic peptide from TAB1 glycoprotein 51
Table S18: Complete list of ions generated by EThcD of a tryptic peptide from TAB1 glycoprotein 53
Table S19 : Complete list of ions generated by EThcD of a tryptic peptide from TAB1 glycoprotein 55
Table S20 : Complete list of ions generated by UVPD of a tryptic peptide from TAB1 glycoprotein . 56
Table S21 : Complete list of ions generated by UVPD of a tryptic peptide from TAB1 glycoprotein . 58
Table S22 : Complete list of ions generated by UVPD of a tryptic peptide from TAB1 glycoprotein . 60
Table S23 : Complete list of ions generated by UVPD of a tryptic peptide from TAB1 glycoprotein . 65
Table S24: Complete list of ions generated by UVPD of a tryptic peptide from TAB1 glycoprotein . 69
Table S25: Complete list of ions generated by EThcD of a tryptic peptide from Ph1 glycoprotein /2
Table S26: Complete list of ions generated by EThcD of a tryptic peptide from Ph1 glycoprotein 73
Table 527: Complete list of ions generated by EThcD of a tryptic peptide from Ph1 glycoprotein 75
Section 54 Supplementary References

Section S1 Methods

Preparation of O-GlcNAc modified peptides

Glycopeptides used in this study were generated chemoenzymatically using recombinantly-expressed O-GlcNAc Transferase (OGT). All unmodified peptides were obtained commercially (Biomatik Corporation, Cambridge, ON). Generally, 1-2 mg oligopeptide at a final concentration of 1 mM were incubated with UDP-GlcNAc (5 mM), OGT (1 μ M, prepared as previously described¹) and 2U shrimp alkaline phosphatase (New England Biolabs, Whitby, ON) in PBS at pH 7.2 containing 12.5 mM MgCl₂. Reactions were incubated at 37 °C for 4 h or overnight. Prior to purification, the reactions were terminated by heating at 95 °C for 10 min and then centrifuged at 13,000 x *g* for 2 minutes. The supernatants were recovered and were purified on an Agilent 1200 series HPLC equipped with an Agilent XDB-C18 Eclipse reversed-phase column (9.4 × 250 mm, 5 μ particle size). Glycopeptides were eluted using a mobile phase consisting of H₂O and CH₃CN with 0.1% trifluoroacetic acid over a gradient of 10 to 50% acetonitrile as appropriate. Fractions containing the product were lyophilized to yield up to 1 mg glycopeptide as white powders. All glycopeptides were purified to >95% purity and were analyzed by high-resolution mass spectrometry performed using a Bruker maXis Impact UltraHigh-Resolution Quadrupole

Time-of-Flight (UHR-QTOF) mass spectrometer (mobile phase water:acetonitrile 1:1 + 0.1% formic acid, flow rate of 0.3 ml/min). Ions were sprayed in positive mode with a voltage of 4200 V. Nitrogen drying gas was 180 °C at a flow rate of 8 L/min. Data was acquired over a mass range of 300 - 2500 atomic mass units.

TAB1-O-GlcNAc: Biotin-NH-PVSVPY**S(GlcNAc)**SAQSTS-OH (**X**):

Prepared according to above method. Yield 1.2 mg (55%), mobile phase gradient 20 - 25% CH₃CN over 20 min, 2 mL/min flow rate, RT = 15.3 min, HRMS (ESI⁺) Calculated 869.8956, found 869.8870 [M+2H]²⁺.

CKII-O-GlcNAc: NH₂-YPGGSTPV**S(GlcNAc)**SANMM-OH (X):

Prepared according to general method. Yield 0.85 mg (68%), mobile phase gradient 20 - 30% CH₃CN over 20 min, 2 mL/min flow rate, RT = 9.6 min, LRMS (ESI⁺) Calculated 801.34, found 801.36 [M+2H]²⁺.

HCF-1-O-GlcNAc: NH₂-YVRVCSNPPC**S(GlcNAc)**THETGTTNTATTATS-OH (X):

Prepared according to general method. Yield 0.5 mg (42%), mobile phase gradient 15-30% % CH₃CN over 30 min, 2 mL/min flow rate, RT = 14.2 min, HRMS (ESI⁺) Calculated 968.0991, found 968.0948 [M+3H]³⁺.

Annotation and Labeling of UVPD mass spectra:

Several of the characteristic fragment ions produced by UVPD, including *a*, *x*, *y* and *z* ions, display contributions from both even and odd electron forms, resulting in mass shifts of \pm 1.0078 Da corresponding to one hydrogen atom. The high density, information-rich nature of the UVPD mass spectra precludes inclusion of these hydrogen shifts in the ion labels, but they are accounted for in the supporting tables.

Section S2 Supplementary Figures

Figure S1: HPLC and MS1 spectra for O-GlcNAcylated peptides. A, C, and E: HPLC traces for O-GlcNAcylated peptides A) TAB-1, C) CKII, and E) HCF-1 peptides. HPLC parameters for each peptide are outlined in the above methods section. B, D, and F: Overlay of MS¹ spectra of the unmodified and O-GlcNAc modified forms of (A) TAB1, (B) CKII, and (C) HCF-1 peptides. The mass difference between the pairs of featured ions corresponds to GlcNAc.

Figure S2: HCD-produced oxocarbenium ions from TAB1-O-GlcNAc, all arising from cleavage of the glycosidic bond.

Figure S3: Expansions of MS/MS spectra for the TAB1-O-GlcNAc glycopeptide (biotin-PVSVPYS_(g)SAQSTS, 2+, m/z 869.90) corresponding to the spectra in **Figure 2A,B**. (**A**) Expansion of m/z 836-850 (UVPD) showing fragment ion a_6 . (**B**) Expansion of m/z 1129-1135 (UVPD) showing the fragment ion assignment of a_7 resolved from the adjacent y_9 ion. (**C**) Expansion of m/z 836-850 (HCD) showing absence of a_6 fragment ion, (**D**) Expansion of m/z 1129-1135 (HCD) showing a y_9 fragment ion with no a_7 ion.

Figure S4: HCD oxocarbenium ion triggered EThcD mass spectrum of TAB1-O-GlcNAc. EThcD was run with a 50 ms activation time and 33% supplemental energy, generating the spectrum above for the TAB1-O-GlcNAc peptide (Biotin-PVSVPYS_(g)SAQSTS, 2+, *m/z* 869.90)); PCS score: 3.1e-36. A sequence map is shown in the upper right, and the complete list of identified fragment ions is shown in **Table S4**.

Figure S5: Optimization of pulse number and laser energy for 193 nm UVPD based on the number of assigned fragment ions. Experiments were performed using CKII-O-GlcNAc (YPGGSTPVS(g)SANMM; 2+, *m/z* 801.30), TAB1-O-GlcNAc (biotin-PVSVPYS(g)SAQSTS; 2+, *m/z* 869.9), and HCF-O-GlcNAc (YVRVCSNPPCS(g)THETGTTNTATTATS, 3+, *m/z* 967.76). Error bars correspond to standard deviations from technical triplicates.

Figure S6: HCD induces robust production of oxocarbenium ions across multiple precursor charge states upon activation of the HCF-1-O-GlcNAc peptide. Spectra in A-C represent the oxocarbenium ions produced upon HCD of 2+, 3+, and 4+ charge states of the peptide, respectively. Fragmentation of the HCF-1-O-GlcNAc peptide (YVRVCSNPPCS(g)THETGTTNTATTATS) was induced using a normalized collision energy of 28.

Figure S7: MS/MS comparison of CKII-O-GlcNAc standard glycopeptide. The double-headed arrows and ΔGlcNAc indicate the mass shifts representing loss of the O-GlcNAc-modified amino acid between fragment ions (labelled in grey at each end of the double headed arrow) that bracket the site of the modification. (**A**) 193 nm UVPD mass spectrum of CKII-O-GlcNAc peptide. Fragmentation of the CKII-O-GlcNAc peptide (YPGGSTPVSSANMM, 2+, m/z 801.3) was induced using two laser pulses at 1.5 mJ laser energy per pulse. A sequence map is shown in the upper right, and the complete list of identified fragment ions is shown in **Table S6**. (**B**) HCD oxocarbenium ion triggered EThcD mass spectrum of CKII-O-GlcNAc. EThcD was run with a 50 ms activation time and 25% supplemental energy, generating the spectrum above for the CKII-O-GlcNAc peptide (YPGGSTPVS(g)SANMM; 2+, *m/z* 801.30). A sequence map is shown in the upper left, and the complete list of identified fragment ions is shown in **Table S8**.

Figure S8: Optimization of electron activation period and supplemental collision energy for EThcD based on the number of assigned fragment ions. Experiments were performed using CKII-O-GlcNAc (YPGGSTPVS(g)SANMM; 2+, *m/z* 801.30), TAB1-O-GlcNAc (biotin-PVSVPYS(g)SAQSTS; 2+, *m/z* 869.9), and HCF-O-GlcNAc (YVRVCSNPPCS(g)THETGTTNTATTATS, 3+, *m/z* 967.76). Error bars correspond to standard deviations from technical triplicates.

Figure S9: Anti-O-GlcNAc Immunoblots confirm O-GlcNAcylation of TAB-1 and Ph1397-1589. Recombinant protein (10 μ M) was incubated in reaction buffer (20mM sodium phosphate pH 7.2, 150 mM NaCl) in the presence of either 1 μ M WT or D242A BtGH84 overnight. Following reaction, 0.25 μ g total protein was loaded per well for immunoblotting.

Figure S10: Typical liquid chromatographic traces of a (**A**) trypsin digest of TAB1-O-GlcNAc modified protein, and (**B**) trypsin digest of Ph¹³⁹⁷⁻¹⁵⁸⁹-O-GlcNAc modified protein.

VYPVSVPS395(g1)S396(g2)AQS399(g3)TS401(g4)K glycopeptide. (**A**) Extracted ion chromatogram of m/z 951.97-951.98 from LC-MS of the tryptic digest of TAB1-O-GlcNAc modified protein showing each confidently identified positional isomer of the VYPVSVPS395(g1)S396(g2)AQS399(g3)TS401(g4)K glycopeptide. (**B**) Comparison of expanded m/z regions of the UVPD spectra obtained for the S395 and S396 glycopeptide isomers showing distinctive C-terminal fragment ions differentiating the two isomers. The unmodified x_7 , y_7 , and z_7 fragment ions were found only for the S396 glycoisomer and not for the S395 glycoisomer. (**C**) Comparison of expanded m/z regions of the UVPD spectra obtained for the S399 and S401 glycopeptide isomers showing distinctive N-terminal fragment ions differentiating the two isomers. The unmodified a_{13} , a_{14} , b_{13} , b_{14} , c_{13} , and c_{14} fragment ions were found only for the S401 glycoisomer and not for the S399 glycoisomer.

Figure S12: MS/MS comparison of LWSVDHGEQSVVT[+203]AP glycopeptide. The double-headed arrows and Δ GlcNAc indicate the mass shifts representing loss of the O-GlcNAc-modified amino acid between fragment ions (labelled in grey at each end of the double headed arrow) that bracket the site of the modification. (**A**) HCD oxocarbenium ion-triggered 193 nm UVPD mass spectrum of glycosylated peptide LWSVDHGEQSVVT[+203]AP (2+, m/z 914.43) using two pulses of 1.5 mJ. A sequence map is shown in the upper right, and the complete list of identified fragment ions is shown in **Table S13**. (**B**) HCD oxocarbenium ion-triggered EThcD mass spectrum of glycosylated peptide LWSVDHGEQSVVT[+203]AP (2+, m/z 914.43) using 50 ms activation time and 25% supplemental energy. A sequence map is shown in the upper right and the complete list of identified fragment ions is shown in **Table S19**.

Figure S13: UVPD analysis of

TSVTLSLVMPSQGQMVNGAHSASTLDEATPTLTNQSPTLTLQSTNTHTQSSSSSSDGGLFR glycopeptide. (**A**) HCD oxocarbenium ion-triggered UVPD mass spectra of an O-GlcNAc-modified isoform TSVTLSLVMPSQGQMVNGAHS[+203]ASTLDEATPTLTNQSPTLTLQSTNTHTQSSSSSSDGGLFR (4+, m/z1617.52) using two pulses of 1.5 mJ. A sequence map is shown above the spectrum. The inset shows an expansion of the region from m/z 1100-1400 to illustrate the level of fragmentation detail that prevents every fragment ion from being labelled in the UVPD spectra. The complete list of identified fragment ions is shown in **Table S14**. (**B**) HCD oxocarbenium ion-triggered UVPD mass spectra of of TSVTLSLVMPSQGQMVNGAHSASTLDEATPTLTNQSPTLTLQSTNTHT[+203]QSSSSSDGGLFR (4+, m/z1617.52) using two pulses of 1.5 mJ. A sequence map is shown above the spectrum, and the complete list of identified fragment ions is shown in **Table S15**.

Figure S14: EThcD analysis of VYPVSVPS395(g1)S396(g2)AQS399(g3)TSK glycopeptide using 50 ms activation time and 25% supplemental energy. (**A**) HCD oxocarbenium ion-triggered EThcD mass spectrum of glycosylated peptide VYPVSVPYSS[+203]AQSTSK (2+, m/z 951.97) from TAB-1-O-GlcNAc tryptic. A sequence map is shown in the upper right, and the complete list of identified fragment ions is shown in **Table S16**. (**B**) HCD oxocarbenium ion-triggered EThcD mass spectrum of glycosylated peptide VYPVSVPYS[+203]SAQSTSK (2+, m/z 951.97). A sequence map is shown in the upper right, and the complete list of identified fragment ions is shown in **Table S17**. (**C**) HCD oxocarbenium ion-triggered EThcD mass spectrum of glycosylated peptide VYPVSVPYSAQS[+203]TSK (2+, m/z 951.97) from TAB-1-O-GlcNAc tryptic digest. A sequence map is shown in the upper right, and the complete list of identified fragment ions is shown in the upper right, and the complete list of identified fragment ions is shown in the upper right, and the complete list of identified fragment ions is shown in **Table S17**. (**C**) HCD oxocarbenium ion-triggered EThcD mass spectrum of glycosylated peptide VYPVSVPYSAQS[+203]TSK (2+, m/z 951.97) from TAB-1-O-GlcNAc tryptic digest. A sequence map is shown in the upper right, and the complete list of identified fragment ions is shown in the upper right, and the complete list of identified fragment ions is shown in the upper right, and the complete list of identified fragment ions is shown in the upper right, and the complete list of identified fragment ions is shown in the upper right, and the complete list of identified fragment ions is shown in the upper right, and the complete list of identified fragment ions is shown in the upper right, and the complete list of identified fragment ions is shown in the upper right, and the complete list of identified fragment ions is shown in the upper right, and the complete list of identified fragment ions is shown in the upper right, and the complete list of identified fragment ions is

10	20	30	40	50
Mgs s hhhhhh	SSGLVPRGSH	GVGSGETNGL	GTGGIVGVDA	MALVDRLDEA
60	70	80	90	100
MAEEKMQTEA	TPKLSESFPI	LGASTEVPPM	S LPVQAAI S A	PSPLAMPLGS
110	120	130	140	150
PLSVALPTLA	PLSVVTSGAA	PKSSEVNGTD	RPPI <mark>S</mark> SWSVD	DVSNFIRELP
160	170	180	190	200
GCQDYVDDFI	QQEIDGQALL	LLKEKHLVNA	MGMKLGPALK	IVAKVESIKE
210		'n]
VPPPGEAKDP	GAQ		S/T = Observe	ed glycosite
			S/T = Potentia	al glycosite

Figure S15: Ph1397-1589 construct sequence with identified O-GlcNAc sites highlighted.

Figure S16: HCD oxocarbenium ion-triggered 193 nm UVPD mass spectrum of glycosylated peptide GSS[+203]HHHHHHSSGLVPR (4+, m/z 493.73) from Ph1397-1589-O-GlcNAc tryptic digest using two pulses of 1.5 mJ. A sequence map is shown in the upper right, and the complete list of identified fragment ions is shown in **Table S20**.

