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This Supplementary Material contains additional technical details for the proofs of Lemmas

3-8. All the notation is the same as in the main body of the paper.

B Additional technical details

B.1 Lemma 3 and its proof

Lemma 3. Assume that X = (X;;) € R"*P has independent rows with distribution N (0, X),
Amax(Zo) < M, ande = (g1, )" has i.i.d. components with P{|e;| >t} < Cy exp(—Cy 't?)
fort > 0 and some constants M,C1 > 0. Then we have

p{[2xe|, < ovlomning 21—

for some constant ¢ > 0 and large enough constant C' > 0.

Proof. First observe that P(|X;;| > t) < 2exp{—(2M)~'¢*} for t > 0, since X;; ~ N (0, X ;;)
and 2o j; < Apax(3o) < M, where 3 j; denotes the jth diagonal entry of matrix 3. By
assumption, we also have P(|g;| > t) < C; exp{—C; 't?}. Combining these two inequalities
yields

P(lei Xij) > t) < P(lei| > V) + P(|Xy5] > V)
< Cyexp{—Cy 't} + 2exp{—(2M) "'t}
< Cyexp{—Cy't},

where Coy > 0 is some constant that depends only on constants Cy and M. Thus by Lemma

6 in [28], there exists some constant C; > 0 such that
P(jn~" Zn:gixijy > 2) < Cy exp{—C1n2?) (A1)
i=1
forall 0 < z < 1.
Denote by X the jth column of matrix X. Then by (A.1), the union bound leads to
e (el =) - (el

= ]P’( max |[n te? X;| > z)
1<j<p

<

INNgh

P(|’TL71 Z EiXij‘ > Z)
=1

<
Il

< pCy exp{—Cinz?).



Letting z = C'\/(logp)/n in the above inequality, we obtain
P(Hn_lXTsH < C’V(logp)/n) >1- élp_(élc2_1).
o0

Taking large enough positive constant C' completes the proof of Lemma 3.

B.2 Lemma 4 and its proof

Lemma 4. Assume that all the conditions of Proposition 2 hold and an[(Lp—i—L;,)l/Q—kK,lL/z] =
o(1). Then we have

P s~ Gosns| < covmmnaf <106

QeA, [S|<Kn
for some constants cq4,Cy > 0.

Proof. In this proof, we use ¢ and C to denote generic positive constants and use the same
notation as in the proof of Proposition 2 in Section A.6. Since By = ( 5,0, ., 0T with
By the true regression coefficient vector, it is easy to check that )NCKO,BT = XBy. In view of
y = X8 + ¢, it follows from the definitions of p and G that

- ~ 11 1~7 l~=T =~
ps — GssBrs = ﬁXKO,SXBO + EXKO,SE - EXKO,SXKO,SE’H‘,S
1 1 =~
= —Xkose+ —(Xkos —Xkos)'e

Using the triangle inequality, we deduce

- ~ 1 1 ~
ps — Gs,sB71.slloo < ngﬂo,gsHm + HE(XKO,S - XKO,S)TEH

o0

We will bound both terms on the right hand side of the above inequality.

By Lemma 3, we can show that for the first term,

1 1
[7xkose] = [xkoc] < ovoer/m

with probability at least 1 — p~¢ for some constants C,c¢ > 0. We will prove that with
probability at least 1 — o(p~¢),

| Rxos ~ Xxos)Te|| < Can(L, + 1)/ (ogp)/n + Cany/n T Kollogp).  (A2)

Then the desired result in this lemma can be shown by noting that an[(Lp—kL;)l/Q —|—K,%,/2] —
0.



It remains to prove (A.2). Recall that matrices Xs and XQS can be written as

y ) B 1/2
Xs = X(I - Qdiag{s})s + ZBo.s(Bf sBos)/* (B BE) ",

Xo,5 = X(I — Qodiag{s})s + ZBy_s,

where the notation is the same as in the proof of Proposition 2 in Section A.6. By the
definitions of XKO and Xko, it holds that

]. <r ]_ - %
e i T Y

[e.e]

where Xs and )v(075 represent the submatrices formed by columns in §. We now turn to

analyzing the term n_l(Xg — XO,S)Ts. Some routine calculations give

(Xs ~Xos)Te = ~(((90 -~ Q)diagls})) XTe

1
+—((B9)7BE)"*(B] sBo.s)/* ~ 1) B s2".

