Supporting Information

Modelling the developmental spliceosomal craniofacial disorder Burn-McKeown syndrome using induced pluripotent stem cells

Katherine A. Wood^{1,2}, Charlie F. Rowlands^{1,2}, Huw B. Thomas¹, Steven Woods³, Julieta O'Flaherty³, Sofia Douzgou^{1,2}, Susan J. Kimber³, William G. Newman^{1,2*}, Raymond T. O'Keefe^{1*}

¹Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, UK

²Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK

³Division of Cell Matrix Biology and Regenerative Medicine, School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK

*To whom correspondence should be addressed.

Email: william.newman@manchester.ac.uk; rokeefe@manchester.ac.uk

SUPPLEMENTARY FIGURES S1- S10

<u>S1 FIG</u>

OCT3/4	NANOG	SOX2	Rat IgM
SSEA-1	SSEA-3	Mouse IgM	
TRA-1-60	TRA-181	Mouse IgG	
	-49		

Pluripotency marker/DAPI

С

Pati	ent						Patie	ent (W181B					
Cell Line	KW181A,	46,XX					11	em ä				* 5	
and	Same Bar	(F) III (F)		Allowing .	NING STREET		ALL ALL	Naturo _o	2		A DE LE	turns 15	
1	2	3		4	5		1	2	3		4	5	
1960	arfs Street	April 1	の方	0520 0720	10 M (1)	22	Charles Street	THE STATE	la anti-	11 TE	ALLER ALLER		100
6	7	8	9	10	11	12	6	7	8	9	10	11	12
- 1990		CHE:			500	96	11450 ¹ 21650 ³	Antes Antes	allenn Allenn		38.00 1980	1	1960
13	14	15		16	17	18	13	14	15		16	17	18
66	69	88	60				18 C	的思	66	80	100 Car		
19	20	21	22	×	Y	mar	19	20	21	22	×	Y	mar

Mot	her					
Cell Line	KW191A					
	Straten 2	(fame)	<u> </u>	attacts a	No.	
ALLAND A	the second	And Mark	and the second	dilla dilla	10 10 10 10 10 10 10 10 10 10 10 10 10 1	nan han
6	7	8	9	10	11	12
418	24			23	118 118	24
13	14	15		16	17	18
8 19	68	66	99	R		
19	20	21	22	×	Y	mar

S1 Fig: Characteristics of iPSCs. A) Relative pluripotency marker gene (OCT3/4, SOX2, NANOG) mRNA expression levels in iPSC lines (KW181A, KW181B, KW191A, KW191B, SW162C, SW171A) compared to HEK293 cells and fibroblasts, determined using gPCR of cDNA from each cell line. Graphs were obtained using the $\Delta\Delta C_{T}$ method with ACTB as the endogenous reference gene. B) Immunofluorescence staining for pluripotency markers. Representative positive immunofluorescence staining in SW171A iPSCs for pluripotency markers OCT3/4, SOX2, NANOG, SSEA-3, TRA-1-60 and TRA-1-81 (green), and negative immunofluorescence staining for the early differentiation marker SSEA-1, and DAPI nuclear staining shown in blue. Isotype controls for rat IgM, mouse IgM and mouse IgG are also presented. C) Karyograms for all six iPSC lines used in this study showing normal karyotypes in all cases. D) Genotyping of type 1 34bp TXNL4A promoter deletion in patient (KW181A and KW181B), mother (KW191A and KW191B) and unrelated control (SW162C and SW171A) iPSC lines by PCR with genomic DNA extracted from cell lines and primers proximal to the deleted region in the TXNL4A promoter. PCR products were separated by agarose gel electrophoresis and purified, and the identities confirmed by Sanger sequences as shown. The highest molecular weight (MW) band in the patient did not sequence. E) Genotyping of the chr18: g.77,748,262delA, RefSeq NM 006701.2; c.131delT (p.Val44Alafs*48) (GRCh37/hg19) (exon 1, 1bp deletion) in iPSC lines. Genomic DNA extracted from the cell lines was amplified in two PCR reactions, one with the wildtype forward primer as shown and one with a mutant forward primer with the 't' base indicated by a * deleted. PCR products were separated by agarose gel electrophoresis. Cell lines heterozygous for the mutation amplify with both primer sets while cell lines homozygous for the wildtype sequence or the mutant sequence only amplify with the wildtype or mutant primer set respectively.