Figure S17: MS/MS comparison of GSSHHHHHHS[+203]SGLVPR glycopeptide. The double-headed arrows and ΔGlcNAc indicate the mass shifts representing loss of the O-GlcNAc-modified amino acid between fragment ions (labelled in grey at each end of the double headed arrow) that bracket the site of the modification. (**A**) HCD oxocarbenium ion-triggered 193 nm UVPD mass spectrum of glycosylated peptide GSSHHHHHHS[+203]SGLVPR (4+, m/z 493.73) from Ph1397-1589-O-GlcNAc tryptic digest using two pulses of 1.5 mJ. A sequence map is shown in the upper right, and the complete list of identified fragment ions is shown in **Table S21**. (**B**) HCD oxocarbenium ion-triggered EThcD mass spectrum of glycosylated peptide GSSHHHHHHS[+203]SGLVPR (4+, m/z 493.73) using 50 ms activation time and 25% supplemental energy. A sequence map is shown in the upper right, and the complete list of identified fragment ions is shown in **Table S25**.

Figure S18: MS/MS comparison of

LSESFPILGASTEVPPMS[+203]LPVQAAISAPSPLAMPLGSPLSVALPTLAPLSVVTSGAAPK glycopeptide. (**A**) HCD oxocarbenium ion-triggered UVPD mass spectra of an O-GlcNAc-modified isoform of peptide originating from a Ph1397-1589-O-GlcNAc tryptic digest. 193 nm UVPD of LSESFPILGASTEVPPMS[+203]LPVQAAISAPSPLAMPLGSPLSVALPTLAPLSVVTSGAAPK (5+, m/z 1188.24). Two laser pulses of 1.5 mJ were used. The double-headed arrows and ΔGlcNAc indicate the mass shifts representing loss of the O-GlcNAc-modified amino acid between fragment ions (labelled in grey at each end of the double headed arrow) that bracket the site of the modification. A sequence map is shown above the spectrum, and the complete list of identified fragment ions is shown in **Table S22**. (**B**) HCD oxocarbenium ion-triggered EThcD mass spectra of LSESFPILGASTEVPPMS[+203]LPVQAAISAP SPLAMPLGSPLSVALPTLAPLSVVTSGAAPK (5+, m/z 1188.24) using 50 ms activation time and 25% supplemental energy were used for EThcD. A sequence map is shown above the spectrum, and the complete list of identified fragment ions is shown above the spectrum, and the complete list of identified fragment ions is shown above the spectrum, and the complete list of identified fragment ions is shown in **Table S26**.

Figure S19: HCD oxocarbenium ion-triggered UVPD mass spectra of an O-GlcNAc-modified isoform of peptide LSESFPILGASTEVPPMSLPVQAAISAPSPLAMPLGSPLSVALPTLAPLSVVTSGAAPK glycopeptide originating from a Ph1397-1589-O-GlcNAc tryptic digest. 193 nm UVPD of LSESFPILGASTEVPPMSLPVQ AAIS[+203]APSPLAMPLGSPLSVALPTLAPLSVVTSGAAPK (5+, m/z 1188.24). The double-headed arrows and Δ GlcNAc indicate the mass shifts representing loss of the O-GlcNAc-modified amino acid between fragment ions (labelled in grey at each end of the double headed arrow) that bracket the site of the modification. Two laser pulses of 1.5 mJ were used. A sequence map is shown above the spectrum, and the complete list of identified fragment ions is shown in **Table S23**.

Figure S20: MS/MS comparison of SSEVNGTDRPPIS[+203]SWSVDDVSNFIR glycopeptide. The doubleheaded arrows and ΔGlcNAc indicate the mass shifts representing loss of the O-GlcNAc-modified amino acid between fragment ions (labelled in grey at each end of the double headed arrow) that bracket the site of the modification. (**A**) HCD oxocarbenium ion-triggered 193 nm UVPD mass spectrum of glycosylated peptide SSEVNGTDRPPIS[+203]SWSVDDVSNFIR (3+, m/z 989.80) from Ph1397-1589-O-GlcNAc tryptic digest using two pulses of 1.5 mJ. A sequence map is shown in the upper right, and the complete list of identified fragment ions is shown in **Table S24**. (**B**) HCD oxocarbenium ion-triggered EThcD mass spectrum of glycosylated peptide SSEVNGTDRPPIS[+203]SWSVDDVSNFIR (3+, m/z 989.80) using 50 ms activation time and 25% supplemental energy. A sequence map is shown in the upper right, and the complete list of identified fragment ions is shown in **Table S27**.

Section S3 Supplementary Tables

Table S1: Summary of O-GlcNAc-containing peptides identified using HCD-triggered-EThcD for analysis of tryptic digests of O-GlcNAc-modified TAB1 and Ph proteins.

Protein	Glycopeptide	Charge state (+)	Detected Ion (m/z)	Peptide Mass (Da)	Mass error (ppm)	PEP 2D [‡]	Delta Mod Score	Sequence Coverage	Modified res ^ζ /known site?
TAB1	VYPVSVPYS [†] (g1)SAQSTSK	2	951.97	1902.93	0.2	2.2e-14	901	100%	S395 / Y ²⁶
TAB1	VYPVSVPYSS(g2)AQSTSK	2	951.97	1902.93	0.9	7.5e-15	934	100%	S396 / Y ²⁷
TAB1	VYPVSVPYSSAQS _(g3) TSK	2	951.97	1902.93	2.1	7.4e-14	898	100%	S399 / N
TAB1	LWSVDHGEQSVVT(g7)AP	2	914.44	1826.87	1.0	2.7e-8	650	93%	T502 / N
Ph ¹³⁹⁷⁻¹⁵⁸⁹	LSESFPILGASTEVPPMS(g2)LP VQAAISAPSPLAMPLGSPLSV ALPTLAPLSVVTSGAAPK	5	118.24	5937.19	-0.3	2.9e-18	1039	72%	S1457 / N
Ph ¹³⁹⁷⁻¹⁵⁸⁹	SSEVNGTDRPPIS(g4)S WSVDDVSNFIR	3	989.80	2967.40	0.5	9.1e-15	773	88%	S1511 / N

 $^{\dagger}_{(g)}$ denotes an identified O-GlcNAc modification site

 $^{\circ}$ Scoring criteria used for assessing quality of PTM site localization based previously established two-dimensional target decoy strategy (PEP 2D scores < 10⁻⁵ & Delta Mod scores > 40)⁴² using Byonic

^{*\zeta*} Modified amino acid position in the full-length protein.

*Data are based on triplicate runs

Identified	Theoretical	Observed	Mass Error
lon	Mass	Mass	(ppm)
b ₂	422.2012	422.1991	-5.0
b ₃	509.2332	509.2316	-3.1
b ₄	608.3016	608.2999	-2.9
b ₅	705.3544	705.3493	-7.2
b ₇ ▲	955.4497	955.4484	-1.4
b ₈ ▲	1042.4818	1042.4820	0.2
b ₁₀ ▲	1241.5775	1241.5767	-0.6
b_11 [▲]	1328.6095	1328.6096	0.1
b_12 [▲]	1429.6572	1429.6569	-0.2
Y ₂	206.0903	206.0904	0.7
y ₃	293.1223	293.1225	0.7
Y ₄	421.1809	421.1813	1.1
y ₅	492.2180	492.2188	1.7
y ₆	579.2500	579.2508	1.3
y ₇ [▲]	666.2821	666.2824	0.6
y ₉ ▲	926.3981	926.3987	0.6
y ₁₀ ▲	1025.4666	1025.4693	2.7
y ₁₁ ▲	1112.4986	1112.4999	1.1

Table S2: Complete list of ions generated by HCD of TAB1-O-GlcNAc peptide using an NCE of 25 to activate the TAB1-O-GlcNAc peptide (biotin-PVSVPYS_(g)SAQSTS, 2+, m/z 869.9). Fragment ions that undergo loss of water or ammonia are not listed in this table.

Table S3: Complete list of ions generated by UVPD of TAB1-O-GlcNAc peptide using two pulse of 1.5 mJ laser energy to activate the TAB1-O-GlcNAc peptide (biotin-PVSVPYS_(g)SAQSTS, 2+, m/z 869.9). Fragment ions that undergo loss of water or ammonia are not listed in this table. Ions identified as $a_n + 1$ have an extra hydrogen atom. The fragment ions that are critical for localization of GlcNAc sites are listed in blue font.

Identified	Theoretical	Observed	Mass Error
lon	Mass	Mass	(ppm)
a ₁ +1	296.1433	296.1429	-1.2
a ₂	394.2039	394.2041	0.5
a ₃	481.2359	481.2363	0.9
a ₄ +1	581.3121	581.3121	0.0
a ₅ +1	678.3649	678.3655	0.9
a ₆ +1	841.4277	841.4225	-6.2
a ₇	1131.5391	1131.5462	6.3
a ₈	1217.5638	1217.5636	-0.1
a ₉ +1	1289.6088	1289.6039	-3.8
a ₁₀	1416.6595	1416.6621	1.8
a ₁₀ +1	1417.6674	1417.6662	-0.8
a ₁₁	1503.6916	1503.6816	-6.6
b ₁	323.1304	323.1306	0.6
b ₂	422.1988	422.1989	0.4
b ₃	509.2308	509.2313	0.9
b ₄	608.2992	608.2996	0.7
b ₅	705.3520	705.3528	1.2
b ₇	1158.5267	1158.5297	-1.1
b ₈	1245.5587	1245.5574	2.5
b ₉	1316.5959	1316.5992	2.5
b ₁₀	1444.6545	1444.6537	-0.5
b ₁₀ ▲	1241.5751	1241.5753	0.2
b_11 [▲]	1328.6071	1328.6081	0.7
b ₁₂	1632.7341	1632.7298	-2.6
b ₁₂ ▲	1429.6548	1429.6548	0.0
c ₂	439.2251	439.2258	1.6
c ₃	526.2571	526.2577	1.2
c ₅	722.3783	722.3789	0.9
с ₆	885.4416	885.4427	1.2
c ₈	1262.5850	1262.5795	-4.4
c ₉	1333.6221	1333.6205	-1.2
x ₂ +1	233.0774	233.0774	0.0
x ₃ +1	320.1094	320.1088	-1.9
x ₈ +1	1059.4119	1059.4122	0.3
x ₁₁ +1	1342.5651	1342.5667	1.2
x ₁₂	1440.6257	1440.6289	2.2
У ₃	293.1223	293.1224	0.2
У ₆	579.2500	579.2504	0.6
y ₈	1032.4248	1032.4228	-1.9

γ ₉	1129.4775	1129.4771	-0.4
y ₉ ▲	926.3981	926.3960	-2.3
Y ₁₀	1228.5460	1228.5448	-0.9
y ₁₀ ▲	1025.4666	1025.4644	-2.1
Y ₁₁	1315.5780	1315.5792	0.9
y ₁₁ ▲	1112.4986	1112.4961	-2.3
z ₁₂	1398.6276	1398.6257	-1.4
z ₅	476.1992	476.1999	1.3
z ₆	563.2313	563.2301	-2.0
Z ₇	853.3427	853.3429	0.2

Table S4: Complete list of ions generated by EThcD of TAB1-O-GlcNAc peptide using 50 ms of ETD activation energy and 25% supplemental energy to activate the TAB1-O-GlcNAc peptide (biotin-PVSVPYS_(g)SAQSTS, 2+, m/z 869.9). The fragment ions that are critical for localization of GlcNAc sites are listed in blue font.

Identified Ion	Theoretical Mass	Observed Mass	Mass Error (ppm)
b ₂	422.1988	422.1986	-0.5
b ₃	509.2308	509.2305	-0.5
b ₆	868.4153	868.4161	0.9
b ₁₀ ▲	1241.5751	1241.5751	0.0
b_11 [▲]	1328.6071	1328.6077	0.5
b ₁₂	1632.7342	1632.7404	3.8
b_12 [▲]	1429.6548	1429.6551	0.2
c ₅	722.3783	722.3790	1.1
с ₆	885.4416	885.4409	-0.8
с ₇	1175.5530	1175.5516	-1.2
c ₇ ▲	972.4736	972.4750	1.4
c ₈	1262.5851	1262.5861	0.8
c ₈ ▲	1059.5057	1059.5067	1.0
с ₉	1333.6222	1333.6216	-0.4
c ₁₀	1461.6808	1461.6815	0.5
c_10 [▲]	1258.6014	1258.6017	0.3
c ₁₁	1548.7128	1548.7151	1.5
c_11	1345.6334	1345.6342	0.6
c ₁₂	1649.7605	1649.7611	0.4
c_12 [▲]	1446.6811	1446.6815	0.3
y ₃	293.1223	293.1223	0.0
Y ₆	579.2500	579.2495	-0.9
Y ₉	1129.4775	1129.4775	0.0
y ₉ [▲]	926.3981	926.3979	-0.2
Y ₁₀	1228.5460	1228.5468	0.7
Y ₁₁	1315.5780	1315.5818	2.9
y ₁₁ ▲	1112.4986	1112.4983	-0.3
z ₁₀	1212.5272	1212.5284	1.0
z ₁₀ ▲	1009.4478	1009.4486	0.8
z ₁₁	1299.5592	1299.5612	1.5
z ₁₂	1398.6276	1398.6289	0.9
z_12 [▲]	1195.5482	1195.5417	-5.5

Table S5: Complete list of ions generated by UVPD of HCF-OGlcNAc peptide using two pulse of 1.5 mJ laser energy to activate the HCF-OGlcNAc peptide (YVRVCSNPPCS_(g)THETGTTNTATTATS, 3+, m/z 967.76). The fragment ions that are critical for localization of GlcNAc sites are listed in blue font.

			Mass
Identified	Theoretical	Observed	Error
lon	Mass	Mass	(ppm)
a ₂	234.1368	234.1373	1.9
a ₃ +1	391.2458	391.2456	-0.4
a ₄	489.3063	489.3066	0.6
a ₄ +1	490.3142	490.3129	-2.7
a ₆ +1	680.3554	680.3521	-4.9
a ₇	793.3905	793.3961	7.1
a ₁₀ +1	1091.5052	1091.4982	-6.3
a ₁₁ +1	1381.6245	1381.6145	-7.2
a ₁₂	1481.6643	1481.6545	-6.6
a ₁₈ +1	2108.9381	2108.9274	-5.1
a ₁₉	2221.9732	2221.9703	-1.3
a ₂₃ +1	2597.1612	2597.1415	-7.6
a ₂₄	2667.1905	2667.1824	-3.0
b ₂	262.1317	262.1323	2.3
b₃	418.2329	418.2335	1.6
b ₄	517.3013	517.3021	1.6
b ₇	821.3854	821.3896	5.1
b ₈	918.4382	918.4394	1.3
b ₁₀	1118.5001	1118.4894	-9.6
b ₁₃ ▲	1443.6387	1443.6389	0.1
b ₁₄ ▲	1572.6813	1572.6906	5.9
b15▲	1673.7290	1673.7280	-0.6
b ₁₇	2034.8776	2034.8970	9.5
b ₂₄ ▲	2492.1060	2492.1015	-1.8
b ₂₅	2796.2331	2796.2333	0.1
b ₂₅ ▲	2593.1537	2593.1421	-4.5
C 4	534.3276	534.3288	2.3
C ₁₉	2266.9945	2266.9772	-7.6
X ₁₂	1151.4942	1151.5037	8.2
y 3	277.1274	277.1278	1.7
y 4	378.1751	378.1758	1.8
y 5	479.2227	479.2240	2.6
y 6	550.2599	550.2612	2.5
y 8	765.3505	765.3534	3.9
y 11	1024.4673	1024.4733	5.9
y 14	1391.6165	1391.6204	2.8
y 15	1492.6641	1492.6729	5.8
y 16	1782.7756	1782.7713	-2.4
y ₂₀	2193.9332	2193.9411	3.6
Y 21	2280.9652	2280.9743	4.0
y ₂₄ -1	2638.1361	2638.1440	3.0
Z9	850.3794	850.3761	-3.9
Z ₁₈	1966.8188	1966.8319	6.7
Z ₂₄	2623.1252	2623.1344	3.5

Table S6 : Complete list of ions generated by UVPD of CKII-OGlcNAc peptide using two pulse of 1.5 mJ
laser energy to activate the CKII-OGlcNAc peptide (YPGGSTPVS _(g) SANMM, 2+, m/z 801.3). The fragment
ions that are critical for localization of GlcNAc sites are listed in blue font.