1
n

Thus it follows from s; < 2Anax(30) for all 1 < j < p and the triangle inequality that

1 9 1
HE(XS - Xo,s)TEH < 2Amax(20)Hﬁ(QO,S - QS)TXTeH

o0 o0

N H%(<<B?)TB2)1/2(BaSBO,S)_1/2 - I) BoT,SZTEHOO- (A.4)
%(Qo,s - QS)TXTEH in (A.4). Since Q € A

o0

We first examine the upper bound for

and Qg is Ly-sparse, by Lemma 3 we deduce

| (90525 X7e| < | @0 @)xTe|
< - | ;x|
< /Ly + L9 — Q2 - C/(log p)/n
< Can(Ly + L,)Y?\/(log p) /n. (A.5)

We can also bound the second term on the right hand side of (A.4) as
(0758 )|
n S S 0,sBo,s 0.5 N
< [[(B2)7B2) Bl sBos) 2 1| | BEsZe|
e

< v 2Kn0an\/w = Can\/ma

where the second to the last step is entailed by Lemma 2 in Section A.3 and Lemma 5 in
Section B.3. Therefore, combining this inequality with (A.3)—(A.5) results in (A.2), which



concludes the proof of Lemma, 4.

B.3 Lemma 5 and its proof

Lemma 5. Under the conditions of Proposition 2, it holds that with probability at least
1-0(p™°),

1
sup HEBOT’SZTEHOO > C+/(logp)/n

IS|<Ky

for some constant C > 0.

Proof. Since this is a specific case of Lemma 8 in Section B.6, the proof is omitted.

B.4 Lemma 6 and its proof

Lemma 6. Under the conditions of Proposition 2 and Lemma 1, there exists some constant
c € (2(gs)™%, 1) such that with asymptotic probability one, \:SA‘Q\ > cs holds uniformly over all
Q€ A and |S| < K,,, where S = {j: WJ.Q’S >T4.

Proof. Again we use C' to denote generic positive constants whose values may change from
line to line. By Proposition 2 in Section A.6, we have with probability at least 1 — O(p~“)
that uniformly over all Q € A and |S| < K,

max 1B (X Q,8) — o < Cy/sn~T(logp) and ax 1Bip(X; 2, 8)| < C\/sn~!(log p)
sp SJSp

1<y

for some constants C,c; > 0. Thus for each 1 < j < p, we have

WS = |B;(\Q.8)| — 1Bj1p(A 2, 8)|
—|§j+p()\;ﬂ,8)] > —Cy/sn~1(logp). (A.6)

On the other hand, for each j € So = {j : fo,; > \/sn~!(logp)} it holds that

v

WS = |B;(X Q2,8)| - [Bjp(A\ 2, 8))|
> 8o, — 185X 2, 8) = Boj| — 1Bj1p(X: ©2,8)| > C/sn1(log p). (A7)

Thus in order for any Wjﬂ’s, 1 < j < p to fall below —T', we must have an’s > T for all
j € 8. This entails that

{5 WP > T} > |Sa| > es, (A.8)

which completes the proof of Lemma 6.



B.5 Lemma 7 and its proof

Lemma 7. Assume that all the conditions of Proposition 2 hold and asn = a, + (L; +
Kn){(logp)/n}'/? = o(1). Then it holds that

P sup Hés,s — GS,S)
QcA,|S|I<Kn

< CSCLQ,n} =1-0(p™)

ma.

for some constants cg, Cg > 0.