Enriched Canonical Pathways

Enriched Upstream Regulators

А

В

Enriched Networks

S2 Fig: Top enriched A) canonical pathways, B) networks, C) upstream regulators, D) molecular and cellular functions, E) physiological system development and functions, associated with the differentially expressed genes (DEGs) in pooled patient iPSCs or iNCCs compared to pooled maternal and unrelated control iPSCs or iNCCs, obtained using IPA. Pale yellow indicates no enrichment for the particular term in that cell line.

<u>S3 FIG</u>

S3 Fig: Validation of alternative splicing events in A) *UPRT* and B) *ZNF185* as identified by rMATS in patient iPSCs (KW181A, KW181B) compared to mother (KW191A, KW191B) and unrelated control (SW162C, SW171A) iPSCs. For both genes, Sashimi plots identified inclusion of an exon in mother and unrelated iPSC lines not apparent in patient lines. RT-PCR reactions were performed using primers targeting the exons flanking the novel exons with cDNA generated from the RNA extracted from iPSCs and used in RNA-Seq experiments. PCR products were separated by agarose gel electrophoresis, and the products indicated by red numbers were purified and the corresponding sequences (confirmed by Sanger sequencing) are shown below.

S4 FIG

Enriched Canonical Pathways

Enriched Upstream Regulators

Α

В

Enriched Networks

S4 Fig: Top enriched A) canonical pathways, B) networks, C) upstream regulators, D) molecular and cellular functions, E) physiological system development and functions, associated with all the mis-spliced genes in pooled patient iPSCs compared to pooled maternal and unrelated control iPSCs, all genes showing altered exon skipping (SE) in pooled patient iPSCs compared to pooled maternal and unrelated control iPSCs, genes showing increased SE and genes showing decreased SE in pooled patient iPSCs compared to pooled maternal and unrelated control iPSCs, obtained using IPA. Pale yellow indicates no enrichment for the particular term in that cell line.

S5 FIG

S5 Fig: Differentiation of SW171A control iPSCs to iNCCs. A) Key stages in differentiation of SW171A unrelated control iPSCs to iNCCs. Phase contrast microscopy showing the changing morphology of cells at time points 0h, 48h and 120h in the differentiation protocol described by Leung et al., (2016). B) Key marker gene expression in SW171A cells pre- and post-differentiation to iNCCs, obtained by qPCR on cDNA generated from RNA isolated from the cells at 0h and 120h of the protocol. Relative gene expression was calculated using the $\Delta\Delta C_T$ method with *ACTB* as a stable endogenous reference gene. n = 4. C) Expression of i) key pluripotency marker genes, ii) neural border and iii) *AXIN2* and neural crest marker genes in SW171A control cells at 0h, 48h and 120h during the differentiation protocol, obtained by qPCR on cDNA generated from RNA isolated from RNA isolated from the cells at the specified time points. Relative gene expression was calculated using the $\Delta\Delta C_T$ method with *ACTB* as a stable endogenous reference genes. n = 3. D) Migration of differentiated SW171A iNCCs determined using a wound healing assay. Representative phase-contrast images taken immediately and at 8h, 16h and 24h after wounding. The wound area at each time point was calculated using the MRI wound healing plugin in the Fiji image analysis tool. n = 2.

S6 Fig: Mean normalised read counts for *TXNL4A* in pooled patient, mother and unrelated control iNCCs from RNA-Seq data from iNCCs.

<u>S7 FIG</u>

S7 Fig: Validation of alternative splicing events in A) *EML4*, B) *MIB* and C) *SUCO* as identified by rMATS in pooled patient (KW181A and KW181B) iNCCs compared to pooled mother (KW191A and KW191B) and unrelated control (SW162C and SW171A) iNCCs. For all genes, Sashimi plots identified altered splicing events. RT-PCR reactions were performed using primers targeting the exons flanking the novel exons with cDNA generated from the RNA extracted from iNCCs and used in RNA-Seq experiments. PCR products were separated by agarose gel electrophoresis

S8 FIG

Enriched Canonical Pathways

Enriched Upstream Regulators

Α

S8 Fig: Top enriched A) canonical pathways, B) networks, C) upstream regulators, D) molecular and cellular functions, E) physiological system development and functions, associated with all the mis-spliced genes in pooled patient iPSCs compared to pooled maternal and unrelated control iNCCss, all the genes which are uniquely mis-spliced between patient and pooled maternal and control cells in the iNCC RNA-Seq data and not in the iPSC RNA-Seq data, all genes showing altered exon skipping (SE) in pooled patient iNCCs compared to pooled maternal and unrelated SE and genes showing decreased SE in pooled patient iNCCs s compared to pooled maternal and unrelated control iNCCs, obtained using IPA. Pale yellow indicates no enrichment for the particular term in that cell line.