Identified	Theoretical	Observed	Mass Error
lon	Mass	Mass	(ppm)
a ₂	232.1212	232.1216	2.0
a ₅	433.1961	433.1975	3.1
a ₆	534.2438	534.2439	0.2
a ₉	1020.4764	1020.4834	6.8
a ₁₃ +1	1424.6368	1424.6390	1.5
a ₄ +1	347.1719	347.1726	2.0
a ₇ +1	632.3044	632.3035	-1.4
a ₈ +1	731.3728	731.3723	-0.7
a ₁₀	1107.5084	1107.5179	8.5
a ₁₁	1178.5455	1178.5482	2.2
b ₄	374.1590	374.1596	1.6
b ₅	461.1910	461.1922	2.6
b ₆	562.2387	562.2402	2.7
b ₈	758.3599	758.3613	1.9
b ₉	1048.4713	1048.4766	5.0
b ₉ ▲	845.3919	845.3925	0.7
b ₁₀	1135.5034	1135.5096	5.5
b ₁₀ ▲	932.4240	932.4240	0.0
b ₁₁	1206.5405	1206.5422	1.5
b_11 [▲]	1003.4611	1003.4625	1.5
b ₁₂	1320.5834	1320.5873	2.9
b ₁₂ ▲	1117.5040	1117.5036	-0.3
b ₁₃	1451.6239	1451.6267	2.0
b ₁₃ ▲	1248.5445	1248.5465	1.6
c ₂	277.1424	277.1432	2.8
c ₃	334.1639	334.1647	2.5
C ₄	391.1853	391.1858	1.3
с ₇	676.3178	676.3230	7.7
c ₈	775.3862	775.3882	2.6
c ₁₀	1152.5297	1152.5307	0.9
c ₁₁	1223.5668	1223.5725	4.7
c_12 [▲]	1134.5303	1134.5253	-4.4
c_13 [▲]	1265.5708	1265.5671	-2.9
x ₆ +1	869.3021	869.3017	-0.6
x ₇ +1	968.3705	968.3709	0.4
x ₈ +1	1065.4233	1065.4315	7.7
Y ₁	149.0511	149.0515	3.0
Y ₂	280.0915	280.0921	1.8
У ₃	394.1345	394.1353	2.0
У ₄	465.1716	465.1726	2.3

Y ₅	552.2036	552.2051	2.7
y ₆	842.3150	842.3166	1.9
y ₆ ▲	639.2356	639.2353	-0.5
y ₈	1038.4362	1038.4373	1.0
y ₈ ▲	835.3568	835.3558	-1.2
y ₉ ▲	936.4045	936.4057	1.3
y ₁₂ ▲	1137.4794	1137.4786	-0.8
y ₁₃ ▲	1234.5322	1234.5319	-0.2
Y ₁₀	1226.5159	1226.5163	0.3
Y ₁₁	1283.5374	1283.5411	2.9
y ₁₁ -1	1282.5296	1282.5279	-1.3
Y ₁₂	1340.5588	1340.5583	-0.4
Y ₁₃	1437.6116	1437.6136	1.4
z ₉	1123.4651	1123.4629	-2.0

Table S7: Complete list of ions generated by EThcD of HCF-OGlcNAc peptide using 50 ms of ETD activation energy and 25% supplemental energy to activate the HCF-OGlcNAc peptide (YVRVCSNPPCS_(g)THETGTTNTATTATS, 3+, m/z 967.76). The fragment ions that are critical for localization of GlcNAc sites are listed in blue font.

Identified	Theoretical Mass	Observed Mass	Mass Error
b ₂₁	2218.9805	2218.9735	-3.2
b ₂₄	2695.1760	2695.1807	1.7
b_24	2492.1060	2492.1055	-0.2
b ₂₅ ▲	2593.1537	2593.1521	-0.6
C ₄	534.3276	534.3276	0.2
c ₁₉	2266.9850	2266.9900	2.1
Y ₂	206.0903	206.0902	-0.2
y ₃	277.1274	277.1274	0.1
Y ₄	378.1751	378.1748	-0.6
Y ₅	479.2227	479.2227	0.0
y ₆	550.2599	550.2597	-0.3
У ₈	765.3505	765.3491	-1.7
Y ₁₁	1024.4670	1024.4670	-0.3
У ₁₃	1254.5580	1254.5550	-2.4
У ₁₄	1391.6170	1391.6180	0.8
У ₁₅	1492.6640	1492.6670	1.6
Y ₂₄	2639.1350	2639.1600	9.5
z ₈	749.3317	749.3317	0.0
z ₁₄	1375.5980	1375.6030	3.6
z ₁₅	1476.6450	1476.6440	-1.2

Table S8: Complete list of ions generated by EThcD of CKII-OGlcNAc peptide using 50 ms of ETD activation energy and 25% supplemental energy to activate the CKII-OGlcNAc peptide (YPGGSTPVS_(g)SANMM, 2+, m/z 801.3). The fragment ions that are critical for localization of GlcNAc sites are listed in blue font.

Identified	Theoretical	Observed	Mass Error
lon	Mass	Mass	(ppm)
b ₄	374.1590	374.1585	-1.2
b ₅	461.1910	461.1906	-0.9
b ₆	562.2387	562.2385	-0.4
b ₈	758.3599	758.3597	-0.2
b ₉	1048.4713	1048.4656	-5.4
b ₉ ≜	845.3919	845.3925	0.7
b ₁₀ ▲	932.4240	932.4240	0.0
b ₁₁ ▲	1003.4611	1003.4625	1.5
b ₁₂ ▲	1117.5040	1117.5036	-0.3
b ₁₃ ▲	1248.5445	1248.5465	1.6
c ₅	478.2173	478.2170	-0.7
c ₇	676.3178	676.3183	0.8
c ₈	775.3862	775.3846	-2.1
c ₁₀	1152.5297	1152.5285	-1.0
c ₁₀ ▲	949.4503	949.4444	-6.1
c_11 [▲]	1020.4874	1020.4902	2.8
c ₁₂	1337.6097	1337.6080	-1.3
c_12	1134.5303	1134.5253	-4.4
C ₁₃	1468.6502	1468.6479	-1.5
c_13	1265.5708	1265.5671	-2.9
Y ₂	280.0915	280.0915	-0.1
y ₈	1038.4362	1038.4355	-0.7
y ₈ ▲	835.3568	835.3558	-1.2
y ₉ ▲	936.4045	936.4057	1.3
y ₁₂ ▲	1137.4794	1137.4786	-0.8
y ₁₃ ▲	1234.5322	1234.5319	-0.2
z ₁₁	1267.5186	1267.5296	8.6
z ₁₂	1324.5401	1324.5485	6.4

Table S9: Complete list of ions generated by UVPD of a tryptic peptide from TAB1 glycoprotein using two pulse of 1.5 mJ laser energy to activate the peptide (VYPVSVPYSS_(g)AQSTSK, 2+, m/z 951.97). The fragment ions that are critical for localization of GlcNAc sites are listed in blue font.

Identified	Theoretical	Observed	Mass Error
lons	m/z	m/z	(ppm)
a ₂	235.1441	235.1443	0.9
a ₃	332.1969	332.1974	1.5
a ₄	431.2653	431.2657	0.9
a ₅	518.2973	518.2982	1.7
a ₆	617.3657	617.3668	1.8
a ₇	714.4185	714.4211	3.6
a ₈	877.4818	877.4841	2.6
a ₉	964.5138	964.5183	4.7
a ₁₀	1254.6252	1254.6274	1.8
a ₁₁	1325.6623	1325.6588	-2.6
a ₁₂	1453.7209	1453.7260	3.5
a ₁₃	1540.7530	1540.7603	4.7
a ₁₅	1728.8327	1728.8295	-1.9
b ₂	263.1390	263.1393	1.1
b ₃	360.1918	360.1922	1.1
b ₄	459.2602	459.2608	1.3
b ₅	546.2922	546.2932	1.8
b ₆	645.3606	645.3617	1.7
b ₇	742.4134	742.4123	-1.5
b ₈	905.4767	905.4822	6.1
b ₉	992.5087	992.5151	6.4
b ₁₁	1353.6573	1353.6592	1.4
b ₁₄	1669.7955	1669.7964	0.5
c ₃	377.2183	377.2187	1.1
C ₄	476.2867	476.2873	1.3
c ₅	563.3188	563.3196	1.4
с ₇	759.4399	759.4406	0.9
c ₈	922.5033	922.5055	2.4
c ₁₃	1585.7744	1585.7734	-0.6
c ₁₄	1686.8221	1686.8252	1.8
c ₁₅	1773.8541	1773.8438	-5.8
x ₁	173.0921	173.0924	1.7
x ₂	260.1241	260.1245	1.5
x ₃	361.1718	361.1726	2.2
x ₄	448.2038	448.2044	1.3
x ₅	576.2624	576.2640	2.8
x ₆	647.2995	647.3011	2.5
x ₇	937.4109	937.4147	4.1
x ₈	1024.4429	1024.4454	2.4
x ₉	1187.5063	1187.5084	1.8
x ₁₀	1284.5590	1284.5569	-1.6

x ₁₁	1383.6274	1383.6179	-6.9
x ₁₂	1470.6595	1470.6633	2.6
x ₁₃	1569.7279	1569.7321	2.7
x ₁₄	1666.7806	1666.7867	3.7
γ ₂	234.1448	234.1451	1.3
У ₃	335.1925	335.1928	0.9
Y ₄	422.2245	422.2250	1.2
y ₅	550.2831	550.2840	1.6
У ₆	621.3202	621.3217	2.4
У ₇	911.4316	911.4340	2.6
y ₇ ▲	708.3523	708.3538	2.1
У ₈	998.4637	998.4648	1.1
y ₈ ▲	795.3843	795.3853	1.3
y ₉	1161.5270	1161.5309	3.4
У ₁₀	1258.5798	1258.5823	2.0
y ₁₀ ▲	1055.5004	1055.5005	0.1
Y ₁₁	1357.6482	1357.6516	2.5
y ₁₁ ▲	1154.5688	1154.5697	0.8
Y ₁₂	1444.6802	1444.6840	2.6
y ₁₂ ▲	1241.6008	1241.6022	1.1
Y ₁₃	1543.7486	1543.7529	2.8
y ₁₃ ▲	1340.6692	1340.6719	2.0
Y ₁₄	1640.8014	1640.8013	-0.1
y ₁₄ ▲	1437.7220	1437.7240	1.4
Y ₁₅	902.4360	902.4366	0.7
y ₁₀ ^{2+▲}	528.2538	528.2540	0.4
y ₁₄ ²⁺ ▲	719.3646	719.3646	0.0
z ₂	218.1261	218.1263	0.9
z ₃	319.1738	319.1743	1.6
z ₄	406.2058	406.2063	1.2
z ₅	534.2644	534.2652	1.5
z ₆	605.3015	605.3024	1.5
z ₇	895.4129	895.4158	3.2
z ₈	982.4449	982.4473	2.4
z ₉	1145.5083	1145.5094	1.0
z ₁₂	1428.6615	1428.6638	1.6
z ₁₃	1527.7299	1527.7352	3.5
z ₁₄	1624.7826	1624.7925	6.1
z ₁₅	1787.8460	1787.8484	1.3

Table S10: Complete list of ions generated by UVPD of a tryptic peptide from TAB1 glycoprotein using two pulse of 1.5 mJ laser energy to activate the peptide (VYPVSVPYS_(g)SAQSTSK, 2+, m/z 951.97). The fragment ions that are critical for localization of GlcNAc sites are listed in blue font.

Identified	Theoretical	Observed	Mass Error
lons	m/z	m/z	(ppm)
a ₂	235.1441	235.1445	1.7
a ₃	332.1969	332.1974	1.5
a ₄	431.2653	431.2659	1.4
a ₅	518.2973	518.2984	2.1
a ₆	617.3657	617.3671	2.3
a ₇	714.4185	714.4208	3.2
a ₈	877.4818	877.4847	3.3
a ₉	1167.5932	1167.6032	8.6
a ₁₀	1254.6252	1254.6211	-3.3
a ₁₁	1325.6623	1325.6631	0.6
a ₁₂	1453.7209	1453.7235	1.8
a ₁₃	1540.7530	1540.7572	2.7
a ₁₅	1728.8327	1728.8345	1.0
b ₂	263.1390	263.1395	1.9
b ₃	360.1918	360.1923	1.4
b ₄	459.2602	459.2610	1.7
b ₅	546.2922	546.2933	2.0
b ₆	645.3606	645.3619	2.0
b ₇	742.4134	742.4135	0.1
b ₈	905.4767	905.4821	6.0
b ₉	1195.5881	1195.5811	-5.9
b ₁₀	1282.6201	1282.6222	1.6
b ₁₁	1353.6573	1353.6619	3.4
b ₁₂	1481.7158	1481.7180	1.5
b ₁₄	1669.7955	1669.8009	3.2
C ₃	377.2183	377.2190	1.9
c ₄	476.2867	476.2876	1.9
c ₅	563.3188	563.3201	2.3
с ₇	759.4399	759.4416	2.2
C ₈	922.5033	922.5061	3.0
c ₁₁	1370.6838	1370.6893	4.0
c ₁₃	1585.7744	1585.7745	0.1
C ₁₄	1686.8221	1686.8324	6.1
C ₁₅	1773.8541	1773.8557	0.9
x ₁	173.0921	173.0925	2.3
x ₂	260.1241	260.1245	1.5
x ₃	361.1718	361.1729	3.0
x ₄	448.2038	448.2046	1.8
x ₅	576.2624	576.2635	1.9
x ₆	647.2995	647.3016	3.2
x ₇	734.3315	734.3312	-0.4

х ₈	1024.4429	1024.4448	1.9
x ₉	1187.5063	1187.5099	3.0
x ₁₀	1284.5590	1284.5594	0.3
x ₁₁	1383.6274	1383.6245	-2.1
x ₁₂	1470.6595	1470.6643	3.3
x ₁₃	1569.7279	1569.7332	3.4
x ₁₄	1666.7806	1666.7876	4.2
x ₁₅	902.4360	902.4374	1.6
Y ₂	234.1448	234.1452	1.7
У ₃	335.1925	335.1930	1.5
Y ₄	422.2245	422.2252	1.7
y ₅	550.2831	550.2843	2.2
У ₆	621.3202	621.3221	3.1
Y ₇	708.3523	708.3540	2.4
У ₈	998.4637	998.4652	1.5
y 8 [▲]	795.3843	795.3853	1.3
y ₉	1161.5270	1161.5306	3.1
y ₉	958.4476	958.4480	0.4
Y ₁₀	1258.5798	1258.5830	2.5
Y ₁₁	1357.6482	1357.6523	3.0
y ₁₁ ▲	1154.5688	1154.5697	0.8
Y ₁₂	1444.6802	1444.6848	3.2
y ₁₂ ▲	1241.6008	1241.6022	1.1
Y ₁₃	1543.7486	1543.7521	2.3
y ₁₃ ▲	1340.6692	1340.6719	2.0
Y ₁₄	1640.8014	1640.8027	0.8
y ₁₄ ▲	1437.7220	1437.7240	1.4
y ₁₅ ▲	1600.7853	1600.7859	0.4
y ₁₀ ^{2+▲}	528.2538	528.2539	0.2
²⁺ ▲ Y ₁₄	719.3646	719.3642	-0.6
y ₁₅ ^{2+▲}	800.8963	800.8975	1.5
z ₂	218.1261	218.1265	1.8
z ₃	319.1738	319.1744	1.9
z ₄	406.2058	406.2065	1.7
z ₅	534.2644	534.2654	1.9
z ₆	605.3015	605.3026	1.8
Z ₇	692.3335	692.3334	-0.1
z ₈	982.4449	982.4475	2.6
z ₉	1145.5083	1145.5103	1.7
z ₁₂	1428.6615	1428.6649	2.4
z ₁₃	1527.7299	1527.7357	3.8
z ₁₄	1624.7826	1624.7918	5.7
z ₁₅	1787.8460	1787.8507	2.6
Identified	Theoretical	Observed	Mass Error
-----------------------	-------------	-----------	------------
lons	m/z	m/z	(ppm)
a ₂	235.1441	235.1445	1.7
a ₃	332.1969	332.1975	1.8
a ₄	431.2653	431.2660	1.6
a ₅	518.2973	518.2985	2.3
a ₆	617.3657	617.3672	2.4
a ₇	714.4185	714.4211	3.6
a ₈	877.4818	877.4844	3.0
a ₉	964.5138	964.5201	6.5
a ₁₀	1051.5459	1051.5529	6.7
a ₁₁	1122.5830	1122.5906	6.8
a ₁₂	1250.6416	1250.6532	9.3
a ₁₃	1540.7530	1540.7573	2.8
a ₁₅	1728.8327	1728.8348	1.2
b ₂	263.1390	263.1395	1.9
b ₃	360.1918	360.1924	1.7
b ₄	459.2602	459.2611	2.0
b ₅	546.2922	546.2935	2.4
b ₆	645.3606	645.3622	2.5
b ₇	742.4134	742.4135	0.1
b ₈	905.4767	905.4831	7.1
b ₉	992.5087	992.5156	7.0
b ₁₀	1079.5408	1079.5428	1.9
b ₁₂	1278.6365	1278.6444	6.2
b ₁₄	1669.7955	1669.7991	2.2
b ₁₅	1756.8276	1756.8192	-4.8
C ₃	377.2183	377.2190	1.9
C ₄	476.2867	476.2877	2.1
C ₅	563.3188	563.3200	2.1
с ₇	759.4399	759.4426	3.6
c ₈	922.5033	922.5058	2.7
c ₁₁	1167.6044	1167.6100	4.8
C ₁₃	1585.7744	1585.7750	0.4
C ₁₄	1686.8221	1686.8304	4.9
C ₁₅	1773.8541	1773.8492	-2.8
x ₁	173.0921	173.0925	2.3
x ₂	260.1241	260.1246	1.9
x ₃	361.1718	361.1733	4.2
x ₄	651.2832	651.2872	6.1
х ₇	937.4109	937.4161	5.5
x ₈	1024.4429	1024.4458	2.8
x ₉	1187.5063	1187.5099	3.0

