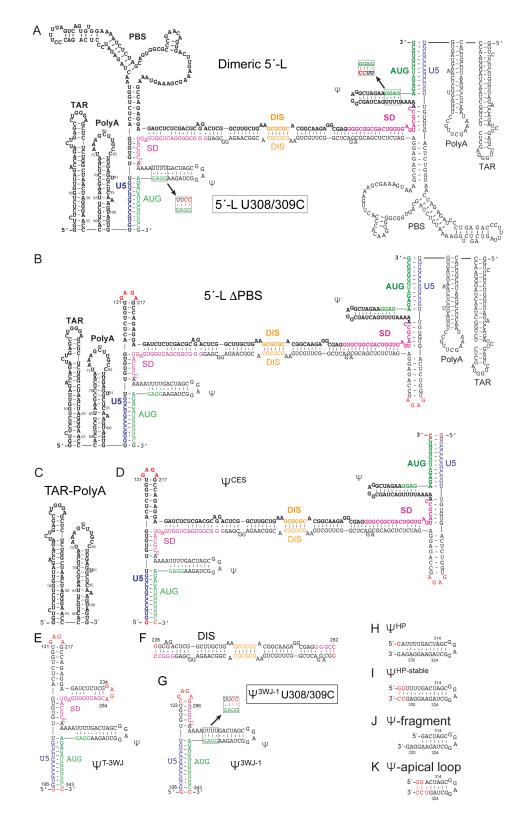
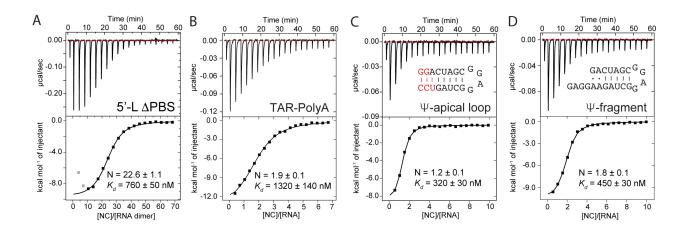
SUPPLEMENTARY MATERIALS

Identification of the initial nucleocapsid recognition element in the HIV-1 RNA packaging signal

Pengfei Ding^{a,b}, Siarhei Kharytonchyk^c, Alexis Waller^a, Ugonna Mbaekwe^a, Sapna Basappa^a, Nansen Kuo^a, Heather M. Frank^a, Christina Quasney^a, Aaron Kidane^a, Canessa Swanson^a, Verna Van^a, Mitali Sarkar^a, Emily Cannistraci^a, Ridhi Chaudhary^a, Hana Flores^a, Alice Telesnitsky^{c,1}, Michael F. Summers^{a,b,1}


^aDepartment of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21250;
^bHoward Hughes Medical Institute, University of Maryland Baltimore County, Baltimore, MD 21250;
^cDepartment of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109

1


¹To whom correspondence may be addressed. Email: <u>summers@hhmi.umbc.edu</u> or <u>ateles@umich.edu</u>

CONTENTS:

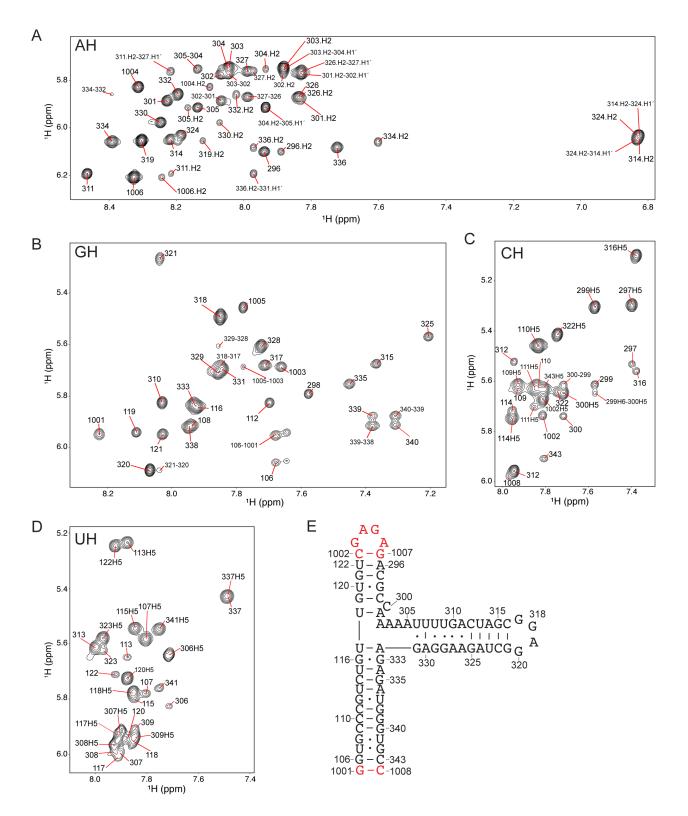

CONTAINS SIX FIGURES AND FIGURE CAPTIONS

Fig. S1. Summary of all RNA constructs used in this study. Non-native residues are shown in red.

Fig. S2. ITC data of HIV-1 5'-L constructs. (*A*) 5'-L with the PBS region deleted. The gray data points due to endothermic binding were not included in data fitting. (*B*) TAR and PolyA hairpins; (*C*) the upper stem region and the apical loop from the Ψ -stem loop; (*D*) A construct with Ψ -apical loop and a single stranded "GGAG" region.