Proof. In this proof, we adopt the same notation as used in the proof of Proposition 2 in
~ L Q < Q

Section A.6. In light of (36), we have G = n~1[X, X ]7[X,X ']. Thus the matrix difference

6575 — Gg,s can be represented in block form as

~ 1 XEXs (X5)TXs S %o - diag{s}
Gss—Gss=_| 7.0 a0 |~ :
n\ XsXs (Xg)' Xs 3 — diag{s} o ss
Ky .
B n1XIXs ~pss n 1 (Xs) Xs — (Zo — diag{s}) 5
= y) . VRN o JUSIVE o)
nIXEX s — (Zo - dlag{s})s,s n 1 (Xs)" X5 —Zoss

Note that the off-diagonal blocks are the transposes of each other. Then we see that ”é,g,S —
Gs,s|lmax can be bounded by the maximum of ||11|/max, [|72/lmax, and [[73||max with
m=n"'X§Xs - Zos.s;
— o §2 .
Ny =n 1XEXS — (Eo — d1ag{s})s’3,

1,5 TR
m=n""(Xs)"Xs — os,s.
To bound these three terms, we define three events

& = {In™'X"X = So s < C/(l0g D)/},
& ={ sw ||n'BIsZ"X| < CViogp)/n},

IS|I<Kn

Er = { sup Hn_lBaSZTZBo,s - BaSBO:SH <C (logp)/n}.
IS|<Kn max

By Lemma 8 in Section B.6, it holds that P(&) > 1 — O(p™¢) and P(&7) > 1 — O(p™©).
Using Lemma A.3 in [6], we also have P(&) > 1 — O(p~¢). Combining these results yields

P(&N&NE) >1—0(p°)

with ¢ > 0 some constant.

Let us first consider term 7;. Conditional on &, it is easy to see that

171 [max < [l XTX — So|lmax < Cv/(logp)/n. (A.9)



~ 5.0
We next bound ||n2||max conditional on & N &. To simplify the notation, denote by B =

1/2 g
(B()T",:~’B()7‘f>~)*1/2 <(B2)TB2> . By the definition of X, we deduce

_ o2 .
N =mn 1X£XS — (20 — dlag{s})s,s
= n 'XEX(I - Qdiag{s})s + n " XEZBysB™ — () — diag{s}) 5 s
= (n"'XTX — ) (I - Qdiag{s})) s ¢ + (diag{s} — ZoQeiag(s}) s s +n ' X5ZB B
=12,1 T 02,2 + 12,3
We will examine the above three terms separately.

Since 2 is Ly,-sparse, ||[I-Qodiag(s)|l2 < [[T]|2+(Q0diag(s)[l2 < C, and [|(2—Q0)diag{s}|[2 <

Ca,, we have

HI - Qdiag{s}”l < \/f;
< /2, (|1~ Qodiagis} ], + || (2 — Qo)diag{s}], )

<o, /L, (A.10)

I- Qdiag{s}”2

Thus it follow from (A.10) that conditional on &,
724 = || (071 XTX = 3)(1 - Qiag{s})) g 5|
< H(n—leX S (I— Qdiag{s})H

< Hn—leX _ 20‘

I Qdiag{s}“l

max

< C’\/Lj’ox/(logp)/n. (A.11)

For term 72, it holds that

72,2l = || (ding{s} — Boing{s}) 5|
< COIT — ZoQ|lmax < C[|Z0]]2]|Q0 — Q|2 < Cay,. (A.12)

Note that by Lemma 2 in Section A.3, we have

~5,02 ~S5,Q2 ~5,Q2
Bl < VISIIB "l < VISI(IB T =T+ 1) < CVIS| < CV K,
when |S| < K,,. Then conditional on &, it holds that

_ ~5,02
H772,3Hmax = Hn 1X£ZBO,SB HmaX

_ ~S5,Q2
< |In T XEZBo.s [max B 1

< Cy/n 1K, (logp). (A.13)



Thus combining (A.11)—(A.13) leads to

[72]lmax < C{an + \/ nflL;;(logp) +vn 1Ky (logp)}. (A.14)

We finally deal with term n3. Some routine calculations show that

v Q
ns=n"1(X )TXS —3o,s.8-
= (1 - Qdiag{s}) X7 + (B )BT s27) (X(I — Qdiag{s})s + ZBosB ") — Sos.s
( (I — Qdiag{s})TXTX(I — Qdiag{s}) — Zo + BgBO)S

S,Q ~S,Q
+n Y (BT )TBL sZ7X(I - Qdiag{s})s + (I - Qdiag{s})EXTZBy sB"~
~5.Q ~5,0Q
+(B7)"B{sZ2"ZBgsB™" — B{sBy,s)
=nm31+m32+ 77:{,2 + 13,3