<u>S9 FIG</u>

S9 Fig: EMT marker gene expression and *FGFR2* splicing following an extended differentiation period. A) epithelial and mesenchymal marker gene expression and B) *FGFR2* exon 8 splicing in 120h and 168h differentiated patient cells compared to 120h mother and unrelated (pooled control) cells, obtained using qPCR. qPCR experiments were performed on cDNA generated from RNA isolated from cell lines at the time points indicated. Relative gene expression was calculated using the $\Delta\Delta C_T$ method with *ACTB* as a stable endogenous reference gene. n = 2.

S10 FIG

S10 Fig: Physical properties of exons more skipped (patient SE) in pooled patient iNCCs and exons less skipped (pooled control SE) in pooled patient iNCCs compared to pooled mother and unrelated control iNCCs as determined by rMATS. Physical properties were compared to internal control exons (ICEs) from the same gene containing the differential SE event, and to external control exons (ECEs) from highly expressed but not differentially spliced genes between patient and pooled control iNCCs in the RNA-Seq dataset. Properties investigated for both types of skipped exon were: A) skipped exon lengths; B) upstream exon lengths; C) downstream exon lengths; D) upstream intron lengths; E) downstream intron lengths; F) skipped exon GC content; G) upstream intron GC content; H) downstream intron GC content; I) upstream intron branch point to 3' splice site (BPS-3'SS) distance; J) downstream intron BPS-3'SS distance; K) skipped exon splice donor strengths; N) downstream splice

SUPPLEMENTARY TABLES S1 – S7

Primer	Target	Forward primer sequence (5' – 3')	Reverse primer sequence (5' – 3')
Constuning		CACACCTATCACCCAACC	
Genotyping	nromoter	GACAGETGETATGAEGGAACE	CAAACTEEGETGGGAETGE
	deletion		
	region		
Genotyning		GCATGAAGATGGACGAGGTCC	ΤΓΓΓΓΑΘΑΔΑΓΔΑΓΤΟ
Genotyping	1bp deletion		
	(WT)		
Genotyping	TXNL4A E1	GCATGAAGATGGACGAGGCC	TCCTCGGGGAACAGCTCG
	1bp deletion		
	(Mut)		
qPCR	АСТВ	GTGGATCAGCAAGCAGGAGT	GTAACAACGCATCTCATATTTGGAA
qPCR	TXNL4A	GGACTGGCAACAACAACAAGA	AGCGGTACTTGGTGGAGTAGT
qPCR	ОСТ3/4	CTGGGTTGATCTCGGACCT	CCATCGGAGTTGCTCTCCA
qPCR	NANOG	TTTGTGGGCCTGAAGAAAACT	AGGGCTGTCCTGAATAAGCAG
qPCR	SOX2	GCCCGAGTGGAAACTTTTGTCG	GGCAGCGTGTACTTATCCTTCT
qPCR	AXIN2	AGTCAGCAGAGGGACAGGAA	AGCTCTGAGCCTTCAGCATC
qPCR	FOXD3	GCATCTGCGAGTTCATCAGC	CGTTGAGTGAGAGGTTGTGG
qPCR	SOX10	CTCTGGAGGCTGCTGAA	TGGGCTGGTACTTGTAGTC
qPCR	SNAI2	CAGACCCTGGTTGCTTCAAG	GAGCCCTCAGATTTGACCTG
qPCR	NR2F1	CGAGTACAGCTGCCTCAAAG	TACTGGCTCCTCACGTACTC
qPCR	РАХЗ	AATTACTCAAGGACGCGGTC	TTCTTCTCGCTTTCCTCTGC
qPCR	PAX7	TGACAGCTTCATGAATCCGG	GATGGAGAAGTCAGCCTGTG
qPCR	TFAP2A	GATCCTCGCAGGGACTACAG	TACCCGGGTCTTCTACATGC
qPCR	ZIC2	GTCCTACACGCATCCCAGTT	GCGATAAGGAGCTTGTGGTC
qPCR	MSX1	CTGCACCCTCCGCAAACACA	AGGCTGAGCGAGCTGGAGAA
qPCR	MSX2	CGGTCAAGTCGGAAAATTCA	GAGGAGCTGGGATGTGGTAA
qPCR	<i>FGFR2</i> E7 –	ATCCAGTGGATCAAGCACGTGG	GGTCACATTGAACAGAGCCAGC
	E8		
	(NM_022970)		
qPCR	<i>FGFR2</i> E7 –	ATCCAGTGGATCAAGCACGTGG	CAGAACTGTCAACCATGCAGAGTG
	E8		
	(NM_000141)		
qPCR	DSP	GCAGGATGTACTATTCTCGGC	CCTGGATGGTGTTCTGGTTCT
qPCR	TJP1	CAACATACAGTGACGCTTCACA	CACTATTGACGTTTCCCCACTC
qPCR	CDH1	CGAGAGCTACACGTTCACGG	GGGTGTCGAGGGAAAAATAGG
qPCR	CDH2	AGCCAACCTTAACTGAGGAGT	GGCAAGTTGATTGGAGGGATG
qPCR	VIM	AGTCCACTGAGTACCGGAGAC	CATTTCACGCATCTGGCGTTC
qPCR	ZEB1	GATGATGAATGCGAGTCAGATGC	ACAGCAGTGTCTTGTTGTTGT
qPCR/RT-	<i>TCF7L2</i> E4 –	GCAGCACACATTACTCTGCG	TGCCTGGACATCAAGCAGTGG
PCR	E5		
qPCR/RT-	<i>TCF7L2</i> E3 –	GCCAAGAGGCAAGATGGAGG	TGCCTGGACATCAAGCAGTGG
PCR	E5		

