PNAS Template for Supplementary Information

This PNAS template for Supplementary Information (SI) may be used to organize your supplementary material. **Once formatted, this first page should be deleted.** The template is intended to provide a clearly organized SI Appendix PDF file that will ensure readers can easily navigate to sections or specific figures and tables. Movie files or large datasets can be presented as separate files. Further information is available in our Information for Authors.

Using the Template

Paste the appropriate text (title, author list, and corresponding authors) into the cover page). You may maintain this formatting, or reapply the styles after pasting your text into the template. On the cover page, complete the relevant description of the SI (by deleting text that does not apply).

Figures should be placed on separate pages with legends set immediately below each figure. Table titles should be set immediately above each table. Note that tables extending beyond the width of the page can be included in the PDF; nonstandard page sizes are accepted as part of your SI Appendix file.

References cited in the SI Appendix should be included in a separate reference list at the end of this file.

Submitting SI

Delete this first page, and then save your completed SI Appendix file as a PDF for submission, following instructions available here.

Updated June 2019

Supplementary Information for

Robustness of plant quantitative disease resistance is provided by a decentralized immune network

Florent Delplace^{a,1}, Carine Chauveau^{a,1}, Ullrich Dubiella^{a,b}, Mehdi Khafif^a, Eva Alvarez^a, Gautier Langin^a, Fabrice Roux^a, Rémi Peyraud^{a,c} and Dominique Roby^a

Dominique Roby Email: Dominique.roby@inrae.fr

This PDF file includes:

Supplementary text Figures S1 to S13 Tables S1 to S4 Legends for Dataset S1 and S2 SI References

Other supplementary materials for this manuscript include the following:

Dataset S1 Dataset S2

Supplementary Information Text

Material and methods.

Plant growth and bacterial inoculation.

Arabidopsis thaliana Col-0 accession was grown on Jiffy pots in a growth chamber at 22 °C with a 9-h photoperiod at 192 µmol m-2 s-1. 4 week-old plants were used for experiments. Arabidopsis T-DNA insertion mutant lines were obtained from the Nottingham Arabidopsis Stock Centre. Homozygous lines were identified by PCR genotyping to precise the T-DNA insertion site (Table S3). The inoculation tests were done with the strain LMG568/ATCC33913 (*Xcc568*) (1) carrying the LUX operon of *Photorhabdus luminescens* (2) and *Xcc568* Δ XopAC (kindly provided by L. Noel). Bacterial cultures of *Xcc568* were done at 28°C on Kado medium supplemented with 50 mg/mL rifampicin and 25 mg/mL kanamycin and Kado medium supplemented with 50 mg/mL rifampicin for *Xcc568* Δ XopAC.

Constructs and plant transformation

The *RKS1-OE* construct was performed by amplification of the *RKS1* coding sequence (AT3G57710) using [attB1F-710 + attB2R-710] as primers (Table S4). PCR products were cloned in pDONR207 and transferred into the T-DNA binary vector pBIN19 using the Gateway technology (Invitrogen) for *Agrobacterium*-mediated transformation of Arabidopsis Col-0 using the floral dip transformation (3). Harvested seeds were spread on MS medium containing 50 µM of Kanamycin for selection of transgenic plants. C-terminal fusion of RKS1 with GFP was accomplished using a multisite Gateway cloning strategy (Invitrogen) described previously (4). RKS1 was amplified from cDNA using [attB1_RKS1 + attB4_RKS1] (Table S4) and recombined into the multisite Gateway entry vector pBSDONR P1-P4. YFP was cloned into the entry vector pBS-DONR P4-P2. To fuse RKS1 with eGFP both vectors were mixed with either the 35S plant expression vector pEarleyGate100 (5) and recombined with LR clonase II (Invitrogen). The catalytic RKS1 mutant was generated using RKS1_D191A_fw and RKS1_D191A_rev as primers (Table S4). For transient expression assays, *Agrobacterium* strain GV3101 or C58C1 carrying the corresponding construct

was used. Arabidopsis seedlings were transformed according to Marion *et al.* (6). Overnight cultures of *Agrobacterium tumefaciens* were resuspended in 2 ml of 5% sucrose supplemented with acetosyringone (200 μ M). Then one week-old seedlings were vacuum-infiltrated. with the *Agrobacterium* solution.

Fluorescence microscopy

Fluorescence images were acquired using a Leica SP8 confocal microscope equipped with a water immersion objective lens (x 25, numerical aperture 1.20; PL APO). GFP and YFP fluorescence was excited with the 488 nm ray line of the argon laser or the 561 nm ray line of the He-Ne laser respectively. The emission recording bands were set in the 505 to 530 nm range for GFP detection and 520 and 580 nm range for YFP detection. CFP fluorescence was excited with the 458 nm ray line of the argon laser and recorded in the 465–520 nm emission range. Image acquisition was done in the sequential mode using Leica LCS software and analyzed using the ImageJ software. Representative confocal images are shown after histogram normalization. Two fluorescent protein fusion constructs were used that mark different subcellular compartments have been used: MIEL1:CFP as a subcellular marker of the cytoplasm and nucleus of Arabidopsis cells (7) and SYMREM as a subcellular marker of the plasma membrane (8).

Yeast Two-Hybrid screening

To identify proteins interacting with RKS1, RKS1_{D191A} were amplified using [attB1_RKS1 + attB2R-710-stop] cloned into pGBKT7 using Gateway technology (Invitrogen). RKS1_{D191A} was used to increase our chances to identify RKS1 interactors, as a mutation of the phosphate transfer site in active kinases is considered to be a substrate trap and has been shown to stabilize interactions with their substrates. A hybrid screen was performed (2 rounds) in the yeast *Saccharomyces cerevisiae* (strain AH109), from a cDNA library made in the vector pGADT7 from *Arabidopsis thaliana* leaves infected with the strain *Xcc147* (9). The screens were performed following the protocol described previously by Gietz and Schiestl (10). The transformed yeasts were selected on SD / -Leu / -Trp / -His solid medium (1st round) and on the same medium with 25 mM 3AT (3-amino-1, 2,4-triazole) (2nd round). Then the protein interactions were demonstrated using a more stringent medium, SD / -Leu / -Trp / -His / -Ade.

Plant phenotyping

After one night under high humidity conditions (9h light/15h dark and 90% relative humidity, 4 weekold plants were inoculated by piercing with a *Xcc568* bacterial suspension of 2.10₈ colony forming units (CFU).mL-1. We performed a scoring of the symptoms as already described (11). Each line was tested in at least three separate experiments where Col-0 and the *rks1-1* mutant were inoculated as controls. *In planta* bacterial growth analysis (colony forming unit (CFU)/cm₂ expressed in a log10 scale) was performed as described by Froidure et al. (9). Because *Xcc* is a vascular bacterium, bacterial growth was measured 0 and 7 days after inoculation by piercing with *Xcc* strain 568, at distance from the inoculation zone (at the tip of the inoculated leaves). Data were collected from three independent experiments, each time point corresponds to 6 independent measurements, each on 3–5 individual plants (four leaves/plant). At the inoculation site (basis of the inoculated leaves), bacterial growth was measured and found similar among the different lines.

RNA extraction and Quantitative Real-Time PCR analysis

Total RNA was isolated using the NucleoSpinRNA Plus kit from Macherey-Nagel following the manufacturer's instructions. Purified RNA was quantified with Nanodrop and quality control was done using Agilent. Quantitative RT-PCR analysis was performed as described (9). The housekeeping gene *MON1* (AT2G28390), *PR1* (AT2G14610), *RKS1* and *MPK3* (AT3G45640) (Table S4) genes were used to control the reproducibility between the 3 transcriptomic experiments. cDNA synthesis was performed using 1.5 µg of total RNA and the Roche Transcriptor Reverse Transcriptase (Roche diagnostics GmbH (Mannheim, Germany) according to the manufacturer's instructions. Results were analyzed using the LC480 on-board software, release version 1.5.0.39. The real-time PCR was conducted with at least five experimental replicates for each biological sample. Statistical analyses for Q-PCR were performed with the Wilcoxon test. Groups were defined for different lines as compared to Col-0.

