Supplementary information

Temperature-regulated heterogeneous extracellular matrix gene expression defines biofilm morphology in *Clostridium perfringens*

Nozomu Obana, Kouji Nakamura, Nobuhiko Nomura

Supplementary Figure 1-12 Supplementary Table 1-3

Supplementary Figure 1. Identification of a transcriptional start site of *sipW* operon. (a) Schematics of the *sipW* operon and nucleotide sequence downstream of the *bsaA* gene. Inverted arrows show inverted repeat sequences. (b) Determination of the 5' end of *sipW* mRNA. Total RNA was left untreated or treated with TAP to distinguish primary transcripts from processed transcripts. PCR products amplified using primers for detection were resolved on a 2% agarose gel and stained with ethidium bromide. (c) Nucleotide sequence of the *sipW* promoter region. The "+1" label and bent arrow indicate the 5'-terminal site of the *sipW* transcripts detected by 5' RLM-RACE. Putative -10 and -35 sequence regions are boxed in dashed lines. The "+1" sign indicates the 5'-terminal sites of the *sipW* transcripts detected by 5' RLM-RACE.

Supplementary Figure 2. BsaRS two-component system regulates the *sipW* expression. (a) Northern blotting of *sipW-bsaA*. Cells were grown at 37°C for 2 h. Total RNA (1 μ g) was separated on 1.2% denaturing agarose and probed with *sipW-bsaA*-specific DIG-labeled probes. As loading controls, the northern blotting of *colA*, the kappatoxin (collagenase) gene, is shown. (b-d) Gel mobility shift assay with purified BsaR-His6 proteins. DNA fragments (50 ng) corresponding to the *sipW* promoter (b), *abrB* promoter (c) and *scr* promoter (d) were incubated with 0, 125, 250 or 500 μ M protein. Protein-DNA complexes were detected in the mixture of the BsaR proteins and the *sipW* promoter sequence.

Supplementary Figure 3. Complementation of *bsaA* restores pellicle biofilm

formation. (a) Pellicle biofilm formation of strains harboring plasmids expressing the *bsaA* gene. Cells were grown at 25°C for 2 days with or without lactose. The photographs show the pellicle biofilm after picking by gentle pipette aspiration. The transcription of the *bsaA* gene in the complementation plasmid pCPO0515 is under the control of the lactose-inducible promoter *bgaL*. (b) Western blotting of BsaA proteins. Whole cell proteins (C) and supernatant proteins (S) were extracted from the cultures corresponding to Supplementary Figure 3a. The proteins were separated with 4-15% SDS-PAGE and probed with anti-BsaA antibodies. Each lane contained protein at O.D. 600 unit=0.002.

Supplementary Figure 4. Anti-BsaA antibody inhibits pellicle biofilm formation. An anti-BsaA antibody was added to the culture medium at a ratio indicated prior to incubation. PBS and rabbit serum of nonspecific to BsaA were used as negative controls. *C. perfringens* wild type (WT) cells were anaerobically grown at 25°C for 2 days. The photographs show the pellicle biofilm after picking by gentle pipette aspiration.

Supplementary Figure 5. *srtB* is not necessary for pellicle biofilm formation and BsaA protein expression. (a) Pellicle biofilm formation of WT and Δ *srtB*. The photographs show the pellicle biofilm after picking by gentle pipette aspiration. (b) Western blotting of BsaA proteins. Whole cell proteins (C) and supernatant proteins (S) were extracted from the cultures of WT and Δ *srtB*. The proteins were separated with 4-15% SDS-PAGE and probed with anti-BsaA antibodies. Each lane contains proteins at O.D. 600 unit=0.002.

Supplementary Figure 6. Overexpression of *sipW-bsaA* from HN13 allows pellicle biofilm formation in SM101. (a) A schematic image of the sipW operon in C. perfringens type F strain SM101. An insertion sequence was naturally integrated into the sipW operon of the SM101 genome. (b) Pellicle biofilm formation of SM101. SM101 was deficient in pellicle biofilm formation. Cells were anaerobically grown at 25°C for 2 days. (c) Western blotting of BsaA proteins in HN13 and SM101. Cell extracts (C) and culture supernatants (S) were isolated from HN13 and SM101 cells grown at 25°C for 8 h to reach the midexponential phase. Protein samples (OD600 unit=0.004/lane) were separated on a 4-12% gradient SDS-polyacrylamide gel. BsaA proteins were detected with anti-BsaA antisera. (d) Pellicle biofilm formation of SM101 harboring the sipW-bsaA expression plasmid. Schematics show the plasmid construction for *sipW* or *sipW-bsaA* overproduction. The sipW or sipW-bsaA derived from C. perfringens type A strain HN13 in the plasmids were under the control of the xylose-inducible promoter xyIB. Xylose (0.01%) was added to the medium prior to incubation for the induction of the gene expression. The sipW-bsaA expression restored pellicle biofilm formation in SM101. Cells were anaerobically grown at 25°C for 2 days. The photographs show the pellicle biofilm after picking by gentle pipette aspiration.