RT-PCR	<i>UPRT</i> E2 – E3	ACAGCCAGTAGAGGTGACTTC	TGGAGTGGTCACCATGCATTC
RT-PCR	<i>ZNF185</i> E14 –	AGTTGAGTGATGGCAATGTGG	GGATCTGCAGGTTGCTGAGC
	E16		
RT-PCR	<i>EML4</i> E3 – E5	CAAGTCATACCAGTGCTGTCTC	CGACAATTTATTACGGCTATCATC
RT-PCR	MIB E13 –	CCAAGACCATGGATTGTGGATG	CTTGCATATCTTGGAGCTGACG
	E15		
RT-PCR	<i>SUCO</i> E11 –	TTCATGGTAGAGATGAGCGG	TACCCTTATAAGGCTTAATGGAC
	E13		

S1 Table: Applications and sequences of primers. E = exon, WT = wildtype, Mut = mutant.

Target protein	Supplier, cat.	Dilution	Intracellular or cell
OCT3/4	BD Biosciences, 611202	1:100	Intracellular
NANOG	Cell Signalling Technologies, 4903	1:200	Intracellular
SOX2	Cell Signalling Technologies, 3579	1:400	Intracellular
SSEA-1	R&D Systems, MAB2155	1:400	Cell surface
SSEA-2	R&D Systems, MAB1434	1:200	Cell surface
SSEA-4	R&D Systems, MAB1435	1:200	Cell surface
TRA-160	Abcam, ab16288	1:200	Cell surface
TRA-181	Abcam, ab16289	1:200	Cell surface
Rabbit IgG	R&D systems, AB- 105C	1:400	NA
Mouse IgG (serotype control)	R&D Systems, MAB002	1:200	NA
Mouse IgM (serotype control)	Abcam, ab18401	1:200	NA
Rat IgM (serotype control)	Abcam, ab35768	1:200	NA
Alexa-Fluor secondary anti- mouse, anti-rabbit and anti-rat antibodies (Alex- Fluor-488 and Alexa- Fluor-594)	Invitrogen	1:200	NA

S2 Table: Antibodies used for immunofluorescence staining.

Auxiliary	Function of	iPSC RNA-Seq		iNCC RNA-Seq	
splicing factor	auxiliary	Differential	Differential	Differential	Differential
gene	splicing factor	expression	splicing	expression	splicing
SRSF1	Constitutive and alternative splicing activator, and has a role in EMT progression	Νο	No	No	No
SRSF2	Constitutive and alternative splicing activator	No	No	No	No
SRSF3	Constitutive and alternative splicing activator, and has a role in EMT progression	No	No	No	No
SRSF4	Constitutive and alternative splicing activator	No	No	No	No
SRSF5	Constitutive and alternative splicing activator	No	No	No	No
SRSF6	Constitutive and alternative splicing activator	No	No	No	No
SRSF7	Constitutive and alternative splicing activator	No	No	No	No
SRSF11	Alternative splicing repressor	No	No	No	No
SRSF9	Constitutive and alternative splicing regulator	No	No	No	No
SRSF10	General splicing repressor	No	No	No	No