Protein extraction and western blotting

Total protein was extracted using the Laemmli buffer from 4-week leaves and separated on SDS-PAGE (12). For detection of tagged proteins, blots were incubated with rabbit anti-GFP antibody (AMS Biotechnology, [1:5,000]) and goat anti-rabbit IgG HRP coupled secondary antibody (Millipore, [1:20,000]). Proteins were visualized using the Clarity Western ECL substrate kit (Bio-Rad).

Transcriptomic analyses

Arabidopsis plants mis-expressing *RKS1* (*AT3G57710*) (*rks1-1*, *RKS1-si24* and *si15* lines (13) *RKS1-OE1* and *OE2* lines were used. Three independent experiments were performed. Each replicate included 96 plants: 6 plants per line, 4 lines (*rks1-1*, *RKS1-OE1*, *RKS1-si24* and Col-0) and 4 time points (0, 1.5, 3 and 6 hours post-inoculation). For inoculation, 5 leaves per plant were infiltrated with a blunt-ended syringe containing the bacterial suspension of *Xcc568* at 2.10⁸ colony forming units (CFU).mL-1.

Samples were sequenced by Fasteris on an Illumina HiSeq 2500 instrument using a base calling pipeline integrating HiSeq Control Software 2.0.5, RTA 1.17.20.0 and CASAVA-1.8.2. A single

HiSeq 2500 Flow cell (v3) was used with the kit TruSeq SBS Kit v3 in order to generate stranded single reads of 100nt. The three replicates were sequenced on three different lanes. The total number of raw reads ranged from 3,471,313 to 45,251,051 (Dataset S1). Reads were mapped on Col-0 genome downloaded from TAIR (https://www.arabidopsis.org/) using the glint software (http://lipm-bioinfo.toulouse.inrae.fr/download/glint/ release glint-1.0.rc6) with parameters set as follows: matches \geq 50 nucleotides, with \leq 3 mis-matches, no gap allowed, only best-scoring hits taken into account (--lmin 50 --mmis 3 --best-score --no-gap -C 0). Ambiguous matches (same best score) were removed. Bedtools (2010) were used to compute counts at the gene level (gene models version: TAIR10_GFF3_genes.gff) taking into account the strand (intersectBed –f 0.8 -s). The number of unambiguously mapped reads that span gene models ranged from 3,293,054 to 41,653,761 (Dataset S1). Raw and normalized RNAseq data have been deposited in the SRA database (accession number SRP233656).

Statistical analyses

We used the software R version 3.4.2 (2017-09-28) and gene counts were normalized using edgeR_3.16.5 limma_3.30.0 package. A Principal Component Analysis (PCA) on the 33,602 genes was performed using the ade4 1.7-6 version package in the R environment. To identify the main drivers of global change of expression across the genome, we ran the following model under the SAS environment with inference performed using REML estimation (PROC MIXED procedure in SAS9.3, SAS Institute Inc.) for each of three first Principal Components (PCs):

 $Y_{ij} = \mu_{trait} + line_i + time_j + line_i^*time_j + \varepsilon_{ij}$

where 'Y' corresponds to the coordinates of all the samples on one of the three PCs, ' μ ' is the overall mean; 'line' accounts for differences among *A. thaliana* lines; 'time' accounts for differences among the four time points; ' ϵ ' is the residual term. The variance explained by each of the three model terms was estimated based on variance components estimated by REML (PROC VARCOMP procedure in SAS 9.3, SAS Institute Inc.), For each time point, the 'line' effect on global change of expression was tested with the following model: Y_i = μ trait + line_i + ϵ_i

Genes deregulated in their expression after *Xcc568* inoculation were identified using a hypergeometric test with a significance threshold of 0.05 after a Benjamini and Hochberg FDR correction. GO annotation analysis on gene and classification were done using using BINGO module form Cytoscape.

Comparison of kinetics of disease scores. We fitted the temporal relation between the disease index of Col-0 and each tested mutant. We fitted the temporal relation of disease index between the tested mutant and Col-0 by a second order polynomial. Kinetics of disease index were considered similar if the coefficient of the second order terms was not significantly different from 0 and if the slope was not significantly different from 1. P-value numbers represent kinetic modeling

deference with Col-0, 0 = p-value>0.05 and 1= p-value<= 0.05. The fit and statistical testes were implemented in R (https://www.R-project.org/) and based on the Im library.

Network reconstruction

Interactors of the 268 co-regulated genes and the 41 potential interactors of RKS1_{D191A} identified by Yeast Two Hybrid screens were recovered from Arabidospis BioGRID protein interaction datasets version 3.5.179 (14). Each interaction was manually verified and curated with UniProtKB databases (Swiss-Prot or TrEMBLversion 01-2019). To increase the robustness of the network, a protein-protein localization-based filter was performed. 1886 protein-protein interactions were conserved corresponding to proteins described in the same or associated sub-cellular compartment. Protein-Protein Interactions were plotted with Cytoscape software v3.7.2. GO annotation analysis on gene and classification were done using BINGO module from Cytoscape. Using BINGO classification, each protein was attributed to a functional group. Expression classes were recovered for the 268 co-regulated genes and plotted in the network. Network connectivity was calculated using Cytoscape.

Fig. S1. Characterization of the *RKS1* overexpressing lines used in this study. Expression analysis of *RKS1* gene (A) by quantitative RT-PCR in the *RKS1-OE1* and *RKS1-OE2* lines, as compared to the *RKS1-si15* and *-si24* lines, the *rks1-1* mutant and the wild-type Col-0; (B) by Western blot analysis using YFP antibodies in the *RKS1-OE1* and *RKS1-OE2* lines, as compared to the wild type Col-0. On the 1st line, the protein ladder (Thermofisher) with the molecular weight (MW) of the proteins is indicated. Ponceau S staining of total protein transferred to the nitrocellulose membrane (bottom) demonstrates sample loading.

Α

Line		Dis	sease ir	ndex		_	Standard deviation				nb exp	nb plants	Diff	Intercept	ilCl	iUCI	Slope	sLCI	sUCI
	3 dpi	5 dpi	6 dpi	7 dpi	10 dpi	3 dpi	5 dpi	6 dpi	7 dpi	10 dpi	· •	·			-				
Col	0	0.16	0.40	0.63	0.85	0	0	0	0	0	3	12							
rks1-1	0.04	1.19	1.52	1.94	2.60	0	0.1	0.1	0.1	0	3	12	1	0	0	0	2.77	1.76	3.79
RKS1- <i>si15</i>	0.01	0.69	0.99	1.26	2.15	0	0	0	0	0	3	18	1	0	0	0	2.33	1.87	2.79
RKS1- <i>si24</i>	0.07	0.46	1.33	1.65	2.14	0	0	0.1	0.1	0.1	3	18	1	0	0	0	2.34	1.58	3.09
RKS1- <i>OE1</i>	0	0	0	0	0.17	0	0	0	0	0	3	18	1	0.55	0.06	1.04	-0.30	-0.69	0.10
RKS1-OE2	0	0	0	0.01	0.07	0	0	0	0	0	3	18	1	0.20	0.11	0.30	-0.10	-0.17	-0.02

Fig. S2. Analysis of RKS1-deregulated transgenic lines in response to *Xcc568*. (A) Disease index at 3, 5, 7 and 10 days post-inoculation and statistical data. (B) Bacterial growth measurement (colony forming unit (CFU)/cm2 expressed in a log10 scale) in leaves of the wild type accession Col-0 and the different *RKS1* transgenic or mutant lines. Bacterial growth has been measured 0 (grey bars) and 7 (black bars) days after inoculation with *Xcc568* at distance from the inoculation zone (at the tip of the inoculated leaves) with a bacterial suspension adjusted to 10_9 CFU/mL. Data were collected from three independent experiments, each timepoint corresponds to measurements on 3–5 individual plants (four leaves/plant). Statistical analysis was performed using the non-parametric T-test with Welch correction and bacterial growth of Col-0 at day 0 or day 7 as reference.