Table S11: Complete list of ions generated by UVPD of a tryptic peptide from TAB1 glycoprotein using two pulse of 1.5 mJ laser energy to activate the peptide (VYPVSVPYSSAQS_(g)TSK, 2+, m/z 951.97). The fragment ions that are critical for localization of GlcNAc sites are listed in blue font.

x ₁₀	1284.5590	1284.5605	1.2
x ₁₁	1383.6274	1383.6241	-2.4
x ₁₂	1470.6595	1470.6649	3.7
x ₁₃	1569.7279	1569.7333	3.4
x ₁₄	1666.7806	1666.7903	5.8
Y ₂	234.1448	234.1452	1.7
У ₃	335.1925	335.1931	1.8
Y ₄	625.3039	625.3054	2.4
y ₄ [▲]	422.2245	422.2250	1.2
Y ₅	753.3625	753.3649	3.2
y ₅ ▲	550.2831	550.2836	0.9
Y ₆	824.3996	824.4039	5.2
У ₇	911.4316	911.4349	3.6
y ₇ ▲	708.3523	708.3538	2.1
y ₈	998.4637	998.4654	1.7
y ₈ ▲	795.3843	795.3853	1.3
y ₉	1161.5270	1161.5313	3.7
Y ₁₀	1258.5798	1258.5835	2.9
y ₁₀ ▲	1055.5004	1055.5005	0.1
Y ₁₁	1357.6482	1357.6526	3.2
y ₁₁ ▲	1154.5688	1154.5697	0.8
Y ₁₂	1444.6802	1444.6853	3.5
y ₁₂ ▲	1241.6008	1241.6022	1.1
Y ₁₃	1543.7486	1543.7537	3.3
y ₁₃ ▲	1340.6692	1340.6719	2.0
Y ₁₄	1640.8014	1640.8033	1.2
y ₁₄ ▲	1437.7220	1437.7240	1.4
Y ₁₅	902.4360	902.4376	1.8
y ₁₄ ^{2+▲}	719.3646	719.3646	0.0
z ₂	218.1261	218.1266	2.3
z ₃	319.1738	319.1746	2.5
z ₄	609.2852	609.2864	2.0
z ₅	737.3438	737.3461	3.1
z ₆	808.3809	808.3778	-3.8
z ₇	895.4129	895.4186	6.4
z ₈	982.4449	982.4477	2.9
z ₉	1145.5083	1145.5115	2.8
z ₁₁	1341.6294	1341.6309	1.1
z ₁₂	1428.6615	1428.6663	3.4
z ₁₃	1527.7299	1527.7362	4.1
z ₁₄	1624.7826	1624.7982	9.6
z ₁₅	1787.8460	1787.8501	2.3

Identified	Theoretical	Observed	Mass Error
lons	m/z	m/z	(ppm)
a ₂	235.1441	235.1445	1.7
a ₃	332.1969	332.1974	1.5
a ₄	431.2653	431.2660	1.6
a ₅	518.2973	518.2985	2.3
a ₆	617.3657	617.3672	2.4
a ₇	714.4185	714.4202	2.4
a ₈	877.4818	877.4850	3.6
a ₉	964.5138	964.5187	5.1
a ₁₀	1051.5459	1051.5494	3.3
a ₁₁	1122.5830	1122.5913	7.4
a ₁₃	1337.6736	1337.6647	-6.7
a ₁₄	1438.7213	1438.7299	6.0
a ₁₅	1728.8327	1728.8347	1.2
b ₂	263.1390	263.1396	2.3
b ₃	360.1918	360.1924	1.7
b ₄	459.2602	459.2611	2.0
b ₅	546.2922	546.2935	2.4
b ₆	645.3606	645.3622	2.5
b ₇	742.4134	742.4150	2.2
b ₈	905.4767	905.4810	4.7
b ₉	992.5087	992.5151	6.4
b ₁₀	1079.5408	1079.5469	5.7
b ₁₂	1278.6365	1278.6454	7.0
b ₁₃	1365.6685	1365.6754	5.1
b ₁₄	1466.7162	1466.7214	3.5
b ₁₅	1756.8276	1756.8242	-1.9
с ₃	377.2183	377.2192	2.4
C ₄	476.2867	476.2878	2.3
с ₅	563.3188	563.3201	2.3
с ₇	759.4399	759.4427	3.7
C ₈	922.5033	922.5065	3.5
c ₁₁	1167.6044	1167.6145	8.7
C ₁₂	1295.6630	1295.6661	2.4
C ₁₄	1483.7427	1483.7472	3.0
C ₁₅	1773.8541	1773.8499	-2.4
x ₁	173.0921	173.0924	1.7
х ₅	779.3418	779.3431	1.7
х ₇	937.4109	937.4172	6.7
× ₈	1024.4429	1024.4445	1.6
х ₉	1187.5063	1187.5104	3.5
x ₁₀	1284.5590	1284.5620	2.3

Table S12: Complete list of ions generated by UVPD of a tryptic peptide from TAB1 glycoprotein using two pulse of 1.5 mJ laser energy to activate the peptide (VYPVSVPYSSAQSTS_(g)K, 2+, m/z 951.97). The fragment ions that are critical for localization of GlcNAc sites are listed in blue font.

x ₁₁	1383.6274	1383.6262	-0.9
x ₁₂	1470.6595	1470.6650	3.7
x ₁₃	1569.7279	1569.7327	3.1
x ₁₄	1666.7806	1666.7876	4.2
y ₃ ▲	335.1925	335.1924	-0.3
y ₄ [▲]	422.2245	422.2250	1.2
y ₅ ▲	550.2831	550.2836	0.9
y ₆	824.3996	824.3967	-3.5
У ₇	911.4316	911.4360	4.8
y ₇ ▲	708.3523	708.3538	2.1
y ₈	998.4637	998.4660	2.3
y ₈ ▲	795.3843	795.3853	1.3
y ₉	1161.5270	1161.5313	3.7
Y ₁₀	1258.5798	1258.5837	3.1
y ₁₀ ▲	1055.5004	1055.5005	0.1
Y ₁₁	1357.6482	1357.6523	3.0
Y ₁₂	1444.6802	1444.6857	3.8
Y ₁₃	1543.7486	1543.7534	3.1
Y ₁₄	1640.8014	1640.8043	1.8
y ₁₅ ▲	1600.7853	1600.7840	-0.8
²⁺ ▲ Y ₁₄	719.3646	719.3646	0.0
z ₂	421.2055	421.2081	6.2
z ₃	808.3809	808.3802	-0.9
z ₄	895.4129	895.4171	4.7
z ₅	982.4449	982.4475	2.6
z ₆	1145.5083	1145.5121	3.3
Z ₇	1428.6615	1428.6676	4.3
z ₈	1527.7299	1527.7355	3.7
z ₉	1624.7826	1624.7843	1.0
z ₁₀	1787.8460	1787.8496	2.0

Table S13: Complete list of ions generated by UVPD of a tryptic peptide from TAB1 glycoprotein using two pulse of 1.5 mJ laser energy to activate the peptide (LWSVDHGEQSVVT_(g)AP, 2+, m/z 914.43). The fragment ions that are critical for localization of GlcNAc sites are listed in blue font.

Identified	Theoretical	Observed	Mass Error
lons	m/z	m/z	(ppm)
a ₂	272.1757	272.1757	0.0
a ₃	359.2078	359.2076	-0.6
a ₄	458.2762	458.2765	0.7
a ₅	573.3031	573.3025	-1.0
a ₆	710.3620	710.3655	4.9
a ₇	767.3835	767.3790	-5.9
a ₉	1024.4847	1024.4816	-3.0
a ₁₀	1111.5167	1111.5126	-3.7
a ₁₁	1210.5851	1210.5841	-0.8
a ₁₂	1309.6535	1309.6570	2.7
b ₂	300.1706	300.1704	-0.7
b ₃	387.2027	387.2025	-0.5
b ₄	486.2711	486.2712	0.2
b ₅	601.2980	601.2972	-1.3
b ₆	738.3569	738.3547	-3.0
b ₇	795.3784	795.3757	-3.4
b ₈	924.4210	924.4193	-1.8
b ₉	1052.4796	1052.4800	0.4
b ₁₀	1139.5116	1139.5131	1.3
b ₁₁	1238.5800	1238.5807	0.6
b ₁₂	1337.6484	1337.6486	0.1
b ₁₃	1641.7755	1641.7672	-5.1
b ₁₃ ▲	1438.6961	1438.6962	0.0
b ₁₄ ▲	1509.7332	1509.7334	0.1
c ₂	317.1972	317.1969	-0.9
C ₃	404.2292	404.2293	0.2
C ₄	503.2976	503.2983	1.4
C ₅	618.3246	618.3244	-0.3
c ₆	755.3835	755.3800	-4.6
с ₇	812.4049	812.3983	-8.1
c ₈	941.4475	941.4472	-0.3
с ₉	1069.5061	1069.5028	-3.1
c ₁₀	1156.5381	1156.5431	4.3
C ₁₁	1255.6066	1255.6046	-1.6
c ₁₂	1354.6750	1354.6802	3.8
C ₁₃	1658.8020	1658.8044	1.4
x ₃	517.2140	517.2180	7.7
x ₅	715.3508	715.3579	9.9
x ₆	802.3829	802.3799	-3.7
x ₁₀	1253.5644	1253.5714	5.6

x ₁₁	1368.5914	1368.5956	3.1
x ₁₂	1467.6598	1467.6666	4.6
Y ₂	187.1077	187.1077	0.0
y ₃	491.2348	491.2344	-0.8
y ₃ [▲]	288.1554	288.1551	-1.0
Y ₄	590.3032	590.3036	0.7
y ₄ [▲]	387.2238	387.2238	-0.1
Y ₅	689.3716	689.3663	-7.7
y ₅ [▲]	486.2922	486.2925	0.7
Y ₆	776.4036	776.4042	0.8
y ₆ [▲]	573.3243	573.3253	1.7
У ₇	904.4622	904.4609	-1.4
y ₇ ▲	701.3828	701.3830	0.3
Y ₁₀	1227.5852	1227.5775	-6.3
Y ₁₁	1342.6121	1342.6188	5.0
Y ₁₂	1441.6805	1441.6860	3.8
Y ₁₃	1528.7125	1528.7130	0.3
y ₁₃ ▲	1325.6332	1325.6295	-2.8
Y ₁₄	857.8996	857.8916	-9.3
z ₃	475.2160	475.2160	0.0

Table S14: Complete list of ions generated by UVPD of a tryptic peptide from TAB1 glycoprotein using two pulse of 1.5 mJ laser energy to activate the peptide (TSVTLSLVMPSQGQMVNGAHS_(g)ASTLDEATP TLTNQSPTLTLQSTNTHTQSSSSSDGGLFR, 4+, *m/z* 1617.52). The fragment ions that are critical for localization of GlcNAc sites are listed in blue font.

Identified	Theoretical	Observed	Mass Error
lons	m/z	m/z	(ppm)
a ₃	260.1605	260.1607	0.8
a ₄	361.2082	361.2086	1.1
a ₅	474.2922	474.2927	1.1
a ₆	561.3243	561.3254	2.0
a ₇	674.4083	674.4100	2.5
a ₈	773.4767	773.4773	0.8
a ₉	904.5172	904.5195	2.5
a ₁₁	1088.6020	1088.5989	-2.8
a ₉ ²⁺	452.2586	452.2576	-2.2
a ₂₁ ²⁺	1150.5607	1150.5565	-3.7
a ₂₆ ²⁺	1394.1746	1394.1774	2.0
a ₂₇ ²⁺	1458.6959	1458.6949	-0.7
a ₂₈ ²⁺	1494.2144	1494.2272	8.6
a ₂₉ ²⁺	1544.7383	1544.7318	-4.2
a ₃₀ ²⁺	1593.2646	1593.2621	-1.6
a ₃₁ ²⁺	1643.7885	1643.7771	-6.9
a ₃₂ ²⁺	1700.3305	1700.3246	-3.5
b ₂	189.0870	189.0871	0.5
b ₃	288.1554	288.1556	0.7
b ₄	389.2031	389.2033	0.5
b ₅	502.2871	502.2872	0.2
b ₆	589.3192	589.3196	0.7
b ₇	702.4032	702.4035	0.4
b ₈	801.4716	801.4722	0.7
b ₉	932.5121	932.5130	1.0
b ₁₅	1560.7760	1560.7788	1.8
b ₈ ²⁺	401.2395	401.2396	0.2
b ₁₇ ²⁺	887.4473	887.4393	-9.0
b ₁₉ ²⁺	951.4766	951.4690	-8.0
b ₂₄ ²⁺	1294.6202	1294.6328	9.7
b ₂₅ ²⁺	1351.1622	1351.1571	-3.8
b ₂₆ ²⁺	1408.6757	1408.6799	3.0
b ₂₇ ²⁺	1473.1970	1473.2104	9.1
b ₂₈ ²⁺	1508.7155	1508.7216	4.0
b ₂₉ ²⁺	1559.2394	1559.2487	6.0
b ₃₀ ²⁺	1607.7657	1607.7727	4.4
b ₃₁ ²⁺	1658.2896	1658.2921	1.5

b ₃₂ ²⁺	1714.8316	1714.8273	-2.5
b ₅₀ ³⁺	1790.1980	1790.1943	-2.1
C3	305.1819	305.1821	0.7
c ₅	519.3137	519.3145	1.5
c ₈	818.4982	818.4993	1.3
c ₂₀ ²⁺	1028.5198	1028.5133	-5.8
c ₂₁ ²⁺	1173.5750	1173.5739	-0.9
c ₂₂ ²⁺	1209.0936	1209.0929	-0.6
c ₂₃ ²⁺	1252.6096	1252.6129	2.6
c ₂₄ ²⁺	1303.1334	1303.1295	-3.0
c ₂₅ ²⁺	1359.6755	1359.6735	-1.5
c ₂₆ ²⁺	1417.1889	1417.1835	-3.8
c ₂₈ ²⁺	1517.2288	1517.2291	0.2
c ₂₉ ²⁺	1567.7526	1567.7563	2.4
c ₃₀ ²⁺	1616.2790	1616.2788	-0.1
c ₃₁ ²⁺	1666.8028	1666.7987	-2.5
c ₃₂ ²⁺	1723.3449	1723.3409	-2.3
x ₁	201.0982	201.0983	0.5
x ₂	348.1666	348.1667	0.3
x ₃	461.2507	461.2512	1.1
x ₄	518.2721	518.2718	-0.6
x ₅	575.2936	575.2939	0.5
x ₇	777.3526	777.3539	1.7
x ₈	864.3846	864.3864	2.1
x ₉	951.4166	951.4172	0.6
x ₁₀	1038.4487	1038.4502	1.4
x ₁₂	1212.5127	1212.5122	-0.4
x ₁₅ ²⁺	789.8426	789.8439	1.6
x ₁₇ ²⁺	897.3879	897.3911	3.6
x ₁₈ ²⁺	947.9117	947.9127	1.1
x ₁₉ ²⁺	991.4277	991.4286	0.9
x ₂₀ ²⁺	1055.4570	1055.4615	4.3
x ₂₁ ²⁺	1111.9991	1111.9979	-1.1
x ₂₂ ²⁺	1162.5229	1162.5203	-2.2
x ₂₃ ²⁺	1219.0649	1219.0668	1.6
x ₂₄ ²⁺	1269.5888	1269.5880	-0.6
x ₂₅ ²⁺	1318.1152	1318.1272	9.1
x ₂₆ ²⁺	1361.6312	1361.6270	-3.1
x ₂₇ ²⁺	1425.6605	1425.6648	3.0
x ₂₈ ²⁺	1482.6819	1482.6910	6.1
x ₂₉ ²⁺	1533.2058	1533.2173	7.5
x ₃₀ ²⁺	1589.7478	1589.7584	6.7