TRA2A	Splicing activator	No	No	No	No
TRA2B	Splicing activator	No	No	No	No
RNPS1	Constitutive and alternative splicing regulator	No	No	No	No
SRSF12	Negative regulator of alternative splicing	No	No	No	No
U2AF1	Constitutive splicing factor	Yes (expression higher in pooled controls than patients)	No	No	No
U2AF2	Constitutive splicing factor	No	No	No	No
SNRNP70	Constitutive splicing factor	No	No	No	No
AKAP17A	Alternative splicing regulator	No	No	No	No
SRSF8	Constitutive and alternative splicing regulator	No	No	Yes (expression higher in patients than pooled controls)	No
ZRSR2	Splicing factor	No	No	No	No
RBM39	Alternative splicing regulator	No	No	No	No
CLASRP	Alternative splicing regulator	No	No	No	No
PNN	Alternative splicing regulator	No	No	No	No
SCAF11	Splicing factor	No	No	No	No
ZRANB2	Alternative splicing regulator	No	No	No	No

SRRM1	Constitutive and alternative splicing co- activator	No	No	No	No
SRRM2	Constitutive and alternative splicing co- activator	No	No	Yes (expression higher in pooled controls than patients)	Yes (increased SE in patient compared to pooled controls)
ESRP-1	Promotes epithelial cell- specific splicing pattern; downregulated during EMT	No	No	Yes (expression higher in patients than pooled controls)	No
ESRP-2	Promotes epithelial cell- specific splicing pattern; downregulated during EMT	No	No	No	Yes (increased SE in patient compared to pooled controls)
RBFOX2	Promotes mesenchymal splicing patterns for many transcripts that undergo AS during the EMT	No	No	No	Yes (increased SE in patient compared to pooled controls and MXE events)
RBM47	Regulates splicing of numerous transcripts that switch during EMT; expression downregulated during EMT	No	No	No	No
QKI	Broadly promotes mesenchymal	No	No	No	No

	splicing patterns				
MBNL1	Implicated in AS during EMT	No	Νο	No	Yes (increased SE in patient compared to pooled controls)
PTBP1	Implicated in AS during EMT	No	No	No	No

S3 Table: Differential expression and differential splicing of auxiliary and alternative splicing factors, including splicing factors important in the epithelial-to-mesenchymal transition (EMT), in patient iPSCs or iNCCs compared to pooled maternal and unrelated control (pooled control) iPSCs or iNCCs, as determined from RNA-Seq data. SE = skipped exon, MXE = mutually exclusive exons, AS = alternative splicing.

	MXE	RI	SE	A3SS
	80	67	882	92
A5SS	6	6	13	2
83				
MXE		4	48	6
80				
RI			11	6
67				
SE				18
882				

S4 Table: Number of genes showing more than one form of alternative splicing events between pooled patient and pooled mother and unrelated control iPSCs obtained using rMATS. A3SS = alternative 3' splice site, A5SS = alternative 5'ss, MXE = mutually exclusive exons, RI = retained intron, SE = skipped exon.

Gene	Number of types	Classes of mis-
	of mis-splicing	splicing present
SNHG14	4	MXE, RI, SE,
		A3SS
AC026412.1	3	A5SS, MXE, SE
AC104257.1	3	A5SS, MXE, SE
AC239809.3	3	MXE, SE, A3SS
FOXP2	3	MXE, SE, A3SS
HPN	3	A5SS, MXE, SE
PCBP1-AS1	3	A5SS, MXE, SE
SNHG17	3	A5SS, MXE, SE
TNNT1	3	MXE, SE, A3SS
ZDHHC4	3	A5SS, MXE, SE
ABCC1	2	MXE, SE
ADARB1	2	A5SS, SE
AGAP4	2	MXE, SE
ANAPC5	2	RI, A3SS
ANKMY1	2	MXE, SE
ARIH2	2	SE, A3SS
ATXN2L	2	RI, A3SS
AURKA	2	MXE, SE
B3GNTL1	2	MXE, SE
CARS2	2	A5SS, SE
CCDC15	2	MXE, SE
CCDC18-AS1	2	MXE, SE
CCDC30	2	MXE, SE
CD44	2	SE, A3SS
CFAP298	2	RI, SE
CHRD	2	A5SS, RI
CLEC7A	2	A5SS, SE
CNOT2	2	MXE, SE
COA1	2	MXE, SE
СОРЕ	2	MXE, SE
CPNE1	2	A5SS, A3SS
DCXR	2	SE, A3SS
DDR1	2	MXE, SE
DDX11	2	RI, A3SS
DHRS12	2	A5SS, A3SS
DMAC2	2	RI, SE
DMPK	2	RI, SE