В

Fig. S3. Principal Component Analysis performed on the RNA-seq dataset of 33602 genes. (A) Eigenvalues distribution showing the relative importance of the Principal Components (PCs). (B) Plot of the PCA axis 1 vs the PCA axis 2. Each symbol indicates one genotype (Δ correspond to Col-0 line, \diamond to *rks1-1* mutant, \Box to *RKS1-si24* line and \circ is RKS1-OE1) and each timepoint is illustrated by a different color (blue for T0, grey for T1.5, green for T3 and red for T6). (C) Plot of the PCA axis 1 vs the PCA axis 2. vs the PCA axis 3. Values in brackets correspond to variance explained by each of the three PCs.

Fig. S4. Genes differentially expressed at different hours post-inoculation with *Xcc568* compared with those expressed in the wild type at the same time points. Red bars indicate up-regulated genes, blue bars indicate down-regulated genes.

Class	Gene	Number of	Number of genes validated *				
	class	RT-qPCR	RNA-seq material	RNA-seq material + independent experiment + additional lines			
UDD	55	8	8	6 - 7			
ØDD	117	10	9	5			
DUU	26	9	6	5 - 7			
ØUU	70	7	4	3			

* Genes were considered as validated if expression profiles (determined by using a Wilcoxon statistical test performed on qPCR gene expression data) obtained by Quantitative RT-PCR analyses using RNA extracts from the samples from transcriptomic experiments (left column) or using an independent experiment and additional lines (right column) belonged to the same regulation class. Gene numbers indicated in the last column correspond to genes validated in the 6 *RKS1* lines (first number), or in 5/6 *RKS1* lines (second number).

В

Α

Fig. S5. Quantitative RT-PCR analysis of the expression profiles of genes belonging to the different regulation classes: UDD (Up-regulated in *RKS1-OE1* line, down regulated in *RKS1-si24* and in *rks1-1* lines), ØDD (not affected in *RKS1-OE1* line, down regulated in *RKS1-si24* and in *rks1-1* lines), DUU (down-regulated in *RKS1-OE1* line, up-regulated in *RKS1-si24* and in *rks1-1* lines) and ØUU (not affected in *RKS1-OE1* line, up-regulated in *RKS1-si24* and in *rks1-1* lines). (A) Number of genes validated as compared to the RNA-seq data (as described in *). (B) Statistical relationship between RNA-seq data and RT-qPCR data obtained on 33 genes (3 values per line and 4 lines (Col-0, *RKS1-OE1*, *rks1-1* and *RKS1-si24*)) estimated by Pearson and Spearman correlation tests from R commander (p-value< 0.05). Coefficient of correlation of Pearson = 0.862987; coefficient of correlation of Spearman= 0.8231565.

	St 40 W			
GOLID	V ^V V ^V Description - Biological Process			
9987	cellular process			
50896 42221	response to stimulus response to chemical			
51716 10033	cellular response to stimulus response to organic substance			
70887 9719	cellular response to chemical stimulus response to endogenous stimulus			
9725 71310	response to hormone cellular response to organic substance			
32870 71495	cellular response to hormone stimulus cellular response to endogenous stimulus			
10035	response to inorganic substance			
10038	response to metal ion resonne to cadmium ion	Pananaasta		
9636	response to toxic substance	Reponses to		
48878	chemical homeostasis	stimuli		
55080	cation homeostasis			
97306	cellular response to alcohol			
72503	cellular divalent inorganic cation homeostasis			
72507 30026	divelent inorganic cation homeostasis cellular manganese ion homeostasis			
32868 32869	cellular response to insulin stimulus		Cellular	
43434 71375	response to peptide hormone cellular response to peptide hormone stimulus	-	-	
1901652 1901653	response to peptide cellular response to peptide		responses	
17085 46580	response to insecticide response to DDT	1		
7154 7165	cell communication signal transduction			
23052 9755	signaling hormone-mediated signaling pathway			
48583	regulation of response to stimulus			
7167	enzyme linked receptor protein signaling pathway			
80134	regulation of respect protein semicir and the signaling path tigging devicement	Signaling and		
9966	regulation of signature visition	Signaling and		
23051	regulation of signaling	regulation of		
2831 9738	egulation of response to biotic stimulus abscisic acid-activated signaling pathway	cellular process		
3002 7169	regionalization transmembrane receptor protein tyrosine kinase signaling pathway			
7389 43269	regulation of ion transport			
7264 2000070	small GTPase mediated signal transduction regulation of response to water deprivation			
80148 43068	negative regulation of response to water deprivation positive regulation of programmed cell death			
16043 16192	cellular component organization vesicle-mediated transport			
22607 46907	cellular component assembly intracellular transport			
61024 34622	membrane organization cellular protein-containing complex assembly			
61025	membrane fusion vesicle organization			
48284	organelle fusion vesicle fusion			
32940	secretion by cell			
90174	organelle membrane fusion	Vesicle-mediated		
6887	exceptors	transport		
51049	regulation of transport	transport		
6555	encopiesmic reticulum to Goigi vesicle-mediated transport autophagy			
6997 61919	nucleus organization process utilizing autophagic mechanism			
422 43248	autophagy of mitochondrion proteasome assembly			
61726 1903008	mitochondrion disassembly organelle disassembly		Tuonon out	
32509 48268	endosome transport via multivesicular body sorting pathway clethrin coat assembly		_ Transport	
71985 51179	multivesicular body sorting pathway localization			
51234 6810	establishment of localization transport			
71702	organic substance transport nitrogen compound transport			
33036 8104	macromolecule localization protein localization			
15031	protein transport peptide transport			
42886	amide transport establishment of protein localization	Establishment of		
51641	cellular localization	localization		
34613	cellular protein localization	1000112011011		
70727	cellular macromolecule localization			
34220	ion transmembrane transport			
7034	vacuolar transport			
10541	protein complex orgomerization acropetal auxin transport	1		
8152 44237	cellular metabolic process			
19538 6464	cellular protein modification process			
36211 44267	protein modification process cellular protein metabolic process			
9056 44248	catabolic process cellular catabolic process			
6308 46777	proteolysis protein autophosphorylation	Protein		
44265 30163	cellular macromolecule catabolic process protein catabolic process	motobaliam		
44237	cellular protein catabolic process proteolysis involved in cellular protein catabolic process	metabolism		
6511	ubiquitin-dependent protein catabolic process			
43632	modification-dependent macromolecule process protessimal protein devices and a second process			
9407	toxin catabolic process			
10731	processorial using international protein catabolic process	1	– ivietabolism	
71704	organic substance metabolic process organic substance metabolic process			
19748	secondary metabolic process			
5996 51186	monoseccharide metabolic process cofector metabolic process			
9404 6375	toxin metabolic process cellular modified amino acid metabolic process	Small molecule		
6749 9808	glutathione metabolic process lignin metabolic process	martal - P		10
97 46364	sulfur amino acid biosynthetic process monosaccharide biosynthetic process	metabolism		12
9225 9226	nucleotide-sugar metabolic process nucleotide-sugar biosynthetic process			
9809 19321	lignin biosynthetic process pentose metabolic process			
6535 46482	cysteine biosynthetic process from serine para-aminobenzoic acid metabolic process	I	0 10'5	10 ⁻¹⁰ p-value adjusted

Fig. S6. Gene ontology analyses on the 268 co-regulated genes reveal multiple gene functional modules.