Supplementary Figure 7. Transmission electron microscopic images of filamentous EPS. Cells were anaerobically grown in GAM broth containing 2 mM lactose at 25°C for 2 days. Filamentous structures were observed in the periphery of WT cells or $\Delta bsaA$ cells complemented with the *bsaA*-expressing plasmid. Bar=400 nm.

Supplementary Figure 8. Complementation of BsaA restores filamentous EPS

production. Cells were anaerobically grown in GAM broth containing 2 mM lactose at 25°C for 2 days. The biofilms were fixed with 4% formaldehyde and then probed with anti-BsaA antibodies (red). Cells were stained with Syto9 (green). Filamentous anti-BsaA signals were detected in WT cells harboring pJIR418 (empty vector) and $\Delta bsaA$ cells harboring pCPO0515 (*bsaA* expression vector). We observed much amount of BsaA filamentous structure in $\Delta bsaA$ cells harboring pCPO0515 than WT harboring empty vector. The expression of *bsaA* in pCPO0515, which is under the control of the lactose-inducible *bgaL* promoter, would be higher than the native promoter of *bsaA* (*sipW* promoter). Scale bars are 10 µm.

Supplementary Figure 9. $\Delta bsaS$ cells produce adhered biofilm at 25°C. *C. perfringens* cells harboring pCPE2005 (P_{sipW}-evoglow-Pp1) were anaerobically grown in GAM broth at 25°C for 24 h. Cells were stained with FM4-64 (magenta). We observed the biofilms using CLSM. Representative images of the *x-y* section and *x-z* section (top), and 3D image (bottom) of each biofilm are shown. We detected P_{sipW}-ON cells (green) in WT, and $\Delta pilA2$, but not in $\Delta bsaS$. WT and $\Delta pilA2$ form pellicle biofilms, whereas $\Delta bsaS$ forms adhered biofilms. Bar=10 µm.

Supplementary Figure 10. Overproduction of PiIA2 inhibits pellicle biofilm formation. (a) Pellicle biofilm formation of strains harboring plasmids expressing the *piIA2* gene. Cells were grown at 25°C for 2 days with or without xylose. The photographs show the pellicle biofilm after picking by gentle pipette aspiration. The transcription of the *piIA2* gene in pXpiIA2 was under the control of the xylose-inducible promoter *xyIB*. (b) Western blotting of PiIA2 proteins. Whole cell proteins were extracted from the cultures described in Supplementary Figure 10a. The proteins were separated with 4-15% SDS-PAGE and probed with anti-PiIA2 antibodies. PiIA2 induced by 1% xylose inhibited pellicle biofilm formation.

Supplementary Figure 11. BsaA proteins do not bind to Congo Red and thioflavin T. (a) Colony morphology on agar plates containing 40 μ g/ml of Congo Red and 20 μ g/ml of Coomassie Brilliant Blue G (CBB). *C. perfringens* were cultured in PGY medium. After overnight culture, we spotted 5 μ l of the culture on GAM plates containing 1 mM lactose, Congo Red and CBB. *B. subtilis* and *E. coli* were grown in LB medium overnight. We spotted 5 μ l of the culture on LBGM (1% tryptone, 0.5% yeast extract, 1% glycerol, 10 mM MnSO₄) or salt-free LB plates containing Congo Red and CBB. These plates were incubated at 25°C for 7 days (*C. perfringens*) or 4 days (*B. subtilis* and *E. coli*). Bar=0.5 mm. (b and c) Absorbance and fluorescence of BsaA proteins in the presence of Congo Red and Thioflavin T. Purified BsaA proteins (10 μ g) were suspended in 100 mM NaCl and 20 mM Tris-HCl (pH 7.5) and mixed with 20 μ M Congo Red (b) or Thioflavin T (c). The absorbance and the fluorescence (438-nm emission) of the suspension (100 μ l) were measured using a microplate reader (Synergy H1, BioTek, Winooski, VT). Congo Red or Thioflavin T alone serve as negative controls.