DNAH14	2	MXE, SE
DNMT1	2	MXE, RI
DRAM2	2	MXE, SE
EPN2	2	SE, A3SS
ERN2	2	RI, SE
FMR1-AS1	2	A5SS, RI
HLA-A	2	MXE, RI
IDH3G	2	MXE, SE
LARP4	2	MXE, A3SS
LINC01529	2	RI, SE
LINC01535	2	SE, A3SS
LPAR4	2	MXE, SE
LPP	2	MXE, SE
LTK	2	A5SS, RI
MARK3	2	MXE, SE
MIB1	2	MXE, SE
MLF1	2	MXE, SE
MLST8	2	RI, A3SS
MRPS15	2	MXE, SE
MRVI1	2	SE, A3SS
MTX2	2	MXE, SE
MYEOV	2	RI, SE
ΜΥΟ7Α	2	RI, SE
NDUFA3	2	MXE, SE
NEPRO	2	A5SS, SE
NMRK1	2	RI, SE
PCAT1	2	MXE, SE
PDE2A	2	MXE, SE
PIGQ	2	SE, A3SS
PIGT	2	SE, A3SS
PLD3	2	A5SS, SE
PRMT5	2	A5SS, RI
PSMA4	2	RI, A3SS
PSMD13	2	SE, A3SS
PSPH	2	SE, A3SS
RPL17	2	MXE, RI
SATB1-AS1	2	MXE, SE
SCART1	2	A5SS, RI
SEC24C	2	MXE, SE
SLC14A1	2	MXE, A3SS
SLC30A6	2	MXE, SE
SLC38A9	2	SE, A3SS

SLC3A2	2	MXE, SE
SRD5A3-AS1	2	MXE, SE
SS18	2	SE, A3SS
ST6GALNAC6	2	A5SS, SE
STARD5	2	RI, SE
TMEM126B	2	MXE, SE
TMEM14B	2	MXE, SE
TSC1	2	SE, A3SS
TSFM	2	A5SS, RI
TSPAN17	2	A5SS, SE
TSSC2	2	MXE, SE
TULP3	2	MXE, SE
TVP23A	2	MXE, SE
WDR97	2	SE, A3SS
ZNF185	2	MXE, SE
ZNF232	2	MXE, SE
ZSCAN10	2	MXE, SE
ZSWIM7	2	RI, SE

S5 Table: Identities of genes showing multiple classes of significantly altered splicing events in pooled patient iPSCs compared to pooled mother and unrelated control iPSCs. A5SS = alternative 5' splice site, A3SS = alternative 3' splice site, MXE = mutually exclusive exons, RI = retained intron, SE = skipped exon.

	A5SS	MXE	RI	SE
	194	155	172	1619
A3SS	7	5	10	40
155				
A5SS		9	12	65
194				
MXE			7	98
155				
RI				43
172				

S6 Table: Number of genes showing more than one form of alternative splicing events between pooled patient iNCCs and pooled mother and unrelated control iNCCs obtained using rMATS. A3SS = alternative 3' splice site, A5SS = alternative 5'ss, MXE = mutually exclusive exons, RI = retained intron, SE = skipped exon.

Gene	Number of different types of	Types of mis-splicing
	mis-splicing	present
COMMD4	4	A5SS, MXE, RI, SE
ADAM15	3	A5SS, MXE, SE
AKAP8L	3	A5SS, RI, SE
CCHCR1	3	A3SS, A5SS, SE
CPNE1	3	A3SS, A5SS, SE
CTNND1	3	A5SS, MXE, SE
DMTF1	3	A3SS, MXE, SE
EPB41	3	A5SS, MXE, SE
EPB41L3	3	MXE, RI, SE
FAM122C	3	MXE, RI, SE
GGT1	3	A3SS, RI, SE
HDAC7	3	A5SS, RI, SE
LUCAT1	3	A5SS, RI, SE
NAP1L4	3	A3SS, MXE, SE
PCBP1-AS1	3	A3SS, MXE, SE
PFKM	3	A5SS, MXE, SE
PLD3	3	A3SS, A5SS, SE
RHOT2	3	A5SS, RI, SE
RPS24	3	MXE, RI, SE
SGCE	3	A3SS, RI, SE
SNHG14	3	A3SS, RI, SE
SNHG17	3	A5SS, MXE, SE
SPG7	3	A5SS, RI, SE
SUGP2	3	A3SS, RI, SE
TPM2	3	MXE, RI, SE
ZHX3	3	A5SS, MXE, SE
ZSWIM7	3	MXE, RI, SE
ABCB8	2	MXE, SE
AC002074.1	2	MXE, SE
AC012651.1	2	RI, SE
AC026412.1	2	A5SS, SE
AC068831.7	2	A3SS, SE
ACCS	2	A5SS, SE
ACTN1	2	MXE, SE
ACYP1	2	MXE, SE
ADGRB2	2	MXE, SE
AFDN	2	A3SS, SE
AGRN	2	MXE, SE
АКАРЗ	2	A5SS, SE