x ₃₁ ²⁺	1640.2716	1640.2734	1.1
x ₃₂ ²⁺	1688.7980	1688.7920	-3.6
x ₃₃ ²⁺	1739.3219	1739.3363	8.3
x ₃₄ ²⁺	1774.8404	1774.8545	7.9
У ₂	322.1874	322.1875	0.3
У ₃	435.2714	435.2718	0.9
Y ₄	492.2929	492.2930	0.2
У ₅	549.3143	549.3147	0.7
y ₆	664.3413	664.3417	0.6
У ₇	751.3733	751.3746	1.7
У ₈	838.4053	838.4059	0.7
у ₉	925.4374	925.4383	1.0
У ₁₀	1012.4694	1012.4702	0.8
У ₁₁	1099.5014	1099.5026	1.1
у ₁₃ У	1314.5920	1314.5935	1.1
y ₁₄	1415.6397	1415.6354	-3.0
γ ₁₆ γ ²⁺	827.3768	827.3771	0.4
y ₁₇ V ₁₀ ²⁺	884.3983	884.3974	-1.0
γ ₁₈ 2+ γ ₁₉	978.4381	978.4391	1.0
y ₂₀ ²⁺	1042.4674	1042.4681	0.7
y ₂₃ ²⁺	1206.0753	1206.0762	0.7
γ ₂₄ ²⁺	1256.5991	1256.5997	0.5
y ₂₅ ²⁺	1305.1255	1305.1238	-1.3
y ₂₅ ^{2+▲}	1305.1255	1305.1256	0.1
y ₂₆ ²⁺	1348.6415	1348.6432	1.3
y ₂₇ ²⁺	1412.6708	1412.6721	0.9
y ₂₈ ²⁺	1469.6923	1469.6917	-0.4
y ₂₉ ²⁺	1520.2161	1520.2178	1.1
y ₃₀ ²⁺	1576.7582	1576.7584	0.1
y ₃₁ ²⁺	1627.2820	1627.2797	-1.4
y ₃₂ ²⁺	1675.8084	1675.8069	-0.9
y ₃₃ ²⁺	1726.3322	1726.3324	0.1
γ ₃₄ ²⁺	1761.8508	1761.8506	-0.1
y ₃₂	1117.5413	1117.5469	5.0
y ₄₁	1477.0302	1477.0354	3.5
У ₄₉ ³⁺	1741.8133	1741.8134	0.1
z ₂	306.1686	306.1689	1.0
z ₃	419.2527	419.2528	0.2
z ₄	476.2742	476.2745	0.6
z ₅	533.2956	533.2956	0.0
z ₆	648.3226	648.3231	0.8
z ₇	735.3546	735.3532	-1.9

z ₈	822.3866	822.3924	7.1
z ₉	909.4186	909.4188	0.2
z ₁₀	996.4507	996.4511	0.4
z ₁₁	1083.4827	1083.4808	-1.8
z ₁₃	1298.5733	1298.5696	-2.8
z ₁₄	1399.6210	1399.6171	-2.8
z ₁₆	1637.7276	1637.7262	-0.9
z ₁₅ ²⁺	768.8436	768.8498	8.1
z ₁₆ ²⁺	819.3674	819.3654	-2.4
z ₁₈ ²⁺	926.9127	926.9117	-1.1
z ₂₀ ²⁺	1034.4580	1034.4567	-1.3
z ₂₂ ²⁺	1141.5239	1141.5182	-5.0
z ₂₄ ²⁺	1248.5898	1248.5898	0.0
z ₂₅ ²⁺	1297.1162	1297.1196	2.6
z ₂₆ ²⁺	1340.6322	1340.6364	3.1
z ₂₇ ²⁺	1404.6615	1404.6642	1.9
z ₂₈ ²⁺	1461.6829	1461.6843	1.0
z ₂₉ ²⁺	1512.2068	1512.2067	-0.1
z ₃₁ ²⁺	1619.2726	1619.2648	-4.8
z ₃₃ ²⁺	1718.3229	1718.3218	-0.6

Table S15: Complete list of ions generated by UVPD of a tryptic peptide from TAB1 glycoprotein using two pulse of 1.5 mJ laser energy to activate the peptide (TSVTLSLVMPSQGQMVNGAHSASTLDEATP-TLTNQSPTLTLQSTNTHT_(g)QSSSSSDGGLFR, 4+, m/z 1617.52). The fragment ions that are critical for localization of GlcNAc sites are listed in blue font.

Identified	Theoretical	Observed	Mass Error
lons	m/z	m/z	(ppm)
a ₃	260.1605	260.1606	0.4
a ₄	361.2082	361.2076	-1.7
a ₅	474.2922	474.2922	0.0
a ₇	674.4083	674.4089	0.9
a ₈	773.4767	773.4775	1.0
a ₉	904.5172	904.5170	-0.2
a ₉ ²⁺	452.2586	452.2582	-0.9
a ₃₁ 2	1542.2488	1542.2433	-3.6
a ₃₂ ²⁺	1598.7908	1598.7877	-1.9
b ₂	189.0870	189.0870	0.0
b ₃	288.1554	288.1553	-0.3
b ₄	389.2031	389.2024	-1.8
b ₅	502.2871	502.2870	-0.2
b ₆	589.3192	589.3190	-0.3
b ₇	702.4032	702.4033	0.1
b ₈	801.4716	801.4717	0.1
b ₉	932.5121	932.5126	0.5
b ₁₅	1560.7760	1560.7613	-9.4
b ₂₅ ²⁺	1249.6225	1249.6123	-8.2
b ₂₉ ²⁺	1457.6997	1457.6875	-8.4
b ₃₂ ²⁺	1613.2919	1613.2977	3.6
b ₃₅ ²⁺	1784.8665	1784.8520	-8.1
b ₄₉ ³⁺	1761.1873	1761.2014	8.0
b ₅₀	1790.1980	1790.1940	-2.2
с ₃	305.1819	305.1817	-0.7
C ₄	406.2296	406.2286	-2.5
c ₅	519.3137	519.3134	-0.6
c ₈	818.4982	818.5009	3.3
C ₉	949.5387	949.5302	-9.0
C ₂₄ ²⁺	1151.0699	1151.0688	-1.0
c ₃₁ 21	1514.7393	1514.7309	-5.5
c ₃₂ ²⁺	1565.2632	1565.2507	-8.0
x ₁	201.0982	201.0982	0.0
x ₂	348.1666	348.1664	-0.6
x ₃	461.2507	461.2504	-0.7
x ₄	518.2721	518.2719	-0.4
x ₅	575.2936	575.2929	-1.2
х ₆	690.3205	690.3217	1.7

x ₇	777.3526	777.3541	1.9
x ₈	864.3846	864.3821	-2.9
x ₉	951.4166	951.4167	0.1
x ₁₀	1038.4487	1038.4462	-2.4
x ₁₁	1125.4807	1125.4807	0.0
x ₁₂	1212.5127	1212.5127	0.0
x ₇ ²⁺	389.1799	389.1832	8.5
γ ₂	322.1874	322.1873	-0.3
y ₃	435.2714	435.2716	0.5
Y ₄	492.2929	492.2933	0.8
У ₅	549.3143	549.3144	0.2
Y ₆	664.3413	664.3412	-0.2
γ ₇	751.3733	751.3740	0.9
y ₈	838.4053	838.4049	-0.5
γ ₉	925.4374	925.4384	1.1
γ_{10}	1012.4694	1012.4688	-0.6
Y ₁₁	1099.5014	1099.5028	1.3
Y ₁₂	1186.5335	1186.5298	-3.1
Y ₁₃	1314.5920	1314.5923	0.2
Y ₁₄	1618.7191	1618.7260	4.3
У ₁₅	1755.7780	1755.7890	6.3
y ₂₆ ²⁺	1450.1812	1450.1879	4.6
y ₂₅ ²⁺ ▲	1305.1255	1305.1256	0.1
y ₂₈	1571.2320	1571.2399	5.0
y ₂₉	1621.7558	1621.7544	-0.9
y ₄₁ ³⁺	1477.0302	1477.0210	-6.2
у ₄₉ ³⁺	1741.8133	1741.8300	9.6
z ₂	306.1686	306.1688	0.7
z ₃	419.2527	419.2524	-0.7
z ₄	476.2742	476.2738	-0.8
z ₅	533.2956	533.2957	0.2
z ₆	648.3226	648.3225	-0.2
z ₇	735.3546	735.3535	-1.5
z ₈	822.3866	822.3843	-2.8
z ₉	909.4186	909.4196	1.1
z ₁₀	996.4507	996.4516	0.9
z ₁₁	1083.4827	1083.4838	1.0
z ₁₂	1170.5147	1170.5128	-1.6
z ₁₃	1298.5733	1298.5709	-1.8
z ₂₈ ²⁺	1563.2226	1563.2202	-1.5

Identified	Theoretical	Observed	Mass Error
lons	m/z	m/z	(ppm)
a ₂	263.1390	263.1389	-0.4
a ₃	360.1918	360.1918	0.0
a ₄	459.2602	459.2602	0.0
a ₅	546.2922	546.2921	-0.2
a ₆	645.3606	645.3607	0.2
a ₇	742.4134	742.4117	-2.3
a ₈	905.4767	905.4761	-0.7
a ₉	992.5087	992.5121	3.4
c ₁₀	1299.6467	1299.6447	-1.5
c ₁₁	1370.6838	1370.6864	1.9
c ₁₂	1498.7424	1498.7385	-2.6
C ₁₃	1585.7744	1585.7721	-1.5
C ₁₅	1773.8541	1773.8472	-3.9
Y ₁	147.1128	147.1127	-0.7
Υ ₂	234.1448	234.1450	0.9
У ₃	335.1925	335.1926	0.3
У ₄	422.2245	422.2239	-1.4
У ₅	550.2831	550.2816	-2.7
у ₆	621.3202	621.3191	-1.8
¥7 ▲	911.4316	911.4345	3.2
У ₇	708.3523	708.3540	2.4
y ₈	998.4637	998.4646	0.9
y ₈	795.3843	795.3842	-0.1
y ₉	1161.5270	1161.5265	-0.4
Y ₁₀	1258.5798	1258.5798	0.0
y ₁₀	1055.5004	1055.5010	0.6
Y ₁₁	1357.6482	1357.6492	0.7
y ₁₁ ▲	1154.5688	1154.5697	0.8
Y ₁₂	1444.6802	1444.6799	-0.2
y ₁₂ ▲	1241.6008	1241.6022	1.1
Y ₁₃	1543.7486	1543.7520	2.2
Y ₁₄	1640.8014	1640.8004	-0.6
y ₁₄ ▲	1437.7220	1437.7222	0.1
y ₁₅ ▲	1600.7853	1600.7850	-0.2
y ₁₀ ²⁺	629.7935	629.7957	3.5
y ₁₁ ²⁺	679.3277	679.3250	-4.0
y ₁₄ ^{2+▲}	719.3646	719.3646	0.0
y ₁₅ ^{2+▲}	800.8963	800.8969	0.7
z ₆	605.3015	605.3008	-1.2

Table S16: Complete list of ions generated by EThcD of a tryptic peptide from TAB1 glycoprotein using 50 ms ETD and 25% supplemental energy to activate the peptide (VYPVSVPYSS_(g)AQSTSK, 2+, m/z 951.97). The fragment ions that are critical for localization of GlcNAc sites are listed in blue font.

Z ₇	895.4129	895.4066	-7.0
z ₈	982.4449	982.4484	3.6
z ₉	1145.5083	1145.5103	1.7
z ₁₁	1341.6294	1341.6312	1.3
z ₁₂	1428.6615	1428.6582	-2.3
z ₁₃	1527.7299	1527.7295	-0.3
z ₁₅	1787.8460	1787.8423	-2.1

Table S17: Complete list of ions generated by EThcD of a tryptic peptide from TAB1 glycoprotein using 50 ms ETD and 25% supplemental energy to activate the peptide (VYPVSVPYS_(g)SAQSTSK, 2+, m/z 951.97). The fragment ions that are critical for localization of GlcNAc sites are listed in blue font.

Identified	Theoretical	Observed	Mass Error
lons	m/z	m/z	(ppm)
b ₂	263.1390	263.1390	0.0
b ₃	360.1918	360.1917	-0.3
b ₄	459.2602	459.2602	0.0
b ₅	546.2922	546.2923	0.2
b ₆	645.3606	645.3607	0.2
b ₇	742.4134	742.4092	-5.7
b ₈	905.4767	905.4782	1.7
C ₉	1212.6147	1212.6122	-2.1
c ₁₀	1299.6467	1299.6456	-0.8
c ₁₁	1370.6838	1370.6874	2.6
c ₁₂	1498.7424	1498.7385	-2.6
C ₁₅	1773.8541	1773.8507	-1.9
Y ₁	147.1128	147.1128	0.0
Y ₂	234.1448	234.1446	-0.9
У ₃	335.1925	335.1924	-0.3
Y ₄	422.2245	422.2238	-1.7
У ₅	550.2831	550.2828	-0.5
Y ₆	621.3202	621.3186	-2.6
У ₇	708.3523	708.3528	0.7
y ₇ ▲	708.3523	708.3538	2.1
Y ₈	998.4637	998.4664	2.7
y ₈ ▲	795.3843	795.3853	1.3
У ₉	1161.5270	1161.5270	0.0
Y ₁₀	1258.5798	1258.5801	0.2
y ₁₀ ▲	1055.5004	1055.5005	0.1
Y ₁₁	1357.6482	1357.6494	0.9
y ₁₁ ▲	1154.5688	1154.5697	0.8
Y ₁₂	1444.6802	1444.6805	0.2
y ₁₂ ▲	1241.6008	1241.6022	1.1
У ₁₃	1543.7486	1543.7490	0.3
y ₁₄ ▲	1437.7220	1437.7240	1.4
Y ₁₄	1640.8014	1640.8007	-0.4
y ₁₀ ²⁺	629.7935	629.7947	1.9
y ₁₁ ²⁺	679.3277	679.3300	3.4
y ₁₄ ²⁺	820.9043	820.9044	0.1
y ₁₄ ²⁺ ▲	719.3646	719.3646	0.0
y ₁₅ ²⁺	902.4360	902.4369	1.0
y ₁₅ ²⁺ ▲	800.8963	800.8969	0.7

Z ₇	692.3335 6	92.3344	1.3
z ₉	1145.5083 11	45.5133	4.4
z ₁₁	1341.6294 13	41.6324	2.2
z ₁₂	1428.6615 14	28.6699	5.9
z ₁₃	1527.7299 15	27.7269	-2.0
z ₁₅	1787.8460 17	87.8439	-1.2

Table S18: Complete list of ions generated by EThcD of a tryptic peptide from TAB1 glycoprotein using 50 ms ETD and 25% supplemental energy to activate the peptide (VYPVSVPYSSAQS_(g)TSK, 2+, m/z 951.97). The fragment ions that are critical for localization of GlcNAc sites are listed in blue font.