Supplementary Figure 12. Citrate does not influence P_{sipW} expression. *C. perfringens* HN13 harboring pCPE2002 (P_{scr} -evoglow-*Pp1*) or pCPE2005 (P_{sipW} -evoglow-*Pp1*) were anaerobically grown in 1 ml of GAM containing citrate for 7 h at 37°C. The cells were washed with PBS and resuspended in 1 ml PBS. We measured the fluorescence (Ex/Em=450/495) of the suspension (100 µl) using a microplate reader. The means normalized by O.D.600 and standard deviations are represented.

Locus (gene)	Number of mutants	Function	
CPE0515 (bsaA)	2	Hypothetical protein	
CPE0929	1	Glycerol dehydrogenase large subunit	
CPE1512 (<i>reeS</i>)	1	Sensor histidine kinase ReeS	
CPE1941 (secF)	1	Preprotein translocase subunit SecF	
CPE1942 (secD)	1	Preprotein translocase subunit SecD	
CPE2033 (<i>dnaK</i>)	1	Molecular chaperone DnaK	
CPE2230	1	Serine protease Do	
CPE2274	1	Nitrate extrusion protein NarK	
CPE2418 (<i>nusG</i>)	1	Transcription antitermination protein NusG	
CPE2507	2	Anaerobic ribonucleoside triphosphate reductase	
rRNA/tRNA	23	Ribosomal RNA/transfer RNA	

Supplementary Table 1. Transposon mutants deficient in pellicle biofilm formation*

*Amongst 51 mutants, 9 mutants were not tested, and 7 mutants could not read. Thirty-five mutants successfully sequenced are listed.

Strain	Genotype or relevant characteristics	Source or reference
C. perfringens		
13	Wild type	Shimizu <i>et al.</i> (2002)
HN13	galK, galT in-frame deletion mutant of 13	Nariya <i>et al.</i> (2011)
NO25	<i>pilA2</i> in-frame deletion mutant of HN13	Obana <i>et al</i> (2014)
NO41	sipW, bsaA in-frame deletion mutant of HN13	In this study
NO42	bsaA in-frame deletion mutant of HN13	In this study
NO43	bsaR in-frame deletion mutant of HN13	In this study
NO44	bsaS in-frame deletion mutant of HN13	In this study
NO45	bsaR, bsaS in-frame deletion mutant of HN13	In this study
NO46	bsaB in-frame deletion mutant of HN13	In this study
NO47	bsaC in-frame deletion mutant of HN13	In this study
NO48	srtB in-frame deletion mutant of HN13	In this study
N077	<i>bsaD</i> in-frame deletion mutant of HN13	In this study
E. coli		
DH5a	Used for cloning	TAKARA
M15/pREP4	Used for protein expression	Qiagen
Plasmid		
pJIR418	<i>E. coli-C. perfringens</i> shuttle vector, Cm ^R , Em ^R	Sloan J <i>et al.</i> (1992)
pCPO0514FLAG	FLAG-tagged <i>sipW</i> expression under control of lactose inducible promoter (<i>bgaL</i>)	In this study
pCPO0515	<i>bsaA</i> expression under control of lactose inducible promoter (<i>bgaL</i>)	In this study
pCPE2001	co/A-processed 5'UTR-evoglow-Pp1-Cp-flag in pJIR418	In this study
pCPE2002	P _{sc} -colA-processed 5'UTR-evoglow-Pp1-Cp-flag in pJIR418	In this study
pCPE2005	Psiow-colA-processed 5'UTR-evoglow-Pp1-Cp-flag in pJIR418	In this study
pXCH	Xylose-inducible promoter-harboring plasmid	
pXCH-sipW	sipW-carrying pXCH	In this study
pXCH-sipW-bsaA	sipW-bsaA-carrying pXCH	In this study
pXCH-pilA2	pilA2-carrying pXCH	In this study
pQE60	IPTG-inducible C-terminal His6 added protein expression vector	Qiagen
pQE60-BsaR	BsaR-His6 expression vector	In this study
pQE60-BsaA	BsaA-His6 expression vector	In this study