AMHR2	2	A5SS, RI
ANK2	2	A3SS, SE
ANKDD1A	2	A5SS, SE
ANKZF1	2	A5SS, RI
AP1G1	2	RI, SE
AP1G2	2	A3SS, SE
APBB3	2	A3SS, SE
ARHGEF40	2	RI, SE
ARHGEF9	2	MXE, SE
ASL	2	MXE, SE
ATP13A2	2	A3SS, A5SS
ATXN2L	2	A3SS, RI
AURKA	2	MXE, SE
BCS1L	2	A5SS, SE
BECN1	2	A5SS, SE
BRCA1	2	A5SS, SE
CACNA1E	2	MXE, SE
CAPN7	2	MXE, SE
CARF	2	A5SS, MXE
CCDC15	2	MXE, SE
CCDC173	2	A3SS, SE
CCNB1IP1	2	MXE, SE
CCNT1	2	MXE, SE
CD44	2	A3SS, SE
CDK10	2	RI, SE
CDK5RAP3	2	A5SS, RI
CERS5	2	A3SS, A5SS
CHD2	2	MXE, SE
CIB2	2	A3SS, SE
CLCN6	2	A3SS, SE
CNOT2	2	MXE, SE
COA1	2	MXE, SE
COL9A3	2	A3SS, SE
CPAMD8	2	A5SS, SE
CRELD1	2	A5SS, RI
CREM	2	MXE, SE
CROCCP2	2	A3SS, SE
CSNK1D	2	RI, SE
СҮРЗА5	2	A3SS, SE
DCUN1D4	2	A5SS, SE
DEDD2	2	MXE, SE
DGLUCY	2	A5SS, SE

DHRS4L2	2	RI, SE
DMAC2	2	RI, SE
DMKN	2	RI, SE
DNAH14	2	MXE, SE
DNAJC10	2	A3SS, MXE
DNM1	2	A3SS, SE
DNM2	2	MXE, SE
DNMT1	2	MXE, RI
DPY19L3	2	RI, SE
DRAM2	2	MXE, SE
ECSIT	2	A5SS, SE
EFCAB12	2	RI, SE
EFNA1	2	A3SS, SE
EIF4A2	2	MXE, SE
ELMOD3	2	MXE, SE
ELP2	2	MXE, SE
EML4	2	MXE, SE
EXOSC8	2	RI, SE
FAM135A	2	A3SS, SE
FAM219B	2	RI, SE
FAM241B	2	RI, SE
FAM66C	2	A5SS, SE
FES	2	A5SS, SE
FGFR1	2	MXE, SE
FGFR2	2	MXE, SE
FGFR3	2	MXE, SE
GATAD2A	2	A3SS, SE
GORASP1	2	A3SS, SE
GTF2E2	2	MXE, SE
HACL1	2	MXE, SE
HDAC2-AS2	2	A5SS, SE
HERC2P9	2	A5SS, SE
HLCS	2	MXE, SE
HNRNPH1	2	A5SS, RI
НООКЗ	2	MXE, SE
IMMP1L	2	A5SS, SE
ING4	2	A5SS, SE
INTS6L	2	RI, SE
IRF3	2	A5SS, SE
IVNS1ABP	2	MXE, SE
KIF23	2	MXE, SE
KLC1	2	A5SS, SE