Conditional on event &5, with some simple matrix algebra we derive

m3,1l = H( (I — Qdiag{s})"XTX(I — Qdiag{s}) — 2 + B[{BO)

max

|
S,S
H (I - Qdiag{s})"XTX(I - Qdiag{s}) — o + BgBO}

max

< H I - Qdiag{s})T(n ' XTX — S0)(I - Qdiag{s})”max
+ ||(@ - Qdiag{s}) " To(1 - Qdiag(s}) — To + 2ding{s} - diag(s} Qudiag{s}||
< 7 XTX — o max[|(T — Qding{s}) 1§

+ [|diag{s} (T — Q230)lmax + [[(T — Zo82)diag{s}|/max + [|diag{s}(Qo — 2Xo2)diag{s}||max
< CL,+/(logp)/n + Cay, (A.15)

where the last step used (A.10) and calculations similar to (A.12).

~5,Q2
It follows from (A.10) and the previously proved result |B " ||; < CV K, for |S| < K,
that conditional on event &,

1550 :
Ins.2ll = lIn™"(B™)"Bg sZ" X (I — Qdiag{s})s [lmax

~S5,Q2 _ .
< IB™ 1lln™"BE s Z" X lmax[|(T — Qdiag{s})s|l1

< Cv Kpy/Lyn~(logp)

= C\/n—lKnL]’D(logp). (A.16)




Finally, by Lemma 2 it holds that conditioned on &7,

sl = [ (B*") B 52" 2BosB™" B sBos|

~S7 —
< B (n'BE s27ZBy s — BYsBos)B

Sﬂ‘

max
~S5,Q ~S5,Q2
n H (B 'BLsBosB " — B 83073’

max

<|n'BY ZTZBog—BogBosH 1B”)2 + Cay,
< CK,\/(logp)/n + Can. (A.17)

Therefore, combining (A.15)—(A.17) results in

[73]lmax < Can + C(Ly, + Ky 4/ Kn L)/ (log p)/n
< Cay + 2C(Ly, + Kn)\/(logp)/n,

which together with (A.9) and (A.14) concludes the proof of Lemma 7.

B.6 Lemma 8 and its proof

Lemma 8. Under the conditions of Proposition 2, it holds that with probability at least
1- O(p_c)’

sup H—B SZTX‘ > C+/(logp)/n,

|S|§K max

sup Hn_lBOTSZTZBQS — BOTSBO,SH > C+/(logp)/n
|S|<Kn ’ ’ max

for some constants ¢, C > 0.

Proof. We still use ¢ and C' to denote generic positive constants. We start with proving the

first inequality. Observe that

1
sup H—BOTSZTX’ H—BTZTX‘
IS|<Kn n ’ max max
Thus it remains to prove
1 —c
P <HnB§szumaX > C’M(logp)/n) < o(p~). (A.18)

Let U = ZBy € R™? and denote by U; the jth column of matrix U. We see that
the components of U; are i.i.d. Gaussian with mean zero and variance e?BgBoej, and
the vectors U; are independent of €. Let ij = (eJTBOTBoej)*l/QUj. Then it holds that
U; ~ N(0,I,). Since X;; ~ N(0,3¢;) and g ;; < Anax(Xo) < C with C > 0 some



constant, it follows from Bernstein’s inequality that for ¢ > 0,

1 P 1
P H—BTZTXH > 4BTByl, ) < S°P —‘U-TX<
(| mizrx] = BiBal. <e (5l

ZP:P (i‘(ﬁj)TXi
j=1

< Cpexp(—Cnt?).

> t|B3;Bo||2)

)

Taking t = C'y/(log p)/n with large enough constant C' > 0 in the above inequality yields

IN

1 _
P(|iBizrx| | = oviosn/nlBiBle) < cr
for some constant ¢ > 0. Thus with probability at least 1 — O(p~¢), it holds that

|>Biz7x| < cviogp /BT Bl
= Cy/{log ) fding(s) — diag(s) oding (s) -
< oy/ogn)/n,

which establishes (A.18) and thus concludes the proof for the first result.

The second inequality follows from

sup Hn—lBOT <ZTZB, s — B SBO,S(
|S|<Kn ’ ’

< Hn—lBngZBo - BOTBO‘

max max

and Lemma A.3 in [6], which completes the proof of Lemma 8.
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