Supplementary Table 2. Strains and plasmids used in this study

Primer ID	Sequence	Use
NOB-0777	ggccgtcgacctatgccatctcttttaaatagtg	sipW mutant construction
NOB-0879	AAAGTGATTCTGGAGGAATAAGAAAGAAAAGTTAG	<i>sipW</i> mutant construction
NOB-0880	TTTCTTTCTTATTCCTCCAGAATCACTTTTCTTAG	<i>sipW</i> mutant construction
NOB-0881		<i>sipW</i> mutant construction
NOB-0786	ggccgtcgacctttctgcatcctgcttatg	<i>bsaA</i> mutant construction
NOB-0787	gtacctgcacctaacaatttaaattacctcccagt	bsaA mutant construction
NOB-0788	aggtaatttaaattgttaggtgcaggtactaatgc	bsaA mutant construction
NOB-0789	gcgcggatccccatcttcatctggctcttg	bsaA mutant construction
NOB-0818	GGCCgtcgacACAACTCATAGAGCTATAGA	bsaB mutant construction
NOB-0819	cccacctaactaCTTCATCCTTTTCACTCCTTGCA	bsaB mutant construction
NOB-0820	aaggATGAAgtAGttaggtggggagagatATGAAG	bsaB mutant construction
NOB-0821	GCGCggatccCTTGACCAAATCTTGAATCA	bsaB mutant construction
NOB-0822	GGCCgtcgacATCCAGATGGACAAACTGCA	bsaC mutant construction
NOB-0823	atcctttattgaCTTCATATCTCTCCCCACCTAAC	bsaC mutant construction
NOB-0824	gagatATGAAgtCAATAAAGGATGAAAAATACTTC	bsaC mutant construction
NOB-0825	GCGCggatccTATAAACTCTTCCAACAGGTA	bsaC mutant construction
NOB-0801	GGCCgtcgacAACAGATGTTGTTTCTAAGG	bsaR mutant construction
NOB-0802	ATTACATATCGCcaTCGCATATTGCTATATTTAAC	bsaR mutant construction
NOB-0803	GCAATATGCGAtgGCGATATGTAAttttATGTATG	bsaR mutant construction
NOB-0804	GCGCggatccCACAAGCTTCTATAGCATTATC	bsaR mutant construction
NOB-0805	GGCCgtcgacGTTATAAATAGTTCAATAAAGGATG	bsaS mutant construction
NOB-0806	TATGCACTGccCGTACATACATAAAATTACATATC	bsaS mutant construction
NOB-0807	TTTATGTATGTACGggCAGTGCATAAAAATCATGG	bsaS mutant construction
NOB-0808	ATTTGGATATATTCCACCCTTAGTTG	bsaS mutant construction
NOB-0826	GGCCgtcgacCAGCATCCTCCTTATTGAAATC	srtB mutant construction
NOB-0827	CTATTCTAGCCATaatactcacctctaaataacga	<i>srtB</i> mutant construction
NOB-0828	gaggtgagtattATGGCTAGAATAGTAGTGGTAGC	<i>srtB</i> mutant construction
NOB-0829	GCGCggatccTGGGATATGAATAGGAATATGACAG	<i>srtB</i> mutant construction
NOB-1196	GGCCgtcgacAACTAAACTGGTATTTGCAATTGGA	bsaD mutant construction
NOB-1197	TAGCTTCTATTAAAGATCCATTCTTCATatttttcctcca	bsaD mutant construction
NOB-1198	aatATGAAGAATGGATCTTTAATAGAAGCTAATATATCAG	bsaD mutant construction
NOB-1199	GCGCggatccgatagatttaaatttcaaaagatcc	bsaD mutant construction
NOB-0488	GGCCGAGCTCAAGTCTAATTAAGACTTTAG	<i>bgaR-PbgaL</i> cloning
NOB-0489	GCGCGGATCCCATTTTACCCTCCCAATACA	bgaR-PbgaL cloning
NOB-0921	GCCggatccAGTAAGAAGAAAATAATAGGCTTATG	pCPO0515 construction
NOB-0903	GCGCgtcgactttcactccttgcatcatgg	pCPO0515 construction
NOB-0490	GGCCagatctATGAAAAAAGGTATAAAAAT	pCPO0514-FLAG construction
NOB-0905	GCGCgtcgacACTTTTCTTTCTTATTCCTAAATA	pCPO0514-FLAG construction
	GGCCgtcgacGATTATAAAGATGATGACGATAAAGGTTAAAAA	FLAG tag and <i>lipA</i> intrinsic terminator
NOB-0455	TTTTAATTAGGATGGAG	amplification
NOB-0456	GCGCaagcttTAAGCTATAGTATAAACAAG	<i>lipA</i> intrinsic terminator amplification
NOB-0932	GAAGAAGTTTTGCATTTATTAACTTCAGTTTTGTTAGCTC	pCPE2001 construction
NOB-0933	GCTAACAAAACTGAAGTTAATAAATGCAAAACTTCTTCAG	pCPE2001 construction
NOB-0600	GGCCtctagaGTATATAAGAAAACTTCAGC	pCPE2001 construction
NOB-0929	GGCCgtcgacTTAATGTTTTGCTTGTCCTTG	pCPE2001 construction
NOB-0916	GGCCggatccgctttgatatagctcatttttaagtg	pCPE2002 construction
NOB-0915	GCGCtctagactttttcattctaacatataagtc	pCPE2002 construction
NOB-0780	ggccggatccctacgataatttcaatattacacc	pCPE2005 construction
NOB-0914	GCGCtctagacagattatttataacatcttaagta	pCPE2005 construction
NOB-0981	GGCCgtcgacAAAAAGGTATAAAAATTTTTTATAATATTTTAT	pXCH-sipW and pXCH-sipW-bsaA
	TTTATGG	construction