The analysis was conducted by using BINGO module from Cytoscape software. GO process annotation were recover for 232 genes and for genes down-regulated in *RKS1si24* and in *rks1-1* lines (XDD) and genes up-regulated in *RKS1-si24* and in *rks1-1* lines (XUU). The heatmap shows the overrepresentation significance (p-value<0.05) of GO biological process terms across the different classes. The lines highlight GO terms participating in same process.

Dong et al.,2015 Hatsugai et al.,2017 Mine et al., 2018 26 26 26 26 26 1 28 143 0 11 1 0 3

В

23 Common genes between the 268			30 Common g	genes between the 268	12 Common genes between the 268			
DEGs	and PTI genes		DEGs	and ETI genes	DEGs, and PT	I and ETI gene lists		
Accession	Gene		Accession	Gene	Accession	Gene		
number	description		number	description	number	description		
AT5G44572	Transmembrane		AT5G01380	Homeodomain-like	AT2G29320	NAD(P)-binding		
	protein			protein		protein		
AT1G74940	DUF581		AT4G26470	EF-hand protein	AT2G44380	Cys/His-rich protein		
AT2G30740	Protein kinase		AT1G24350	Acid phosphatase	AT3G57090	BIGYIN		
AT2G44210	DUF239		AT4G37030	Membrane protein	AT2G45770	CPFTSY		
AT5G61520	Major facilitator		AT5G64850	sorbin/SH3 protein	AT3G48740	SWEET11		
	protein							
AT2G45920	U-box protein		AT2G29670	TPR-like protein	AT4G22710	CYP706A2		
AT3G03320	RNA-binding protein		AT5G07910	LRR protein	AT2G47730	GSTF8		
AT2G47000	ABCB4		AT2G18193	Hydrolase protein	AT4G39050	KIN7.4		
AT4G00710	BSK3		AT5G62890	Xanthine permease	AT1G65610	KOR2		
AT2G38170	CAX1		AT1G70490	ARFA1D	AT2G38360	PRA1.B4		
AT1G75270	DHAR2		AT5G63880	VPS20.1	AT4G25230	RIN2		
AT5G54650	Fh5		AT1G66600	WRKY63	AT2G15480	UGT73B5		
AT3G52930	FBA8		AT5G20910	AIP2				
AT4G14630	GLP9		AT2G22470	AGP2				
AT1G33240	GTL1		AT5G11520	ASP3				
AT4G32980	ATH1		AT4G21980	G8A				
AT4G27730	OPT6		AT2G32210	HCYSTM6				
AT1G65390	PP2-A5		AT2G30770	CYP71A13				
AT3G45780	PHOT1		AT2G34500	CYP710A1				
AT3G11330	PIRL9		AT3G12620	PP2C.D3				
AT5G47200	RAB1A		AT2G30550	DALL3				
AT5G07250	RBL3		AT2G31570	GPX2				
AT3G04670	WRKY39		AT1G78380	GSTU19				
			AT2G29460	GSTU4				
			AT5G02780	GSTL1				
			AT3G17420	GPK1				
			AT4G32190	PII1				

Fig. S7. Identification within the 268 DEGs of genes previously associated with gene networks of PTI or ETI immune responses (Dong *et al.*, 2015; Hatsugai *et al.*, 2017; Mine *et al.*, 2018). Venn diagrams established with the 268 DEGs identified in this study and (A) the PTI genes and (B) the

PUP21

RGLG2

WIT1

AT4G18205

AT5G14420

AT5G11390

ETI genes previously identified. (C) Accession numbers and description of genes found in common between the 268 DEGs identified in this study and the PTI (left), ETI (center) and PTI and ETI (right) genes.

Fig. S8. RKS1 localizes in the nucleus, the cytoplasm and the plasma membrane. Confocal images of epidermal cells of Arabidopsis seedlings 72 h after Agrobacterium mediated transient expression of the indicated constructs. We used RKS1 and a mutated version of RKS1 (RKS1^{D191A}) fused to the GFP. MIEL1:CFP was used as a subcellular marker of the cytoplasm and nucleus of Arabidopsis cells (6), CFP:MtSYMREM as a subcellular marker of the plasma membrane (7). Co-localization of RKS1 or the mutated version of RKS1 with 16 the two subcellular markers is shown in the merge panel (right). Scale bars= 20µM.

Fig. S9. Analysis of the network connectivity. (A) Number of genes by connectivity. RKS1 is the 7th top hub in the network with 44 connections. (B) Percentage of the genes by connectivity distributed in the 5 functional groups.

Fig. S10. Molecular and phenotypic analysis of insertional mutants corresponding to genes belonging to functional modules of the *RKS1* dependent network.

(A) Mutant lines, corresponding gene accessions and mutant phenotypes after inoculation with a bacterial suspension of *Xcc568* adjusted to 2.10⁸ cfu/mL. A heatmap highlights time course evaluation of mutant disease index as compared to the wild type (Col-0) disease index. Disease symptoms were observed on leaves of mutant and wild-type plants at 3, 5, 7 and 10 days post-inoculation (dpi). Means were calculated from 4–24 plants. Green represents disease index significantly reduced as compared to Col-0 (more resistant), Red represents disease index

significantly increased as compared to Col-0 (more susceptible) and white, not significantly different from Col-0. P-value numbers represent kinetic modeling deference with Col-0, 0 = p-value>0.05 and 1= p-value<= 0.05. The phenotype is indicated as R (resistant), S (susceptible) or WT (not significantly different from Col-0). For each mutant, location of the T-DNA insertion was determined by sequencing and indicated (5'UTR, ORF or 3'UTR regions, T-DNA genome insertion site). Gene expression was evaluated by RT-qPCR in the mutant plants, and indicated as + (increased in the mutant as compared to Col-0), - (decreased in the mutant as compared to Col-0) and by = (not affected in the mutant as compared to Col-0) in the last column. Statistical analysis was performed by comparing the kinetic of the average disease index of each mutant to the kinematic of the average disease index of Col-0 (see Material and Methods section) and * indicates that gene expression is significantly different in the mutant as compared to Col-0 (p-value ≤ 0.05). RT-qPCR was performed with primers downstream the T-DNA insertion except for mutants mentioned by ^a. (B and C) Time course evaluation of mutant phenotype in response to inoculation with *Xcc*, according to their "phenotype class" susceptible (B) or resistant (C). *rks1-1* phenotype is represented in purple.

A

		Disease	e index		Stan	dard de	viations	s									
Line	3 dpi	5 dpi	7 dpi	10 dpi	3 dpi	5 dpi	7 dpi	10 dpi	nb_exp	nb_plants	Diff	Intercept	iLCI	iUCI	Slope	sLCI	sUCI
dde2-2	0	0	0	0.45	0	0	0	0.1	2	10	1	3.30	2.69	3.91	-0.34	-0.61	-0.08
ein2-1	0	0	0.07	0.21	0	0	0	0.1	3	18	1	0	0	0	0.50	0.39	0.61
pad4-1	0	0.03	0.12	0.24	0	0	0	0.1	3	19	1	-1.82	-2.46	-1.18	1.34	1.05	1.62
sid2-2	0	0.01	0.12	0.43	0	0	0	0.1	3	19	0	0	0	0	1.03	0.94	1.12
dde2-2/ein2-1	0	0	0.05	0.10	0	0	0	0.0	2	10	1	0	0	0	0.24	0.11	0.36
dde2-2/sid2-2	0	0.05	0.41	0.82	0	0	0.1	0.1	2	11	0	0	0	0	1.92	0.96	2.88
dde2-2/pad4-1	0	0	0.05	0.22	0	0	0	0.1	3	15	1	0	0	0	0.52	0.46	0.58
ein2-1/pad4-1	0	0.02	0.06	0.24	0	0	0	0.1	3	18	1	0	0	0	0.57	0.54	0.60
dde2-2/ein2-1/sid2-2	0	0	0.03	0.10	0	0	0	0.0	2	10	1	0	0	0	0.24	0.21	0.27
dde2-2/ein2-1/pad4-1	0	0	0	0.13	0	0	0	0.0	2	10	1	0.92	0.75	1.09	-0.10	-0.17	-0.02
dde2-2/pad4-1/sid2-2	0	0	0	0.15	0	0	0	0.0	2	10	1	1.10	0.90	1.30	-0.11	-0.20	-0.03
ein2-1/pad4-1/sid2-2	0	0	0	0.08	0	0	0	0.0	2	10	1	0.55	0.45	0.65	-0.06	-0.10	-0.01
quadruple	0	0	0	0.05	0	0	0	0.0	2	11	1	0.33	0.27	0.39	-0.03	-0.06	-0.01
Col-0	0	0.03	0.10	0.42	0	0	0	0.1	3	29							
rks1-1	0	0.26	0.69	1.73	0	0.1	0.2	0.2	3	32	1	-8.20	-14.66	-1.74	7.50	4.66	10.34
Kas-1	0	0.65	1.60	2.87	0	0.1	0.2	0.2	3	15	1	-27.47	-45.60	-9.33	18.28	10.30	26.26