L3MBTL2	2	A5SS, SE
LARGE2	2	A3SS, RI
LIMS2	2	RI, SE
LINC01198	2	A5SS, SE
LPP	2	MXE, SE
LRRC77P	2	MXE, SE
LYPD6B	2	MXE, SE
MAMDC4	2	RI, SE
MAP4K4	2	A5SS, SE
MATR3	2	MXE, SE
METTL23	2	A5SS, SE
MIB1	2	MXE, SE
MITD1	2	RI, SE
MLH1	2	A3SS, SE
MLST8	2	A3SS, RI
MLXIPL	2	A3SS, A5SS
MRPS15	2	MXE, SE
MSRB3	2	MXE, SE
MTX2	2	MXE, SE
MUS81	2	A3SS, RI
MYH10	2	MXE, SE
NAP1L1	2	MXE, SE
NBN	2	A3SS, SE
NEMP1	2	A5SS, SE
NGLY1	2	MXE, SE
NT5C2	2	A5SS, SE
OGT	2	A3SS, SE
PC	2	A5SS, SE
PCAT1	2	MXE, SE
PHPT1	2	RI, SE
PHYKPL	2	A3SS, SE
PICALM	2	MXE, SE
PIGG	2	A5SS, SE
PLAA	2	MXE, SE
PNISR	2	A5SS, SE
POLR2G	2	A5SS, SE
PPP1R12C	2	RI, SE
PRMT7	2	MXE, SE
PRPSAP2	2	MXE, SE
PTCH1	2	A5SS, SE
PTK2	2	A5SS, SE
PUS1	2	MXE, SE

PVT1	2	A5SS, SE
PWRN1	2	MXE, SE
RAB27A	2	A5SS, SE
RBFOX1	2	A5SS, SE
RBFOX2	2	MXE, SE
RHOC	2	A5SS, SE
RHOT1	2	MXE, SE
RIPOR1	2	RI, SE
RNF167	2	RI, SE
RNF181	2	A3SS, SE
RPL17	2	RI, SE
RPRD1A	2	MXE, SE
RPS9	2	RI, SE
RSRP1	2	RI, SE
SAP30BP	2	RI, SE
SCARB1	2	RI, SE
SEC31A	2	MXE, SE
SEPT2	2	A5SS, MXE
SETD5	2	MXE, SE
SGO1	2	A5SS, SE
SH2B1	2	A5SS, SE
SH3D19	2	MXE, SE
SH3YL1	2	A3SS, SE
SLC25A19	2	A5SS, SE
SLC3A2	2	MXE, SE
SLC50A1	2	A5SS, SE
SMG7	2	MXE, SE
SMPD4	2	A5SS, SE
SMUG1	2	MXE, SE
SNTG2	2	MXE, SE
SPTY2D1OS	2	A5SS, SE
SS18	2	A3SS, SE
ST3GAL1	2	MXE, SE
ST6GALNAC6	2	A5SS, SE
STK33	2	A5SS, SE
STRA6LP	2	A5SS, RI
SULF2	2	RI, SE
SUN1	2	MXE, SE
TAF1	2	A5SS, SE
TANGO2	2	MXE, SE
TBC1D1	2	MXE, SE
TCTN1	2	A3SS, SE

TIAL1	2	A3SS, SE
TLE4	2	MXE, SE
TM7SF3	2	MXE, SE
TMEM126B	2	MXE, SE
TMEM134	2	A3SS, A5SS
TMEM139	2	A3SS, SE
TMEM191C	2	A3SS, RI
TMEM91	2	A3SS, RI
TNNT3	2	A3SS, SE
TNRC6A	2	MXE, SE
TPD52L2	2	MXE, SE
TRMT1	2	A5SS, SE
TRMU	2	A3SS, SE
TTN-AS1	2	MXE, SE
TVP23C-	2	MXE, SE
CDRT4		
UBE2F	2	MXE, SE
UBE2V1	2	A5SS, SE
UNC80	2	A5SS, SE
VPS13B	2	MXE, SE
VPS29	2	MXE, SE
WDR27	2	MXE, SE
ZBED3-AS1	2	MXE, SE
ZBTB8OS	2	MXE, SE
ZFAND4	2	A5SS, SE
ZMAT1	2	A3SS, SE
ZNF10	2	RI, SE
ZNF107	2	MXE, SE
ZNF185	2	MXE, SE
ZNF266	2	A5SS, SE
ZNF561	2	MXE, SE
ZNF692	2	A5SS, SE
ZWILCH	2	A3SS, MXE

S7 Table: Identities of genes showing multiple classes of significantly altered splicing events in pooled patient iNCCs compared to pooled mother and unrelated control iNCCs. A5SS = alternative 5' splice site, A3SS = alternative 3' splice site, MXE = mutually exclusive exons, RI = retained intron, SE = skipped exon.