Identified	Theoretical	Observed	Mass Error
lons	m/z	m/z	(ppm)
b ₂	263.1390	263.1389	-0.4
b ₃	360.1918	360.1917	-0.3
b ₄	459.2602	459.2599	-0.7
b ₅	546.2922	546.2920	-0.4
b ₆	645.3606	645.3605	-0.2
b ₇	742.4134	742.4145	1.5
b ₈	905.4767	905.4750	-1.9
b ₉	992.5087	992.5079	-0.8
b ₁₂	1278.6365	1278.6403	3.0
c ₁₂	1295.6630	1295.6610	-1.5
C ₁₃	1585.7744	1585.7743	-0.1
C ₁₅	1773.8541	1773.8518	-1.3
Y ₁	147.1128	147.1126	-1.4
Y ₂	234.1448	234.1446	-0.9
Y ₃	335.1925	335.1927	0.6
Y ₄	625.3039	625.3065	4.2
y ₄ [▲]	422.2245	422.2250	1.2
Y ₅	753.3625	753.3661	4.8
У 6	824.3996	824.4019	2.8
y ₆ ▲	621.3202	621.3210	1.3
У ₇	911.4316	911.4299	-1.9
y ₇ ▲	708.3523	708.3538	2.1
y ₈	998.4637	998.4656	1.9
У 9	1161.5270	1161.5299	2.5
Y ₁₀	1258.5798	1258.5797	-0.1
y ₁₀ ▲	1055.5004	1055.5005	0.1
Y ₁₁	1357.6482	1357.6481	-0.1
y ₁₁ ▲	1154.5688	1154.5697	0.8
Y ₁₂	1444.6802	1444.6801	-0.1
y ₁₂ ▲	1241.6008	1241.6022	1.1
Y ₁₃	1543.7486	1543.7502	1.0
Y ₁₄	1640.8014	1640.8046	2.0
y ₁₄ ▲	1437.7220	1437.7240	1.4
y ₁₅ ▲	1600.7853	1600.7840	-0.8
y ₁₀ ²⁺	629.7935	629.7933	-0.3
y ₁₁ ²⁺	679.3277	679.3251	-3.8
y ₁₄ ²⁺	820.9043	820.9042	-0.1
y ₁₄ ^{2+▲}	719.3646	719.3646	0.0

y ₁₅ ²⁺	902.4360	902.4358	-0.2
y ₁₅ ^{2+▲}	800.8963	800.8969	0.7
z ₅	737.3438	737.3425	-1.8
z ₆	808.3809	808.3851	5.2
z ₇	895.4129	895.4124	-0.6
z ₈	982.4449	982.4487	3.9
z ₉	1145.5083	1145.5057	-2.3
z ₁₁	1341.6294	1341.6299	0.4
z ₁₂	1428.6615	1428.6534	-5.7
z ₁₃	1527.7299	1527.7290	-0.6
z ₁₅	1787.8460	1787.8477	1.0

Table S19: Complete list of ions generated by EThcD of a tryptic peptide from TAB1 glycoprotein using 50 ms ETD and 25% supplemental energy to activate the peptide (LWSVDHGEQSVVT_(g)AP, 2+, m/z 914.43). The fragment ions that are critical for localization of GlcNAc sites are listed in blue font.

Identified	Theoretical	Observed	Mass Error
b.	300 1706	300 1707	(ppiii)
b ₆	738 3569	738 3556	-1.8
b ₈	924.4210	924.4221	1.2
b _g	1052.4796	1052.4814	1.7
b ₁₀	1139.5116	1139.5183	5.9
b ₁₁	1238.5800	1238.5812	1.0
b ₁₂	1337.6484	1337.6488	0.3
b ₁₄ ▲	1509.7332	1509.7334	0.1
c ₆	755.3835	755.3799	-4.8
с ₇	812.4049	812.4052	0.4
c ₈	941.4475	941.4412	-6.7
с ₉	1069.5061	1069.5055	-0.6
c ₁₀	1156.5381	1156.5386	0.4
c ₁₁	1255.6066	1255.6151	6.8
C ₁₂	1354.6750	1354.6748	-0.1
c ₁₃	1658.8020	1658.7994	-1.6
Y ₁	116.0706	116.0707	0.9
Y ₂	187.1077	187.1078	0.5
y ₃	491.2348	491.2333	-3.1
y ₃ ▲	288.1554	288.1555	0.2
y ₄ [▲]	387.2238	387.2239	0.1
y ₅ ▲	486.2922	486.2942	4.0
Y ₁₁	1342.6121	1342.6097	-1.8
y ₁₁ ^{2+▲}	570.2700	570.2700	-0.1
y ₁₂ ²⁺ ▲	619.8042	619.7997	-7.3
Y ₁₃	1528.7125	1528.7189	4.2
z ₁₁	1326.5934	1326.5957	1.7
z ₁₂	1425.6618	1425.6713	6.7
z ₁₃	1512.6938	1512.6932	-0.4
z ₁₄	1698.7731	1698.77 <u>21</u>	-0.6

Identified	Theoretical	Observed	Mass Error
lons	m/z	m/z	(ppm)
a ₃	407.1773	407.1763	-2.5
a ₄	544.2362	544.2322	-7.3
a ₅	681.2951	681.2953	0.3
a ₆	818.3540	818.3542	0.2
a ₇	955.4129	955.4185	5.9
a ₆ ²⁺	409.1770	409.1774	1.0
a ₇ ² '	477.7064	477.7083	4.0
a ₈ ²⁺	546.2359	546.2378	3.5
a ₉ ²⁺	614.7654	614.7598	-9.1
b ₄	369.1517	369.1510	-1.9
b₅ [▲]	506.2106	506.2105	-0.1
b ₆ [▲]	643.2695	643.2671	-3.7
b ₇ [▲]	780.3284	780.3276	-1.0
b ₈ ▲	917.3874	917.3854	-2.1
b ₃ ²⁺	218.0897	218.0901	1.8
b ₈ ²⁺	560.7370	560.7370	0.0
b ₉ ²⁺	629.2665	629.2726	9.7
b ₁₂ ²⁺	744.8092	744.8125	4.4
b ₁₃ ²⁺	801.3512	801.3527	1.9
b ₁₄ ²⁺	850.8854	850.8862	0.9
b ₁₅ ³⁺	599.9436	599.9446	1.7
c ₂	162.0873	162.0875	1.2
с ₃	452.1987	452.2015	6.2
c ₁₃ ²⁺	809.8645	809.8692	5.8
x ₁	201.0982	201.0983	0.5
x ₃	397.2194	397.2187	-1.8
x ₄	510.3034	510.3056	4.3
x ₅	567.3249	567.3256	1.2
x ₆	654.3569	654.3579	1.5
х ₇	741.3890	741.3914	3.2
x ₈ 2+	878.4479	878.4503	2.7
X ₈	439.7276	439.7288	2.7
x ₉ ⁻ 2+	508.2570	508.2571	0.2
x ₁₀	576.7865	576.7892	4.7
x ₁₁ ²¹	645.3159	645.3174	2.3
Y ₁	175.1190	175.1191	0.6
Y ₂	272.1717	272.1721	1.5
У ₃	371.2401	371.2402	0.3

Table S20: Complete list of ions generated by UVPD of a tryptic peptide from TAB1 glycoprotein using two pulse of 1.5 mJ laser energy to activate the peptide ($GSS_{(g)}$ HHHHHHSSGLVPR, 4+, m/z 493.73). The fragment ions that are critical for localization of GlcNAc sites are listed in blue font.

Y ₄	484.3242	484.3237	-1.0
y ₅	541.3456	541.3462	1.1
y ₆	628.3777	628.3785	1.3
У ₇	715.4097	715.4105	1.1
y ₈	852.4686	852.4694	0.9
y ₉	989.5275	989.5294	1.9
y_{10}	1126.5864	1126.5869	0.4
y ₆ ²⁺	314.6925	314.6919	-1.9
y ₇ ²⁺	358.2085	358.2079	-1.7
y ₈ ²⁺	426.7379	426.7383	0.9
y ₉ ²⁺	495.2674	495.2644	-6.1
y ₁₀ ²⁺	563.7969	563.7969	0.0
y ₁₁ ²⁺	632.3263	632.3264	0.2
y ₁₂ ²⁺	700.8558	700.8565	1.0
y ₁₃ ²⁺	769.3852	769.3868	2.1
y ₁₄ ²⁺	914.4409	914.4399	-1.1
z ₁	159.1002	159.1004	1.3
z ₂	256.1530	256.1538	3.1
z ₃	355.2214	355.2215	0.3
z ₄	468.3055	468.3070	3.2
z ₅	525.3269	525.3280	2.1
z ₆	612.3589	612.3578	-1.8
z ₇	699.3910	699.3900	-1.4
z ₈	836.4499	836.4489	-1.2
z ₉	973.5088	973.5038	-5.1
z ₈ ²⁺	418.7286	418.7259	-6.4
z ₉ ²⁺	487.2580	487.2592	2.5
z ₁₀ ²⁺	555.7875	555.7879	0.7
z ₁₁ ²⁺	624.3169	624.3182	2.1
Z ₁₂ ²⁺	692,8464	692.8455	-1.3

Table S21: Complete list of ions generated by UVPD of a tryptic peptide from TAB1 glycoprotein using two pulse of 1.5 mJ laser energy to activate the peptide (GSSHHHHHHS_(g)SGLVPR, 4+, m/z 493.73). The fragment ions that are critical for localization of GlcNAc sites are listed in blue font.

Identified	Theoretical	Observed	Mass Error
lons	m/z	m/z	(ppm)
z ₄	341.1568	341.1585	5.0
z ₅	478.2157	478.2175	3.8
z ₆	615.2746	615.2782	5.9
z ₇	752.3335	752.3380	6.0
z ₈	889.3924	889.3973	5.5
b ₃	232.0928	232.0945	7.3
b ₄	369.1517	369.1534	4.6
b ₅	506.2106	506.2119	2.6
b ₆	643.2695	643.2731	5.6
b ₇	780.3284	780.3334	6.4
b ₈	917.3873	917.3928	6.0
b ₆ ²⁺	322.1384	322.1399	4.7
b ₇ ²⁺	390.6679	390.6681	0.5
b ₈ ²⁺	459.1973	459.1995	4.8
b ₉ ²⁺	527.7268	527.7297	5.5
b ₁₂ ²⁺	744.8092	744.8111	2.6
b ₁₃ ²⁺	801.3512	801.3561	6.1
b ₁₄ ²⁺	850.8854	850.8901	5.5
b ₁₅ ³⁺	599.9436	599.9461	4.2
c ₃	249.1193	249.1196	1.2
C ₄	386.1783	386.1801	4.7
c ₆	660.2961	660.2983	3.3
с ₇	797.3550	797.3581	3.9
c ₆ ²⁺	330.6517	330.6528	3.3
c ₇ ²⁺	399.1811	399.1860	12.3
c ₈ ²⁺	467.7106	467.7093	-2.8
c ₉ ²⁺	536.2400	536.2419	3.5
c ₁₀ ²⁺	681.2957	681.2999	6.2
c ₁₃ ²⁺	809.8645	809.8698	6.5
x ₁	201.0982	201.0990	4.0
x ₃	397.2194	397.2222	7.0
x ₄	510.3034	510.3035	0.2
x ₅	567.3249	567.3287	6.7
Х ₆	654.3569	654.3594	3.8
x ₉ ²⁺	609.7967	609.8019	8.5
x ₁₀ ²⁺	678.3262	678.3271	1.3
Y ₁	175.1190	175.1197	4.0
Y ₂	272.1717	272.1731	5.1

У ₃	371.2401	371.2422	5.7
Y ₄	484.3242	484.3267	5.2
\boldsymbol{y}_5	541.3456	541.3477	3.9
y ₆	628.3777	628.3809	5.1
y ₇	918.4891	918.4933	4.6
y ₇ ▲	715.4097	715.4141	6.1
y ₈ ▲	852.4686	852.4741	6.5
y ₉ ▲	989.5275	989.5335	6.1
y ₁₀	1126.5826	1126.5925	8.8
y ₆ ²⁺	314.6925	314.6943	5.7
y ₉ ²⁺	596.8071	596.8091	3.4
y ₁₁ ²⁺ ▲	632.3263	632.3305	6.7
y ₁₂ ^{2+▲}	700.8558	700.8596	5.4
Z ₁	159.1002	159.1010	5.0
z ₂	256.1530	256.1507	-9.0
z ₃	355.2214	355.2231	4.8
Z4	468.3055	468.3071	3.4
z ₅	525.3269	525.3303	6.5
z ₆	612.3589	612.3626	6.0
Z ₇	902.4703	902.4740	4.1
z ₈	1039.5293	1039.5345	5.0
z ₈ ²⁺	520.2683	520.2722	7.5
z ₉ ²⁺	588.7977	588.7988	1.9
z ₁₀ ²⁺	657.3272	657.3303	4.7
z ₁₁ ²⁺	725.8566	725.8628	8.5

Table S22: Complete list of ions generated by UVPD of a tryptic peptide from TAB1 glycoprotein using two pulse of 1.5 mJ laser energy to activate the peptide (LSESFPILGASTEVPPMS_(g)LPVQAAISAPSP-LAMPLGSPLSVALPTLAPLSVVTSGAAPK, 5+, *m/z* 1188.24). The fragment ions that are critical for localization of GlcNAc sites are listed in blue font.

Identified	Theoretical	Observed	Mass Error
lons	m/z	m/z	(ppm)
a ₂	173.1285	173.1286	0.6
a ₃	302.1710	302.1712	0.7
a ₄	389.2031	389.2032	0.3
a ₅	536.2715	536.2720	0.9
a ₆	633.3242	633.3235	-1.1
a ₇	746.4083	746.4067	-2.1
a ₈	859.4924	859.4941	2.0
a ₁₀	987.5509	987.5492	-1.7
a ₁₁	1074.5830	1074.5873	4.0
a ₁₂	1175.6306	1175.6359	4.5
a ₁₃	1304.6732	1304.6765	2.5
a ₁₄	1403.7416	1403.7434	1.3
a ₁₅	1500.7944	1500.8040	6.4
a ₁₆	1597.8472	1597.8594	7.6
a ₁₇	1728.8876	1728.9029	8.8
a ₇ ²⁺	373.2042	373.2054	3.2
a ₁₇ ²⁺	864.4438	864.4491	6.1
a ₂₄ ²⁺	1299.1685	1299.1811	9.7
a ₂₅ ²⁺	1355.7106	1355.7218	8.3
a ₃₁ ³⁺	1088.9114	1088.9159	4.1
a ₃₅ ³⁺	1226.3162	1226.3181	1.5
a ₃₆ ³⁺	1245.3234	1245.3320	6.9
a ₃₈ ³⁺	1306.6850	1306.6853	0.2
a ₃₉ ³⁺	1344.3797	1344.3806	0.7
a ₄₃ ³⁺	1467.7869	1467.7858	-0.7
a ₄₆ ³⁺	1571.5150	1571.5120	-1.9
a ₄₇ ³⁺	1595.1941	1595.1934	-0.4
a ₄₈ ³⁺	1627.5450	1627.5548	6.0
b ₂	201.1234	201.1236	1.0
b ₃	330.1660	330.1661	0.3
b ₄	417.1980	417.1981	0.2
b ₅	564.2664	564.2670	1.1
b ₆	661.3192	661.3195	0.5
b ₇	774.4032	774.4040	1.0
b ₈	887.4873	887.4888	1.7
b ₉	944.5087	944.4995	-9.7
b ₁₀	1015.5458	1015.5410	-4.7
b ₁₁	1102.5779	1102.5861	7.4

b ₁₃	1332.6681	1332.6674	-0.5
b ₁₄	1431.7366	1431.7400	2.4
b ₁₅	1528.7893	1528.8032	9.1
b ₁₇	1756.8826	1756.8800	-1.5
b ₁₈	2046.9940	2046.9943	0.1
D ₁₉	2160.0781	2160.0776	-0.2
D ₁₃	666.8377	666.8400	3.4
b ₁₄	716.3719	716.3727	1.1
b ₁₅ ²¹	764.8983	764.8980	-0.4
b ₁₇ ²⁺	878.9449	878.9419	-3.4
b ₂₄ ²⁺	1313.6696	1313.6801	8.0
b ₂₆ ²⁺	1413.7277	1413.7278	0.1
b ₂₇ ²⁺	1449.2462	1449.2454	-0.6
b ₃₁ ²⁺	1646.3570	1646.3612	2.6
b ₃₃ ²⁺	1747.3958	1747.3976	1.0
b ₂₇ ³⁺	966.4999	966.5000	0.1
b ₃₁ ³⁺	1097.9071	1097.9133	5.6
b ₃₃ ³⁺	1165.2663	1165.2710	4.0
b ₃₅ ³⁺	1235.3119	1235.3191	5.8
b ₃₆ ³⁺	1254.3191	1254.3250	4.7
b ₃₇ ³⁺	1283.3297	1283.3337	3.1
b ₄₂ ³⁺	1439.0879	1439.0799	-5.6
b ₄₃ ³⁺	1476.7826	1476.7811	-1.0
b ₄₆ ³⁺	1580.5107	1580.5129	1.4
b ₄₇ ³⁺	1604.1898	1604.2002	6.5
b ₄₇ ⁴⁺	1203.3941	1203.3834	-8.9
b ₄₉ ⁴⁺	1255.9283	1255.9383	8.0
b ₅₁ ⁴⁺	1302.4535	1302.4447	-6.8
b ₅₂ ⁴⁺	1327.2206	1327.2335	9.7
b ₅₃ ⁴⁺	1352.4825	1352.4911	6.4
b ₅₄ ⁴⁺	1374.2405	1374.2537	9.6
b ₅₅ ⁴⁺	1388.4959	1388.4821	-9.9
b ₅₆ ⁴⁺	1406.2551	1406.2518	-2.4
c ₂	218.1499	218.1502	1.4
с ₃	347.1925	347.1927	0.6
C ₄	434.2245	434.2249	0.9
с ₆	b/8.3457	b/8.3464	1.0
-7 Co	791.4298	791.4298 004 E126	0.0
-8 Co	904.3138 061 5252	904.3120 061 5250	-1.3
-9 C10	1022 5224	1033 2010	0.0 0 0
C 10	1110 60//	1110 6071	0.3 7 /
11			2.4