Fig. S11. Analysis of mutant lines described to impair PTI/ETI networks in response to *Xcc568*. (A) Disease index at 3, 5, 7 and 10 days post-inoculation and statistical data. (B) Evaluation of disease index 10 dpi after inoculation with a bacterial suspension adjusted to 2.10^8 cfu/mL. Means and standard errors were calculated from 10-32 plants in two or three independent experiments. * represent kinematic modeling deference with Col-0 time course. 0 = p-value> 0.05 and 1 = p-value= 0.05.

Α

Fig. S12. Analysis of resistance phenotypes of *RKS1* mutant or transgenic lines and of DEG expression profiles in response to *Xcc568* and *Xcc568* Δ *XopAC*. (A) Disease index at 7 dpi after inoculation of *rks1-1, zar1-2, RKS1-OE1* and the wild-type accession Col-0 with a bacterial suspension of *Xcc568* Δ *XopAC* strains adjusted to 2.10⁸ cfu/mL. Means were calculated from 8– 10 plants on 2 independent experiments. * represents kinetic modeling deference with the corresponding Col-0 (Col-0_*Xcc568* Δ *XopAC*) time course, * = p-value≤0.05. (B) Analysis by quantitative RT-PCR of the expression profile for 8

specific genes, 6 hours after inoculation in *RKS1-OE1* and the WT leaves inoculated with *Xcc568* or *Xcc568*Δ*XopAC* (2.10⁸ cfu/mL). Each gene corresponds to a DEG expression class or RKS1 network component: *WRKY67 and IAR3* (class UDD), *ERL2* (ØUU class), *MYB3R5* (ØDD class), *AT4G14815*, *AT3G26340* and *BRI1* as components of the RKS1 dependent network, EFR as Yeast Two Hybrid candidate. The 4 genes *WRKY67*, *IAR3*, *ERL2* and *MYB3R5* present a XopAC expression profile independent of the presence of XopAC, while *AT4G14815*, *EFR*, *AT3G26340* and *BRI1* exhibit a XopAC-dependent expression profile. Statistical groups were generated with the Wilcoxon test, based on 6 plants/strain/line. (C) Analysis by quantitative RT-PCR of the expression profile for 8 specific genes, 6 hours after inoculation in Col-0, *rks1-1* and *zar1-2* inoculated with *Xcc568* (2.10⁸ cfu/mL). Each gene corresponds to a DEG expression class or RKS1 network component: *IAR3* (class UDD), *CYSD2* and *ERL2* (ØUU class), *RGLG2* and *MYB3R5* (ØDD class), *ALDH2* and *ZAR1* as components of the *RKS1* dependent network, *EFR* as a Yeast Two Hybrid candidate. Statistical groups were generated with the Wilcoxon test, based on 6 plants/strain/line.

Fig. S13. Analysis of resistance phenotypes of two mutants corresponding to genes of the RKS1dependent network in response to *Xcc568* and *Xcc568* Δ *XopAC*. (A) Disease index of *rks1-1*, *154*, *169* mutants and the WT at 7 dpi with a bacterial suspension of *Xcc568* or *Xcc568* Δ *XopAC* (2.10⁸ cfu/mL). Data were collected from three independent experiments. Means were calculated from 8–10 plants on 2 independent experiments. * represents kinetic modeling deference with the corresponding Col-0 (Col-0_*Xcc568* or Col-0_*Xcc568* Δ *XopAC*) time course, * = p-value≤ 0.05. (B) Bacterial growth measurement in leaves of the WT and the mutants *rks1-1*, *154 and 169*. Bacterial growth has been measured 7 dpi with *Xcc568* at distance from the inoculation zone (at the tip of the inoculated leaves) with a bacterial suspension adjusted to 2.10⁸ CFU/mL. Data were collected from three independent experiments, each timepoint corresponds to measurements on 3–5 individual plants (four leaves/plant). Statistical analysis was performed using the parametric test ANOVA and bacterial growth of Col-0 at day 0 as reference.

Table S1. Effects of genetic line and time on global change of expression across the genome. (A) Complete model. Var Expl : variance explained by each model term (expressed in percent). (B) Reduced model for each time point.

Α	PCA axis 1 (24.6%)		PCA	A axis 2 (17	.5%)	PCA	PCA axis 3 (10.6%)			
Terms	F	Р	Var Expl (%)	F	P	Var Expl (%)	F	Р	Var Expl (%)	
Line	7.8	6.1E-04	0.9	3.9	1.9E-02	1.0	18.1	1.0E-06	6.9	
Time	185.0	1.5E-18	86.5	237.4	5.2E-20	92.5	42.7	1.4E-10	36.1	
Line * Time	6.2	8.2E-05	8.3	2.0	7.9E-02	1.8	12.5	1.1E-07	45.8	

В	PCA axis 1	(24.6%)	PCA axis 2	(17.5%)	PCA axis 3 (10.6%)		
Time	F	Р	F	Р	F	Р	
то	1.23	0.4075	0.15	0.9262	0.91	0.5114	
T1.5	0.22	0.8772	0.24	0.8628	0.36	0.7836	
т3	3.87	0.0559	1.67	0.2501	5.95	0.0195	
т6	24.14	0.0002	14.79	0.0013	25.59	0.0002	

Table S2. A list of candidate genes identified by Yeast Two-Hybrid screening (2 rounds) using RKS1^{D191A} as bait and cDNAs generated from mRNA isolated from Arabidopsis leaves infected with *Xcc* (strain 147) as prey, including their accession number or gene description (TAIR10), the known symbol and hit number.