Supplementary Table 3. Oligonucleotides used in this study

NOB-0982	GGCCagatctCTAACTTTTCTTTCTTATTCCTA	pXCH-sipW construction
NOB-0983	GGCCagatctTTATTTATGTGCATTAGTACCTGC	pXCH-sipW-bsaA construction
NOB-1086	CATatgcatccctccttgaatg	pXCH-pilA2 construction
NOB-1087	TCTAGATCTCATCATCATCATC	pXCH-pilA2 construction
NOB-1090	ggagggatgcatATGAATACAAAAAAAAAAAAAAAAAAAAAAAAA	pXCH-pilA2 construction
NOB-1091	atgatgagatctagaCTATTGATTATTTCTTTCATTAGTTAC	pXCH-piIA2 construction
NOB-0798	TTAACCATGGTTTTTACATCAAGTGATTCTG	pQE60-bsaA construction
NOB-0799	ATCTGGATCCTTTATGTGCATTAGTACCTGC	pQE60-bsaA construction
NOB-0910	GGCCccatggTAAATATAGCAATATGCGATGATGA	pQE60-bsaR construction
NOB-0911	GCGCggatccCATATCGCCTATTCTATTCATTAAG	pQE60-bsaR construction
NOB-0538	GAAAGGGTTCACGCTAATTG	DIG-labeled <i>pilA2</i> probe
NOB-0539	ACTGATGCTGATGTGTTTGA	DIG-labeled <i>pilA2</i> probe
NOB-0794	GAAAATAATAGGCTTATGTATAGCC	DIG-labeled bsaA probe
NOB-0795	CATTTACTGCACCATTAGCAGCTTG	DIG-labeled bsaA probe
NOB-0127	GTTTTTTAACTATACTTATAGCATTTTTAC	DIG-labeled <i>sipW</i> probe
NOB-0128	CTTCTTACTCAATTTAAATTACCTCCCAG	DIG-labeled <i>sipW</i> probe
NOB-0129	GCAATATGCGATGATGAAAAAGTCCAGCG	DIG-labeled <i>bsaR</i> probe
NOB-0130	CTTCTTCTAATGTTGCTATTTTCATATTG	DIG-labeled <i>bsaR</i> probe
NOB-0482	CGCGGAATTCTGCGTTTGCTGGCTTTGATG	5' RLM-RACE
NOB-0483	GCTGATGGCGATGAATGAACACTG	5' RLM-RACE
NOB-0494	GCGCggatccTTCCTGGCTTTATAGTAGGA	5' RLM-RACE
NOB-0591	AAGGGAATTCTTGTAATTAAGAAGGAGTGA	pMOD-2-ermBP construction
NOB-0592	AAGGAAGCTTTTTACAAAAGCGACTCATAG	pMOD-2-ermBP construction
NOB-0301	TGTTCAAGAAGTTATTAAGTCGGGAGTGC	Sequencing of transposon mutants
NOB-0302	CTTCTTTTACGTTTCCGGGTACAATTCG	Sequencing of transposon mutants

Original blots

Figure 1C

Northern blot (*bsaR* probe)

Loading control + MW marker (methylene blue staining)

Overlay (northern blot + MW marker)

Figure 2A

MW marker

Western blot (anti-BsaA)

Figure 2B

MW markerane #2-5

Western blot (anti-BsaA)

Figure 3A

Western blot (Anti-FLAG)

Western blot (Anti-PiIA2)

Supplementary Figure 1B

Agarose gel stained with ethidium bromide

Supplementary Figure 2B

Western blot (Anti-BsaA)

Western blot (Anti-BsaA)

Supplementary Figure 5C

Western blot (Anti-BsaA)

Supplementary Figure 8A

Northern blot (*sipW-bsaA* probe)

MW

Northern blot (colA probe)

MW marker

Supplementary Figure 8B, C, D

Acrylamide gel stained with ethidium bromide

Supplementary Figure 10B

MW marker Lane #2-5

Western blot (Anti-PilA2)