c ₁₃	1349.6947	1349.7010	4.7
C ₁₅	1545.8159	1545.8308	9.6
C ₁₆	1642.8686	1642.8708	1.3
x ₁	173.0921	173.0923	1.2
x ₃	341.1819	341.1820	0.3
x ₄	412.2190	412.2182	-1.9
x ₅	469.2405	469.2387	-3.8
x ₆	556.2725	556.2752	4.9
x ₈	756.3886	756.3885	-0.1
x ₁₀	942.4891	942.4977	9.1
x ₁₁	1055.5731	1055.5651	-7.6
x ₁₂	1152.6259	1152.6350	7.9
x ₁₄	1336.7471	1336.7428	-3.2
x ₁₆	1534.8475	1534.8620	9.4
x ₁₁ ²⁺	528.2902	528.2852	-9.5
x ₁₃	612.3351	612.3369	2.9
x ₁₅ ²⁺	719.4010	719.3974	-5.0
x ₁₆	767.9274	767.9350	9.9
x ₁₇ ²⁺	824.4694	824.4738	5.3
x ₁₈ ²⁺ 2+	859.9880	859.9898	2.1
x ₁₉	909.5222	909.5237	1.6
x ₂₁ ²⁺	1009.5802	1009.5804	0.2
x ₂₉ ²⁺	1392.7826	1392.7760	-4.7
x ₃₂ ²⁺	1533.3514	1533.3423	-5.9
x ₃₅ ²⁺	1668.9280	1668.9292	0.7
Y ₂	244.1656	244.1657	0.4
У ₃	315.2027	315.2029	0.6
У ₄	386.2398	386.2398	0.0
Y ₅	443.2612	443.2617	1.1
У 6	530.2933	530.2939	1.1
У ₇	631.3410	631.3420	1.6
У ₈	730.4094	730.4102	1.1
У ₉	829.4778	829.4799	2.5
У ₁₀	916.5098	916.5114	1.7
Y ₁₁	1029.5939	1029.6013	7.2
У ₁₂	1126.6466	1126.6495	2.6
У ₁₃	1197.6837	1197.6866	2.4
У ₁₄	1310.7678	1310.7751	5.6
У ₁₆	1508.8682	1508.8724	2.8
у ₁₇	1621.9523	1621.9584	3.8
У ₁₈	1692.9894	1692.9963	4.1
у ₁₉ 2+	1792.0578	1792.0530	-2.7
Υ ₁₂	563.8269	563.8265	-0.7
y ₁₃ ²⁺	599.3455	599.3452	-0.5
y ₁₄ 2+	655.8875	655.8860	-2.3

y ₁₅ ²⁺	706.4114	706.4107	-1.0
y ₁₆ ²⁺	754.9378	754.9382	0.5
y ₁₇ ²⁺	811.4798	811.4810	1.5
y ₁₈ ²⁺	846.9983	846.9995	1.4
y ₁₉ ²⁺	896.5325	896.5341	1.8
y ₂₀ ²⁺	940.0486	940.0494	0.9
y ₂₁ ²⁺	996.5906	996.5960	5.4
y ₂₂ ²⁺	1045.1170	1045.1173	0.3
y ₂₃ ²⁺	1088.6330	1088.6360	2.8
y ₂₄ ²⁺	1117.1437	1117.1459	2.0
y ₂₆ ²⁺	1222.2121	1222.2144	1.9
y ₂₇ ²⁺	1287.7324	1287.7372	3.7
y ₂₈ ²⁺	1323.2509	1323.2594	6.4
y ₃₀ ²⁺	1428.3193	1428.3134	-4.1
y ₃₁ ²⁺	1471.8353	1471.8455	6.9
y ₃₂ ²⁺	1520.3617	1520.3689	4.7
y ₃₃ ²⁺	1555.8803	1555.8871	4.4
y ₃₄ ²⁺	1599.3963	1599.4034	4.4
y ₃₅ ²⁺	1655.9383	1655.9492	6.6
y ₃₆ ²⁺	1691.4569	1691.4501	-4.0
γ ₂₂ ³⁺	697.0804	697.0795	-1.3
y ₂₃ ³⁺	726.0911	726.0924	1.8
y ₂₄ ³⁺	745.0982	745.0974	-1.1
y ₂₆ ³⁺	815.1438	815.1429	-1.1
y ₂₈ ³⁺	882.5030	882.5063	3.7
y ₂₉ ³⁺	920.1977	920.1969	-0.9
y ₃₀ ³⁺	952.5486	952.5484	-0.2
y ₃₁ ³⁺	981.5593	981.5632	4.0
y ₃₄ ³⁺	1066.6000	1066.6025	2.3
y ₃₅ ³⁺	1104.2946	1104.2988	3.8
y ₃₆ ³⁺	1127.9737	1127.9654	-7.4
y ₄₀ ³⁺	1259.7126	1259.7192	5.2
у ₄₅ ³⁺	1502.4931	1502.5030	6.6
y ₄₀ ⁴⁺	945.0363	945.0372	1.0
y ₄₃ ⁴⁺	1078.5953	1078.5879	-6.9
y ₄₉ ⁴⁺	1231.1693	1231.1653	-3.2
y ₅₀ ⁴⁺	1248.9286	1248.9260	-2.1
y ₅₂ ⁴⁺	1291.4550	1291.4600	3.9
y ₅₃ ⁴⁺	1319.7260	1319.7250	-0.8
γ ₅₇ ⁴⁺	1434.7750	1434.7640	-7.7

z ₃	299.1839	299.1842	1.0
z ₄	370.2211	370.2213	0.5
z ₅	427.2425	427.2431	1.4
z ₆	514.2745	514.2751	1.2
z ₇	615.3222	615.3226	0.7
z ₈	714.3906	714.3907	0.1
z ₉	813.4590	813.4580	-1.2
z ₁₀	900.4911	900.4889	-2.4
z ₁₁	1013.5751	1013.5754	0.3
z ₁₃	1181.6650	1181.6555	-8.0
z ₁₀ ²⁺	450.7492	450.7490	-0.4
z ₁₁ ²⁺	507.2912	507.2911	-0.2
z ₁₃ ²⁺	591.3361	591.3364	0.5
z ₁₄ ²⁺	647.8782	647.8788	0.9
z ₁₇ ²⁺	803.4704	803.4714	1.2
z ₁₈ ²⁺	838.9890	838.9901	1.3
z ₁₉ ²⁺	888.5232	888.5313	9.1
z ₂₀ ²⁺	932.0392	932.0414	2.4
z ₂₁ ²⁺	988.5812	988.5760	-5.3
z ₂₂ ²⁺	1037.1076	1037.1077	0.1
z ₂₅ ²⁺	1165.6764	1165.6782	1.5
z ₂₈ ²⁺	1315.2416	1315.2292	-9.4
z ₃₀ ²⁺	1420.3100	1420.2990	-7.7
z ₃₁ ²⁺	1463.8260	1463.8142	-8.1
z ₃₂ ²⁺	1512.3524	1512.3625	6.7
z ₃₄ ²⁺	1591.3869	1591.3914	2.8

Table S23: Complete list of ions generated by UVPD of a tryptic peptide from TAB1 glycoprotein using two pulse of 1.5 mJ laser energy to activate the peptide (LSESFPILGASTEVPPMSLPVQAAIS_(g)APSP-LAMPLGSPLSVALPTLAPLSVVTSGAAPK, 5+, m/z 1188.24). The fragment ions that are critical for localization of GlcNAc sites are listed in blue font.

Identified	Theoretical	Observed	Mass Error
lons	m/z	m/z	(ppm)
a ₂	173.1285	173.1284	-0.6
a ₃	302.1710	302.1707	-1.0
a ₄	389.2031	389.2021	-2.6
a ₅	536.2715	536.2697	-3.4
a ₇	746.4083	746.4058	-3.3
a ₈	859.4924	859.4971	5.5
a ₁₀	987.5509	987.5500	-0.9
a ₁₃	1304.6732	1304.6812	6.1
a ₁₄	1403.7416	1403.7388	-2.0
a ₁₅	1500.7944	1500.7982	2.5
a ₁₇	1728.8876	1728.8846	-1.7
a ₇ ²⁺	373.2042	373.2078	9.6
a ₁₂ ²⁺	587.8153	587.8176	3.9
a ₁₇ ²⁺	864.4438	864.4445	0.8
a ₄₃ ³⁺	1467.7869	1467.7894	1.7
b ₂	201.1234	201.1233	-0.5
b ₃	330.1660	330.1657	-0.9
b ₄	417.1980	417.1978	-0.5
b ₅	564.2664	564.2660	-0.7
b ₇	774.4032	774.4025	-0.9
b ₈	887.4873	887.4873	0.0
b ₉	944.5087	944.5046	-4.3
b ₁₀	1015.5458	1015.5406	-5.1
b ₁₁	1102.5779	1102.5780	0.1
b ₁₂	1203.6256	1203.6189	-5.6
b ₁₃	1332.6681	1332.6660	-1.6
b ₁₄	1431.7366	1431.7366	0.0
b ₁₅	1528.7893	1528.7870	-1.5
b ₁₇	1756.8826	1756.8792	-1.9
b ₆ ²⁺	331.1632	331.1661	8.8
b ₁₃ ²⁺	666.8377	666.8378	0.1
b ₁₄ ²⁺	716.3719	716.3705	-2.0
b ₁₅ ²⁺	764.8983	764.9037	7.1
b ₁₉ ²⁺	979.0030	979.0051	2.1
b ₂₃ ²⁺	1176.6114	1176.6038	-6.5
b ₂₄ ²⁺	1212.1299	1212.1295	-0.3
b ₂₅ ²⁺	1268.6720	1268.6687	-2.6
b ₂₆ ²⁺	1413.7277	1413.7269	-0.6

b ₂₇ ²⁺	1449.2462	1449.2455	-0.5
b ₃₁ ²⁺	1646.3570	1646.3560	-0.6
b ₃₃ ²⁺	1747.3958	1747.3933	-1.4
b ₃₃ ³⁺	1165.2663	1165.2571	-7.9
b ₃₇ ³⁺	1283.3297	1283.3235	-4.8
b ₄₁ ³⁺	1415.4088	1415.4190	7.2
b ₄₃ ³⁺	1476 7826	1476 7703	-8.3
43 b ³⁺	1590 5107	1580 4000	7.4
~ ₄₆ h ⁴⁺	1360.3107	1360.4990	-7.4
о ₅₆	1406.2551	1406.2515	-2.6
c ₂	218.1499	218.1499	0.0
с ₃	347.1925	347.1922	-0.9
C ₄	434.2245	434.2239	-1.4
с ₈	904.5138	904.5212	8.2
C ₁₀	1032.5724	1032.5804	7.7
C ₁₁	1119.6044	1119.6082	3.4
C ₁₃	1349.6947	1349.7020	5.4
C ₁₅	1545.8159	1545.8146	-0.8
C ₇	396.2185	396.2222	9.3
c ₁₄ ²⁺	724.8852	724.8831	-2.9
c ₁₈ ²⁺	930.9742	930.9804	6.7
c ₂₀ ²⁺	1036.0426	1036.0503	7.4
x ₁	173.0921	173.0921	0.0
x ₂	270.1448	270.1447	-0.4
x ₃	341.1819	341.1813	-1.8
x ₄	412.2190	412.2199	2.2
x ₅	469.2405	469.2404	-0.2
x ₆	556.2725	556.2749	4.3
x ₈	756.3886	756.3837	-6.5
x ₉	855.4570	855.4510	-7.0
x ₁₁	1055.5731	1055.5685	-4.4
x ₁₄	1336.7471	1336.7351	-9.0
x ₁₅	1437.7947	1437.7878	-4.8
x ₁₆	1534.8475	1534.8614	9.1
x ₁₃ ²⁺	612.3351	612.3365	2.3
x ₁₅ ²⁺	719.4010	719.3943	-9.3
x ₂₁ ²⁺	1009.5802	1009.5767	-3.5
Y ₂	244.1656	244.1653	-1.2
y ₃	315.2027	315.2023	-1.3
y ₄	386.2398	386.2395	-0.8
У ₅	443.2612	443.2610	-0.5
y ₆	530.2933	530.2932	-0.2
У ₇	631.3410	631.3406	-0.6
y ₈	730.4094	730.4091	-0.4
y ₉	829.4778	829.4816	4.6

Y ₁₀	916.5098	916.5115	1.9
Y ₁₁	1029.5939	1029.5975	3.5
Y ₁₂	1126.6466	1126.6462	-0.4
У ₁₃	1197.6837	1197.6860	1.9
У ₁₄	1310.7678	1310.7698	1.5
У ₁₅	1411.8155	1411.8184	2.1
V ₁₆	1621 0522	1621 05/1	0.4
У ₁₈	1692 9894	1692 9904	0.6
У ₁₉	1792.0578	1792.0706	7.1
y ₁₂ ²⁺	563.8269	563.8263	-1.1
y ₁₃ ²⁺	599.3455	599.3422	-5.5
y ₁₄ ²⁺	655.8875	655.8853	-3.4
y ₁₅ ²⁺	706.4114	706.4102	-1.7
y ₁₆ ²⁺	754.9378	754.9374	-0.5
y ₁₇ ²⁺	811.4798	811.4797	-0.1
y ₁₈ ²⁺	846.9983	846.9983	0.0
Y ₁₉	896.5325	896.5338	1.5
y ₂₀ ²⁺	940.0486	940.0466	-2.1
y ₂₁	996.5906	996.5842	-6.4
y ₂₂ ²⁺	1045.1170	1045.1163	-0.7
Y ₂₃ ²⁺	1088.6330	1088.6371	3.8
Y ₂₄	1117.1437	1117.1443	0.5
y ₂₅ ²⁺	1173.6857	1173.6941	7.2
y ₂₆ ²⁺	1222.2121	1222.2129	0.7
γ ₂₇ ²⁺	1287.7324	1287.7338	1.1
y ₂₈ ²⁺	1323.2509	1323.2544	2.6
y ₃₀ ²⁺	1428.3193	1428.3226	2.3
y ₃₁ ²⁺	1471.8353	1471.8447	6.4
y ₃₂ ²⁺	1520.3617	1520.3630	0.9
y ₃₃ ²⁺	1555.8803	1555.8866	4.0
y ₂₂ ³⁺	697.0804	697.0797	-1.0
γ ₂₆ ³⁺	815.1438	815.1423	-1.8
Y ₃₀	952.5486	952.5470	-1.7
Y ₃₁	981.5593	981.5654	6.2
У ₃₃ 3+	1037.5893	1037.5894	0.1
У ₃₄ 3+	1134.2931	1134.2943	1.1
У ₃₅	1171.9878	1171.9781	-8.3
У ₅₇	1434.7750	1434.7818	4.7
د _ع ۲	299.1839	299.1841	0.7
-4 7-	370.2211	370.2209	-0.5
-5	427.2425	427.241/	-1.9

z ₆	514.2745	514.2740	-1.0
z ₇	615.3222	615.3193	-4.7
z ₈	714.3906	714.3903	-0.4
z ₉	813.4590	813.4521	-8.5
z ₁₀	900.4911	900.4858	-5.9
z ₁₁	1013.5751	1013.5757	0.6
z ₁₃	1181.6650	1181.6600	-4.2
z ₇ ²⁺	308.1648	308.1651	1.0
z ₁₀ ²⁺	450.7492	450.7477	-3.3
z ₁₁ ²⁺	507.2912	507.2917	1.0
z ₁₃ ²⁺	591.3361	591.3341	-3.4
z ₁₄ ²⁺	647.8782	647.8779	-0.5
z ₁₅ ²⁺	698.4020	698.3998	-3.2
z ₁₇ ²⁺	803.4704	803.4717	1.6
z ₁₈ ²⁺	838.9890	838.9891	0.1
z ₂₁ ²⁺	988.5812	988.5867	5.6

Table S24: Complete list of ions generated by UVPD of a tryptic peptide from TAB1 glycoprotein using two pulse of 1.5 mJ laser energy to activate the peptide (SSEVNGTDRPPIS_(g)SWSVDDVSNFIR, 3+, m/z 989.80). The fragment ions that are critical for localization of GlcNAc sites are listed in blue font.