Accession number	Primary Gene Symbol / Gene description	Hit number
AT1G09070	SOYBEAN GENE REGULATED BY COLD-2 (SRC2)	2
AT1G12900	GLYCERALDEHYDE 3-PHOSPHATE DEHYDROGENASE A SUBUNIT 2 (GAPA-2)	1
AT1G17100	HAEM-BINDING PROTEIN 1 (HBP1)	1
AT1G58180	BETA CARBONIC ANHYDRASE 6 (BCA6)	2
AT1G66160	"CYS, MET, PRO, AND GLY PROTEIN 1" (CMPG1)	1
AT1G66200	GLUTAMINE SYNTHASE CLONE F11 (GSR2)	2
AT1G68140	zinc finger/BTB domain protein, putative (DUF1644)	2
AT1G72430	SMALL AUXIN UPREGULATED RNA 78 (SAUR78)	1
AT2G20560	DNAJ PROTEIN (DNAJ)	3
AT2G24850	TYROSINE AMINOTRANSFERASE 3 (TAT3)	6
AT2G29450	GLUTATHIONE S-TRANSFERASE TAU 5 (GSTU5)	1
AT2G47450	CHAOS (CAO)	1
AT2G47710	Adenine nucleotide alpha hydrolases-like superfamily protein	3
AT3G10350	GUIDED ENTRY OF TAIL-ANCHORED PROTEINS 3B (GET3B)	1
AT3G26450	Polyketide cyclase/dehydrase and lipid transport superfamily protein	2
AT3G26650	glyceraldehyde-3-phosphate dehydrogenase A subunit	1
AT3G29160	SNF1 KINASE HOMOLOG 11 (KIN11)	1
AT3G44110	Putative dnaj-like protein (J3)	4
AT3G45030	Ribosomal protein S10p/S20e family protein	1
AT3G48000	ALDEHYDE DEHYDROGENASE 2B4 (ALDH2B4)	11
AT3G55270	FRUCTOSE-BISPHOSPHATE ALDOLASE 8 (FBA8)	1
AT3G55605	Mitochondrial glycoprotein family protein	2
AT3G57520	SEED IMBIBITION 2 (SIP2)	1
AT4G04770	ATP-BINDING CASSETTE I8 (ABCI8)	4
AT4G13430	ISOPROPYL MALATE ISOMERASE LARGE SUBUNIT 1 (IIL1)	1
AT4G23570	(SGT1A)	1
AT4G24020	NIN LIKE PROTEIN 7 (NLP7)	6
AT4G26910	Dihydrolipoamide succinyltransferase	4
AT4G31850	PROTON GRADIENT REGULATION 3 (PGR3)	1
AT4G33670	L-galactose dehydrogenase	1
AT4G35090	CATALASE 2 (CAT2)	1
AT4G35830	ACONITASE 1 (ACO1)	3
AT5G08280	HYDROXYMETHYLBILANE SYNTHASE (HEMC)	1
AT5G09590	MITOCHONDRIAL HSO70 2 (MTHSC70-2)	1
AT5G11040	(TRS120)	1
AT5G12020	17.6 KDA CLASS II HEAT SHOCK PROTEIN (HSP17.6II)	10
AT5G20480	EF-TU RECEPTOR (EFR)	2
AT5G24460	RING-H2 zinc finger protein	1
AT5G50210	QUINOLINATE SYNTHASE (QS)	3
AT5G58590	RAN BINDING PROTEIN 1 (RANBP1)	1

Table S3. List of primers and oligonucleotide sequences used for mutant genotyping.

Mutant code in this study #	Gene Accession	Mutant Accession no	Forward primer	Reverse primer
12	AT5G02320	N531972	GTTCATTTTGTGCTCAATCCC	CCATTTGTTTCCGTACATTCG
22	AT5G28020	N552788	TGATTGGTAACACACCAATGG	CCACCTGCCAAATGAATTATC
26	AT1G67070	N570922	GCCCTTTAGTTGAGTGGTGTG	CGTGAACTGTCGGAGAAAGAG
54	AT3G07370	N612098	CACAAGGCTGAGAGCAAAATC	CTCGATTGGTCCAATAAGCAG
55	AT4G12120	N620492	TGGCTTCTTTGTATTTGTGGG	TTGAAATTTCGGGTGTGTCTC
61	AT4G12120	N635470	AGGCAACCTATGACAGCAATG	GAATGAGAGGTGCGATCTGAG
72	AT4G19040	N654195	CTGTTCTTCCGCTGTATTTGC	ATAGCAATGATTTTTGGTGCG
75	AT3G01650	N655271	TTTTGATTTGGGTCCCTTACC	AGCAATGAATGGACAGGTTTG
76	AT3G01650	N655733	ACAAACCTGTCCATTCATTGC	TTCCCTTTGACCTGTTGAGTG
77	AT2G32390	N656359	TGGCCAGGGGAAGTAATAAAG	TGTCGACATGTCCACAGCTAG
78	AT3G07370	N657213	TACCTTATGATGGCCCATGTC	GAAGATGCTCGAATCCAACAG
80	AT4G19040	N657975	AGGCTTGAAAACACATCATGG	TAACCATTTTGGCACTGAAGG
81	AT5G67600	N658196	TATGGACTAACATGTGGGTGG	CCAATTCTTCTCGAGCAAAAG
83	AT5G28020	N659687	TTCAATAGCCTCTTCACCTGC	ACAGACCAACATGGAAGATCG
85	AT1G53850	N661066	TTTGTGCGTTGAACTTGAGTG	AGCTTCAATGGCATATTCCAC
86	AT4G19040	N661471	TACATTGGAAACCAGTCGAGC	GGCAGAGGATGAAGAGGACTC
87	AT2G41440	N661599	CAGAGCAAGAAGTGGGAAATG	TTTTCCAGATATGGATGCAGC
89	AT5G28020	N663434	CCTCCACTAGGAAAAACCACC	TGAGATGATGGAGCCTTGTTC
96	AT5G14420	N670818	AAAGAGAGAGAAGGGTCGTCG	TGACGAGGACAACTTGATTCC
98	AT1G78380	N672766	TTTTTGTTGTGCGTGAACAAG	TTCGTCTCTGAGCTCAGGAAG
100	AT3G26340	N673661	ACATAGTACAATCCAGGGCCC	ACAACTATGCCTGTGATTGGC
101	AT3G57090	N673702	AAGTCATTGCTCCAATACCCC	GCTGATTGGAGACAAGCTTTG
102	AT4G01960	N674268	GTGAAAGGCGAAGGAAGATTC	TCCAATTCAAAGAACGAATGC
103	AT3G07370	N674983	CAACCACAATGGTGGGTTTAC	CTTGGAACTGTGCTTTTGTGG
104	AT4G01960	N675193	GTGAAAGGCGAAGGAAGATTC	TCCAATTCAAAGAACGAATGC
105	AT3G26340	N675921	ATGCACGTTCGCATATAGGAC	GTTGTACCCTTTGCAGGCTTC
107	AT4G19170	N680044	TTCTCCAATCACAAACCCAAG	TTAGCGTCCATCACCAGAAAC
109	AT2G36020	N682206	GAACGTGTATGAACCAATGGC	TTGGCGCTAATTTCATCATTC
110	AT5G11610	N682800	тстстттссстттссстттс	ATTTTGTACGGTTGTGTTCCG
111	AT1G67070	N682894	TCTGTCATTTCAGACGAGGAAG	ATTCAACATGACTCGGTCCAG
112	AT5G11610	N684240	GCCTTCACAAAAGTTTTGCAG	GAGCTTGCACGGTTACGTTAG
113	AT5G67600	N685290	ATGCATCCAAGAGACAGCAAC	ATTGGGTTTTTAGGTTGCGTC
114	AT4G19040	N685788	GAAACTGCTGGAGCAATATGG	TCCACTTCGACGAAAAACAAG
115	AT3G57090	N686450	AAGATCCTCCTTGACCTCGAC	GGGAATTACTCAAGGAGCAGG
121	AT2G32390	N859735	GTCAGCTTCTCCTACATTGCG	CTGAAGATTGTGGACCAATGG