Fig. S3. Chemical shift assignments for Ψ^{3WJ-1} . For A^H- (*A*) and G^H- (*B*) spectra, intraresidue H8-H1[′] cross-peaks are denoted by residue number; inter-residue H8-H1[′] are indicated by (residue number of H8)-(residue number of H1[′]); Intra-residue H2-H1[′] are

shown by (residue number).H2; Inter-residue H2-H1' are labeled by (residue number of H2).H2-(residue number of H1').H1'. For C^H- (*C*) and U^H- (*D*) spectra, intra-residue H6-H1' cross-peaks are denoted by residue number; inter-residue H6-H1' are indicated by (residue number of H6)-(residue number of H1'); Intra-residue H6-H5 cross-peaks are labeled by (residue number).H5; Inter-residue H6-H5 cross-peaks are indicated by (residue number of H6).H6-(residue number of H5).H5. (*E*) Secondary structure of Ψ^{3WJ-} ¹. Non-native residues are shown in red and numbered 1001-1008.

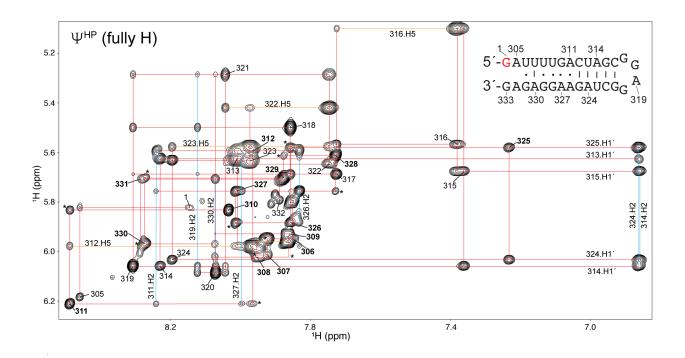
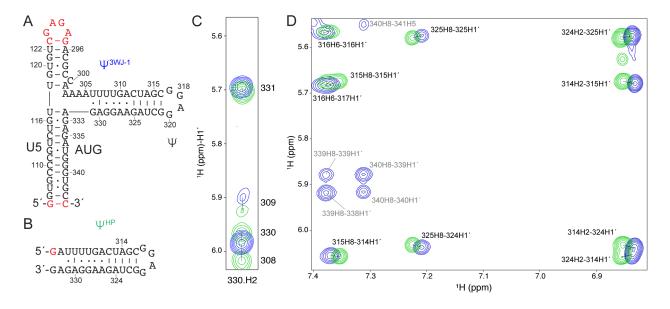
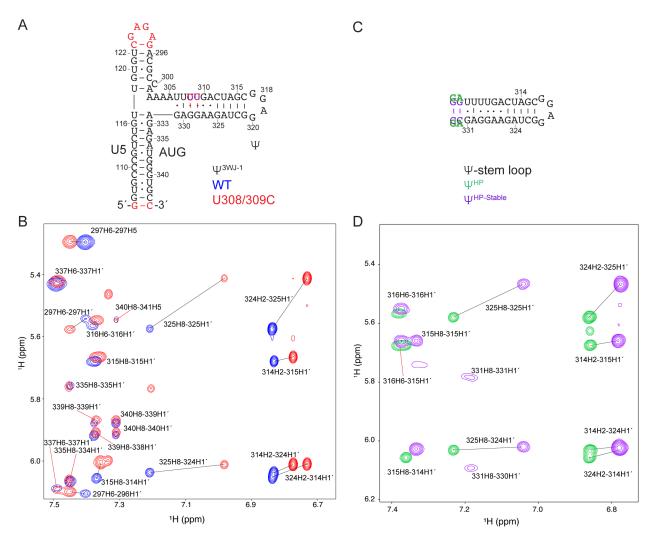




Fig. S4. Chemical shift assignments for Ψ^{HP} . Intra-residue H8/H6-H1' cross-peaks are denoted by residue number. Adenosine H2 signals are indicated by blue lines; Pyrimidine H5 signals are labeled by yellow lines. Sequential H8/H6-H1' cross-peaks for the [UUUUGAC]:[GAAGGAG] region are marked by stars.

Fig. S5. Ψ^{HP} is structurally similar to the same region in $\Psi^{3\text{WJ-1}}$. Secondary structure of $\Psi^{3\text{WJ-1}}$ (*A*) and Ψ^{HP} (*B*). Non-native residues are shown in red. (*C*) 2D NOESY spectra overly of fully protonated Ψ^{HP} (green) and $A^{2r}G^{r}U^{r}$ -labeled $\Psi^{3\text{WJ-1}}$ (blue). (*D*) 2D NOESY spectra overly of fully protonated Ψ^{HP} (green) and fully protonated $\Psi^{3\text{WJ-1}}$ (blue).

Fig. S6. Structural effects of stabilizing the [UUUU]:[GGAG] region. (*A*) Secondary structure of wild-type and G:U to G-C mutant of Ψ^{3WJ-1} . Non-native residues are shown in red. (*B*) 2D NOESY spectra overly of fully protonated wild-type (blue) and G:U to G-C mutant (red) Ψ^{3WJ-1} . (*C*) Secondary structure of Ψ^{HP} and $\Psi^{HP-stable}$. (*D*) 2D NOESY spectra overlay of fully protonated Ψ^{HP} (green) and $\Psi^{HP-stable}$ (purple).