Identified	Theoretical	Observed	Mass Error
lons	m/z	m/z	(ppm)
a ₃	276.1190	276.1191	0.4
a ₄	375.1874	375.1872	-0.5
a ₅	489.2304	489.2309	1.0
a ₈	762.3264	762.3265	0.1
a ₉	918.4275	918.4253	-2.4
a ₁₀	1015.4803	1015.4777	-2.6
a ₁₁	1112.5331	1112.5260	-6.4
a ₁₂	1225.6171	1225.6254	6.8
a ₆ ²⁺	273.1259	273.1264	1.8
b ₂	175.0713	175.0712	-0.6
b ₃	304.1139	304.1135	-1.3
b ₄	403.1823	403.1819	-1.0
b ₅	517.2253	517.2254	0.2
b ₆	574.2467	574.2477	1.7
b ₇	675.2944	675.2928	-2.4
b ₈	790.3213	790.3232	2.4
b ₉	946.4225	946.4194	-3.3
b ₁₂	1253.6120	1253.6173	4.2
b ₁₃	1543.7234	1543.7310	4.9
b ₁₄	1630.7555	1630.7710	9.5
b ₉ ²⁺	473.7149	473.7148	-0.2
b ₁₀ ²⁺	522.2412	522.2418	1.1
b ₁₂ ²⁺	627.3097	627.3082	-2.4
b ₂₄ ²⁺	1397.1461	1397.1532	5.1
C ₂	192.0979	192.0976	-1.6
C ₃	321.1405	321.1397	-2.5
C ₄	420.2089	420.2090	0.2
C ₅	534.2518	534.2526	1.5
c ₆	591.2733	591.2723	-1.7
с ₇	692.3210	692.3201	-1.3
c ₈	807.3479	807.3432	-5.8
с ₉	963.4490	963.4566	7.9
c ₁₂	1270.6386	1270.6400	1.1
C ₁₃	1560.7500	1560.7491	-0.6
C ₁₄	1647.7820	1647.7827	0.4
x ₁	201.0982	201.0981	-0.5
x ₂	314.1823	314.1817	-1.9
x ₃	461.2507	461.2506	-0.2
x ₄	575.2936	575.2935	-0.2
x ₅	662.3256	662.3259	0.5

x ₆	761.3941	761.3940	-0.1
x ₇	876.4210	876.4251	4.7
x ₈	991.4479	991.4454	-2.5
x ₁₀	1177.5484	1177.5498	1.2
x ₁₂	1450.6597	1450.6720	8.5
x ₁₃	1740.7711	1740.7800	5.1
x ₁₇ ²⁺	1102.5345	1102.5316	-2.6
x ₁₉ ²⁺	1210.5719	1210.5729	0.8
x ₂₀ ²⁺	1239.0826	1239.0807	-1.5
x ₂₁ ²⁺	1296.1040	1296.1071	2.4
x ₂₂ ²⁺	1345.6383	1345.6353	-2.2
x ₂₃ ²⁺	1410.1595	1410.1670	5.3
Y ₁	175.1190	175.1188	-1.1
Y ₂	288.2030	288.2027	-1.0
У ₃	435.2714	435.2708	-1.4
Y ₄	549.3144	549.3137	-1.3
У ₅	636.3464	636.3457	-1.1
y ₆	735.4148	735.4142	-0.8
У ₇	850.4417	850.4413	-0.5
y ₈	965.4687	965.4680	-0.7
У 9	1064.5371	1064.5355	-1.5
Y ₁₁	1337.6484	1337.6487	0.2
Y ₁₂	1424.6805	1424.6775	-2.1
Y ₁₃	1714.7919	1714.7876	-2.5
y ₁₃	1511.7125	1511.7133	0.5
У ₁₁	669.3278	669.3319	6.1
γ ₁₃ ²⁺	857.8996	857.8997	0.1
y ₁₆	1011.4944	1011.4911	-3.3
y ₁₇	1089.5449	1089.5427	-2.0
y ₁₇ 2+▲	988.0052	988.0082	3.0
y ₁₈ ²⁺	1147.0584	1147.0538	-4.0
y ₁₈ 2+▲	1045.5187	1045.5215	2.7
y ₁₉ −	1096.0425	1096.0392	-3.0
y ₂₀	1124.5533	1124.5481	-4.6
γ ₂₁ 2+	1181.5747	1181.5858	9.4
Y ₂₁	1283.1144	1283.1165	1.6
y ₂₂ ²⁺ 2+▲	1332.6486	1332.6423	-4.7
Y ₂₂	1231.1090	1231.1139	4.0
z ₂	272.1843	272.1840	-1.1
z ₃	419.2527	419.2520	-1.7
z ₄	533.2956	533.2942	-2.6
z ₅	620.3277	620.3262	-2.4
z ₆	719.3961	719.3939	-3.1

z ₇	834.4230	834.4173	-6.8
z ₈	949.4499	949.4485	-1.5
z ₁₀	1135.5504	1135.5460	-3.9
z ₁₁	1321.6297	1321.6205	-7.0
Z ₁₂	1408.6617	1408.6622	0.4

Identified	Theoretical	Observed	Mass Error
lons	Mass	Mass	(ppm)
b ₅	506.2106	506.2112	1.2
b ₇	780.3284	780.3329	5.8
b ₈ ²⁺	459.1973	459.1996	5.0
b ₉ ²⁺	527.7268	527.7278	1.9
C ₄	386.1783	386.1778	-1.3
C ₅	523.2372	523.2363	-1.7
c ₆	660.2961	660.2950	-1.7
с ₇	797.3550	797.3523	-3.4
c ₈ ²⁺	467.7106	467.7113	1.5
c ₉ ²⁺	536.2400	536.2391	-1.7
c ₁₀ ²⁺	681.2957	681.2936	-3.1
c ₁₁ ²⁺	724.8118	724.8126	1.1
c ₁₂ ²⁺	753.3225	753.3207	-2.4
c ₁₃ ²⁺	809.8645	809.8663	2.2
c ₁₅ ²⁺	907.9251	907.9266	1.7
Y ₂	272.1717	272.1713	-1.5
Y ₅	541.3456	541.3416	-7.4
y ₆	628.3777	628.3768	-1.4
y ₇ [▲]	715.4097	715.4075	-3.1
y ₈ ▲	852.4686	852.4691	0.5
y ₈ ^{2+▲}	426.7380	426.7377	-0.8
y ₉ ²⁺ ▲	495.2674	495.2686	2.3
y ₁₀ ²⁺ ▲	563.7969	563.7963	-1.1
y ₁₁ ^{2+▲}	632.3263	632.3290	4.3
y ₁₅ ²⁺	957.9569	957.9496	-7.6
z ₆	612.3589	612.3563	-4.2
Z ₇	902.4703	902.4720	1.9
z ₈	1039.5293	1039.5297	0.4
z ₁₀ ²⁺	657.3272	657.3287	2.3
z ₁₂ ²⁺	794.3861	794.3862	0.1
z ₁₃ ²⁺	862.9155	862.9128	-3.1

Table S25: Complete list of ions generated by EThcD of a tryptic peptide from Ph1 glycoprotein using 50 ms ETD and 25% supplemental energy to activate the peptide (GSSHHHHHHS_(g)SGLVPR, 4+, m/z 493.73). The fragment ions that are critical for localization of GlcNAc sites are listed in blue font.
Table S26: Complete list of ions generated by EThcD of a tryptic peptide from Ph1 glycoprotein using 50 ms ETD and 25% supplemental energy to activate the peptide (LSESFPILGASTEVPPMS_(g)LPVQ AAISAPSPLAMPLGSPLSVALPTLAPLSVVTSGAAPK, 5+, m/z 1188.24). The fragment ions that are critical for localization of GlcNAc sites are listed in blue font.

Identified	Theoretical	Observed	Mass Error
lons	m/z	m/z	(ppm)
b ₂	201.1234	201.1236	1.0
b ₄	417.1980	417.1990	2.4
b ₅	564.2664	564.2670	1.1
b ₇	774.4032	774.4053	2.7
b ₈	887.4873	887.4870	-0.3
b ₉	944.5087	944.5119	3.4
b ₁₀	1015.5458	1015.5461	0.3
b ₁₂	1203.6256	1203.6387	10.9
b ₁₃	1332.6681	1332.6656	-1.9
b ₁₄	1431.7366	1431.7362	-0.3
b ₂₄ ²⁺	1313.6696	1313.6777	6.2
b ₂₅ ²⁺	1370.2117	1370.2126	0.7
b ₂₆ ²⁺	1413.7277	1413.7212	-4.6
b ₃₁ ²⁺	1646.3570	1646.3518	-3.2
C ₃	347.1925	347.1926	0.3
C ₄	434.2245	434.2238	-1.6
c ₆	678.3457	678.3471	2.1
с ₇	791.4298	791.4313	1.9
c ₈	904.5138	904.5111	-3.0
с ₉	961.5353	961.5326	-2.8
c ₁₀	1032.5724	1032.5743	1.8
C ₁₁	1119.6044	1119.6035	-0.8
c ₁₂	1220.6521	1220.6475	-3.8
Y ₁	147.1128	147.1126	-1.4
Y ₂	244.1656	244.1654	-0.8
У ₃	315.2027	315.2024	-1.0
Y ₄	386.2398	386.2357	-10.6
Y ₅	443.2612	443.2608	-0.9
Y ₆	530.2933	530.2952	3.6
У ₇	631.3410	631.3420	1.6
У ₈	730.4094	730.4095	0.1
y ₉	829.4778	829.4715	-7.6
Y ₁₀	916.5098	916.5112	1.5
Y ₁₂	1126.6466	1126.6462	-0.4
Y ₁₃	1197.6837	1197.6819	-1.5
Y ₁₄	1310.7678	1310.7688	0.8
Y ₁₅	1411.8155	1411.8010	-10.3
Y ₁₆	1508.8682	1508.8679	-0.2
Y ₁₇	1621.9523	1621.9426	-6.0

Y ₁₈	1692.9894	1692.9816	-4.6
y ₁₂ ²⁺	563.8269	563.8272	0.5
y ₁₆ ²⁺	754.9378	754.9376	-0.3
y ₁₇ ²⁺	811.4798	811.4783	-1.8
y ₁₈ ²⁺	846.9983	846.9935	-5.7
y ₂₂ ²⁺	1045.1170	1045.1129	-3.9
y ₂₄ ²⁺	1117.1437	1117.1415	-2.0
y ₂₆ ²⁺	1222.2121	1222.2117	-0.3
y ₂₇ ²⁺	1287.7324	1287.7374	3.9
y ₂₈ ²⁺	1323.2509	1323.2511	0.2
y ₃₀ ²⁺	1428.3193	1428.3143	-3.5
y_{32}^{2+}	1520.3617	1520.3646	1.9
y ₃₃ ²⁺	1555.8803	1555.8899	6.2
y ₃₄ ²⁺	1599.3963	1599.3969	0.4
z ₃	299.1839	299.1835	-1.3
z ₄	370.2211	370.2210	-0.3
z ₆	514.2745	514.2732	-2.5
z ₇	615.3222	615.3186	-5.9
z ₁₇	1605.9336	1605.9177	-9.9
z ₁₇ ²⁺	803.4704	803.4708	0.5
z ₃₁ ²⁺	1463.8260	1463.8190	-4.8
z ₃₄ ²⁺	1591.3869	1591.3899	1.9

Table S27: Complete list of ions generated by EThcD of a tryptic peptide from Ph1 glycoprotein using 50 ms ETD and 25% supplemental energy to activate the peptide (SSEVNGTDRPPIS_(g)SWSVDDVSNFIR, 3+, m/z 989.80). The fragment ions that are critical for localization of GlcNAc sites are listed in blue font.

Identified	Theoretical	Observed	Mass Error
lons	m/z	m/z	(ppm)
b ₂	175.0713	175.0717	2.3
b ₃	304.1139	304.1138	-0.3
b ₄	403.1823	403.1824	0.2
b ₅	517.2253	517.2246	-1.4
b ₆	574.2467	574.248	2.3
b ₇	675.2944	675.2939	-0.7
b ₉	946.4225	946.4227	0.2
b ₁₂	1253.612	1253.6106	-1.1
c ₆	591.2733	591.2773	6.8
с ₇	692.321	692.3225	2.2
c ₁₁	1157.5545	1157.5541	-0.3
c ₁₂	1270.6386	1270.6384	-0.2
C ₁₃	1560.75	1560.7474	-1.7
c ₁₄	1647.782	1647.7845	1.5
Y ₁	175.119	175.1187	-1.7
y ₂	288.203	288.2032	0.7
У ₃	435.2714	435.2709	-1.1
Y ₄	549.3144	549.3159	2.7
Y ₅	636.3464	636.3458	-0.9
y ₆	735.4148	735.4141	-1
У ₇	850.4417	850.4415	-0.2
Y ₈	965.4687	965.4685	-0.2
y ₉	1064.5371	1064.5372	0.1
Y ₁₀	1151.5691	1151.569	-0.1
Y ₁₁	1337.6484	1337.651	1.9
Y ₁₂	1424.6805	1424.682	1.1
y ₁₃ ▲	1511.7125	1511.7133	0.5
y ₁₁ ²⁺	669.3278	669.3291	1.9
y ₁₆ ²⁺	1011.4944	1011.494	-0.4
y ₁₇ ²⁺	1089.5449	1089.5424	-2.3
y ₁₇ ²⁺ ▲	988.0052	988.0082	3
y ₁₈ ²⁺	1147.0584	1147.0551	-2.9
y ₁₈ ²⁺ ▲	1045.5187	1045.5215	2.7
y ₁₉ ²⁺	1197.5822	1197.5818	-0.3
y ₂₀ ²⁺ ▲	1124.5533	1124.5481	-4.6
y ₂₁ ²⁺	1283.1144	1283.1151	0.5
y ₂₁ ²⁺ ▲	1181.5747	1181.5858	9.4
y ₂₂ ²⁺	1332.6486	1332.6501	1.1

y ₂₂ ²⁺ ▲	1231.109	1231.1139	4
y ₂₃ ²⁺	1397.1699	1397.1722	1.6
z ₁	159.1002	159.1001	-0.6
z ₂	272.1843	272.1845	0.7
z ₄	533.2956	533.2958	0.4
z ₅	620.3277	620.3283	1
z ₆	719.3961	719.397	1.3
z ₇	834.423	834.4247	2
z ₈	949.4499	949.4532	3.5
z ₁₀	1135.5504	1135.5532	2.5
z ₁₁	1321.6297	1321.6234	-4.8
z ₁₂	1408.6617	1408.6635	1.3
z ₁₃	1698.7731	1698.7736	0.3

Section S4 Supplementary References

1. Shen, D. L.; Gloster, T. M.; Yuzwa, S. A.; Vocadlo, D. J., Insights into O-linked N-acetylglucosamine (O-GlcNAc) processing and dynamics through kinetic analysis of O-GlcNAc transferase and O-GlcNAcase activity on protein substrates. *J Biol Chem* **2012**, *287* (19), 15395-408.

2. Yuzwa, S. A.; Yadav, A. K.; Skorobogatko, Y.; Clark, T.; Vosseller, K.; Vocadlo, D. J., Mapping O-GlcNAc modification sites on tau and generation of a site-specific O-GlcNAc tau antibody. *Amino Acids* **2011**, *40* (3), 857-68.

3. Klein, D. R.; Holden, D. D.; Brodbelt, J. S., Shotgun Analysis of Rough-Type Lipopolysaccharides Using Ultraviolet Photodissociation Mass Spectrometry. *Anal Chem* **2016**, *88* (1), 1044-51.

4. Fellers, R. T.; Greer, J. B.; Early, B. P.; Yu, X.; LeDuc, R. D.; Kelleher, N. L.; Thomas, P. M., ProSight Lite: graphical software to analyze top-down mass spectrometry data. *Proteomics* **2015**, *15* (7), 1235-8.