122	AT5G14420	N450195	TTATTCGTACCTGCCCATCTG	ACGTGACGTGATTGAATCTCC				
123	AT5G14420	N548485	GACGAATTGGTACCGTCATTC	GGAAACAGAGTTTGCCCTTTC				
128	AT1G53850	N651939	GATGGCGATTAATTAGGAGCC	GAAGGAGTTGTGCTTGCTGTC				
129	AT1G53850	N645344	AATGTGTGATATTTGGGGTGG	TAATTGATCTGCGAATCGGAG				
130	AT1G69790	N527863	AAAGGGCTTTTGAGCTGCTAG	GAGTCGAGATGACTGATTCGG				
131	AT1G69790	N597486	TGCCAACCCAAAATCAGATAG	CTTCTCTTCTCGAATTTCGCC				
132	AT3G59110	N683911	TCATTTTAGGCCGTTTCTGTG	TGTGCATCATCATGAGAGAGC				
133	AT3G59110	N684083	AGTGGCGTGGATGACAAGTAC	TTTGGTGTCCTGCTGCTAGAG				
134	AT1G52540	N685325	TGATTCAGCCAAACGGTAAAC	ATACACACTGCCAAATCTGCC				
139	AT3G19230	N680649	TTTGATCAGATCATTGGAGGC	TTTGGTTGCAAAAAGGCATAC				
141	AT3G17420	N668207	GAGTTAGCGTATTCAGGTGCG	AACCCCTTGTTGGACTTCTTC				
144	AT3G12620	N656211	TCTTATCCCAAACGTATCGTTG	AAGCCCATCCTTAGAGCAGAG				
145	AT3G12620	N662121	CGCGACAAATGTGTATTGATG	TTGCTGCCTCTCTTAGAGCTG				
146	AT5G07180	N681024	TATGGCAAAGGTGATACCTGG	TATCTCCATGGCAACAAGCTC				
147	AT5G07180	N800028	CAAGCTCAGCAGGTATTTTGC	ATATGTGTCAGCTGACGGGTC				
148	AT5G07180	N684732	ACTCGTGAAGATGTCCATTGG	AGCTGGTGATTCTTCACATGG				
149	AT5G20480	N654241	TTTCAAACAAGGTTTCTCCAATC	CGCTTCTCTTCAACCAATTTG				
151	AT4G15780	N670510	TCCGTGGAACGATAAATTCAG	TATCGCCAAGTAATGCGAATC				
152	AT4G15780	N874999	TGTGATAGGGTTGTTTTCCCC	GAAATCAGCTTTCACACGCTC				
154	AT3G54300	N527783	ACCAAAGCCATTGTCAACAAG	AACTGGAGTTGGAGGAACCTC				
156	AT5G47200	N653446	CTGACAAGGAAAAACGCAAAG	TTGCCTATCTTTGCAGGTCAC				
163	AT3G05710	N677254	CATCTAGACGCCGAGATCTTG	TCTTGCTCATTTGATGCTCAC				
164	AT4G30260	N653255	TGGAACCCTCAAAGAATCATG	TCAATGTATTTGGCGGAGATC				
165	AT4G30260	N660179	TTGGAAGTTGGAACCTTTGTG	GCGGCTGGAGAATTCTCTATC				
168	AT2G43490	N668005	TAACCAGTTGCAGGATCAACC	CAAGCGTCTTTTGATAGCGAC				
169	AT2G43490	N682830	GGTTATTTCGACTTTCCCTCG	AAACGACACAAGGGACATGTG				
170	AT1G05785	N672831	TTAAGTCAACGCCAATCCTTG	CTAACTTTGCAGCGGATTTTG				
173	AT3G15980	N678521	ACTCTTGAGTACCTCGCCTCC	TGTATTCTGGCATGGGAAAAC				
179	AT5G23540	N681956	TGGATGTAAGTAGGATTGGCG	TTTTGCTTGTGTTGTGTTTGC				
183	AT3G13235	N674812	TGCTCGAGGTTGAGGTAAGAG	TGTCGACTGTGCACCACTATC				
187	AT4G19006	N682762	GGCTTAAGCCTTAAAGGCAAC	TGTGGACTCACTCTCGGAATC				
190	AT5G44190	N661106	GATTGGTAATCTCTATCGCATGG	GCATCAGCAACCACTCTATCC				
191	AT2G26410	N661133	CATTTGCAACACCAGTTGTTG	TGAAATTTCATAGGCGAGACG				
194	AT4G00710	N666828	GGTAAAGAGTACGGCCTTTGC	ACGTTCATGTCGATTCCTTTG				
195	AT4G00710	N661796	CTCACTCCGTAGCTGACCAAC	TATATAAAAAGCCCATGGGCC				
tat3-1	AT2G24850	N403572	TGGGGAAGTTTGCATCAATAG	AATGTGGACTTGTGGCATAGG				
LB1_SAIL		GCCTTTTCAGAAATG	GATAAATAGCCTTGCTTCC					
LBb1.3_SALK		ATTTTGCCGATTTCGGAAC						
GABi_08409		ATATTGACCATCATACTCATTGC						

Table S4. List of primers and oligonucleotide sequences used for RT-qPCR and RKS1 constructs.

Gene or Mutant line in this study #	Primer (5' - 3')	Primer (5' - 3')
AT2G28390	AACTCTATGCAGCATTTGATCCACT	TGATTGCATATCTTTATCGCCATC
AT3G57710	GAAATTGTTGGTGGCTTTCAA	TCCGTTATCCAAGAACCACCTC
AT1G66560	AGACGAATCCCCGACTCC	GCATAGGTACACCGATAGTAACACC
AT1G51760	AGGGCTGATATGGATGCACT	GTGCATCTTCCCTGGAACC
AT4G01895	CAGAGAACAAAAGGATCAACGAG	TTCGTTTCTTAGCATCCTGGTAG
AT3G01650	CGAGCTTTCGATAACTTCCAGT	GGGATCTCCATGAGAGCAGA
AT4G31860	CAGCAGGTTCTTAGTGATGAGG	TGCATCATCTCATCCATTCTG
AT5G14420	CCTCAGTATGGTGCAGAAAGC	CAGGAGGTTGGGCATAAGAA
AT5G67600	AGGATAATTATATACGTTGCCTCA	GAAAGAGAGAGAGATAATTATGGTCGG
AT5G19080	ATGCCTTATTCGATGGCAGT	GGGACGATTGTGCACTTTG
AT3G26340	TGCGTTTATCTTTAAGGAAGGTG	TCTTCACAGATTGCGACGAG
AT2G23600	TGAAGCACCGTCTCTACCAA	GGCCTCTTTAGAAGCAATCCA
AT5G11610	AAACATCATCTCAAGCTCTTACCTG	GCTCAAAATACTGAAGGCCTGA
AT5G44572	CTTAGCCAATCGGCTCCTT	TGCTATTATTCCCCCATTCG
AT4G32980	TCTGAAATCTTCCCAAAGGTTC	TTGTTGTTGTCCATTGGGTTT
AT5G28030	CGGTTACTGGAACAGGGAAG	TCAAATGTGGACCTGGTTTTC
AT1G20823	ATTCTGATCTCGTCGTCATCC	TTAAGCCGAGAACGCAAATC
AT5G28020	TTCCTCAAGGAGCAGAACAAA	TCAAATGTGGACCTGGTTGA
AT2G14610	GGAGCTACGCAGAACAACTAAGA	CCCACGAGGATCATAGTTGCAACTGA
AT3G45640	TGACCCCAACAGAAGAATCAC	AAAAGAGAATGGCTTTTGACAGA
AT3G50950	CAAAACAACAACTAGTACATGGATGG	TTCCGTTTCTCCACATGACA
AT3G48000	CCATGTTTGCAAGATTGTTCC	GCTGGAATTGTTAGTCCATGAAT
12	TGGGAAACAATGTCGAGAAA	CGATGAGAATTCATGAGAGCTG
22 / 83 / 89	CAAGCTTCTTGCCCTCAAAG	AGTTTCCCCGCGTTTTCT
26 / 111	CCAATTCTCCAAAGTGTTAGGAA	AAATGACAACTCCTTGAATTTGC
54 / 78 / 103	CGTTCCAAATCTGGCTATCAA	TGTAAGCCCAGACGTGTTTTT
55	AGTTTTGGCCTCACTAAAGGAA	GAATCAACTCTCGGTAAGTTGTCA
61	GAGCAGGACCTTGTTTTTGG	AGCTTGCTTTCGTGGCTTAT
72 / 80 / 86 / 114	CACAACATATCCATCTTCAAAAGG	GCCTGTACAAGGAAAGCCATT
75 / 76	ACCGGTGCAGAGTGGATCATCA	GTAAAGCTTGATTCTGGTCT
77 / 88 / 121	CGAGGAGGCTGGTTCTTCTA	TCTCTGCTTCTCTCTTATCAACAACT
81 / 113	AGGATAATTATATACGTTGCCTCA	GAAAGAGAGAGAGATAATTATGGTCGG
85 / 128 / 129	GAATGACATGGGAGCCAAAAG	GGGTAATTTACCTATCAGCTTGTG
96 / 122 / 123	GACATGGCCTTTGGTTGTG	GCAAATCGGACACATTTGAA
98	CCTTCTGATCCTTACCTGAGAGC	CCTCTGAGCATCATACAGCTTC
100 / 105	GGGACTTTCTGTTGGCACA	TCGTTGTCAACATAGTACAATCCA
101 / 115	TGTGTATACAATGGCAGTTTACTTTTT	TGAAGTAAGCAGTGGAGAACACA
102 / 104	TGAGTTTGCTCCTCGTGAGA	TGTCTGCACCTGAGACTCTCTTA
107	TTCGCTCCTGTCCTCGAC	AAGAGTGCCGTGGATGATTT
109	AGCTGCGACGTTCTAACTCC	CGTATATGTACGTTTGCGTTACTATG
110/112	TCGATCATAAATCATACATCCGTTA	CTTCCTTAGATTCGGGATCTCTT
130 / 131	AAGGAAGCCTGGAGAACCAT	AAGCTACITICATCCTAGTCTTCCAC
132 / 133	TGACACAAGCAAAGGGCCTG	ACGAGAAAACTCATTTGCCATC
134	CGCAGCAACAAACAGTTTTAAT	CCITCAATCICITGACIGCAATIT
139	TGCAAAGCTCCCTAGTCTCC	TCAGGAGACGCCTGGATAGT
141	ATTATGCGCGGCCTAAAGA	TCCACCACTTCCTCAAACTGT
144 / 145		
146 / 147 / 148	TCGGTATIGICCTICITGAGC	CATCCGCCTTTGATAGAATCAT
149	TCATGITAGIGACITIGGITIGG	GCCTCCCATTCCATACTCTG
151		
152	GACCGAGAATCTACGCTCTCA	
154		
150		
103		
104 / 100		
100 / 109		
1/0		
1/3		
1/2	ATGCTGCGTAAGCATCAGTG	GGGACGGGATGTCTTTCTCT
105		

187	GCCTTATTGAGATCATTTTCAGC	AGTACGCTCGGCAATGACA
190	CGGAGTTACAACGTCAAGGAG	TTCGACAAATTTTGGAGATCTTT
191	TGTCTGTTTCGGTTTGGTGT	CATTAACGCGAAATAAATGGTTT
194 / 195	TGAAACACTAGCCAAACACCTTT	CGTAGCCTCATAGTCCATTTCA
tat3-1	CCCTGGAGTTTTCAAGGCTA	CGTCGGAAGTTCTCCGTTTA
attB1F-710	GGGGACAAGTTTGTACAAAAAGCAGGCT	TAATGAAGAAGCAGTATCTGAAA
attB2R-710	GGGGACCACTTTGTACAAGAAAGCTGGGT	CGCTAGAATTTTTCAATGATGC
attB1_RKS1	GGGGACAAGTTTGTACAAAAAAGCAGGCT	TAATGAAGAAGCAGTATCTGAAATCTGG
attB2R-710-stop	GGGGACCACTTTGTACAAGAAAGCTGGGT	CCTAGCTAGAATTTTTCAATGATGC
attB4_RKS1	GGGGACAACTTTGTATAGAAAAGTTGGGT	GGCTAGAATTTTTCAATGATGCTTC
RKS1_D191A_fw	CCTAAGATCATCATACATAGAGCTGTTAA	ACCGATGCATGTTTTC
RKS1_D191A_rev	GAAAACATGCATCGGTTTAACAGCTCTAT	GTATGATGATCTTAGG

Dataset S1 (separate file). Annotation, logFC and categorization in expression classes of 268 expressed genes. Genes significantly found up-regulated are represented in red, those significantly down-regulated in green.

Dataset 2 (separate file). Protein-protein interactions used for the generation of the RKS1 PPI network.

SI References

- 1. A.C. da Silva, J.A. Ferro, F.C. Reinach, C.S. Farah, L.R. Furlan, *et al.* Comparison of the genomes of two Xanthomonas pathogens with differing host specificities. *Nature* **417**, 459-463 (2002).
- M.K. Winson, S. Swift, P.J. Hill, C.M. Sims, G. Griesmayr, B.W. Bycroft, P. Williams, G. Stewart Engineering the lux CDABE genes from *Photorhabdus luminescens* to provide a bioluminescent reporter for constitutive and promoter probe plasmids and mini-Tn5 constructs. *FEMS Microbiol. Lett.* **163**, 193-202 (1998).
- 3. S.J. Clough, A. F. Bent. (1998) Floral dip: a simplified method for Agrobacteriummediated transformation of *Arabidopsis thaliana*. *Plant J.* **16**(6):735±43. PMID: 10069079
- 4. Y. Gu, R. W. Innes, The KEEP ON GOING protein of Arabidopsis recruits the ENHANCED DISEASE RESISTANCE1 protein to trans-Golgi network/early endosome vesicles. *Plant Physiol.* **155**, 1827–1838 (2011).
- S.L. Asqui, D. Vercammen, I. Serrano, M. Valls, S. Rivas, F. Van Breusegem, F. L. Conlon, J.L. Dangl, AtSERPIN1 is an inhibitor of the metacaspase AtMC1mediated cell death and autocatalytic processing *in planta*. *New Phytol.* 218, 1156-116 (2018).
- J. Marion, L. Bach, Y. Bellec, L. Gissot, J.D. Faure, Systematic analysis of protein subcellular localization and interaction using high-throughput transient transformation of Arabidopsis seedlings. *Plant J.* 56, 169–179 (2008).

- 7. D. Marino, S. Froidure, J. Cannone, S. Ben Khaled, M. Khafif, C. Pouzet, A. Jauneau, D. Roby, S. Rivas, Arabidopsis ubiquitin ligase MIEL1 mediates degradation of the transcription factor MYB30 weakening plant defence. *Nature Com* **4**, 1476 (2013).
- B. Lefebvre, T. Timmers, M. Mbengue, S. Moreau, C. Hervé, K. Toth, J. Bittencourt-Silvestre, D. Klaus, L. Deslandes, L. Godiard, J. D. Murray, M.K. Udvardi, S. Raffaele, S. Mongrand, J. Cullimore, P. Gamas, A. Niebel, T. Ott, A remorin protein interacts with symbiotic receptors and regulates bacterial infection. *Proc. Natl. Acad. Sci. U S A* **107**, 5, 2343-2348 (2010).
- S. Froidure, J. Canonne, X. Daniel, A. Jauneau, C. Brière, *et al.*, AtsPLA2-alpha nuclear relocalization by the Arabidopsis transcription factor AtMYB30 leads to repression of the plant defense response. *Proc. Natl. Acad. Sci. U S A* **107**, 15281– 15286 (2010).
- 10. R.D. Gietz, R.H. Schiestl, High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. *Nature Protoc.* **2**(1):31-4 (2007).
- 11. D. Meyer, E. Lauber, D. Roby, M. Arlat, T. Kroj, Optimization of pathogenicity assays to study the *Arabidopsis thaliana-Xanthomonas campestris* pv. *campestris* pathosystem. *Mol Plant Pathol* **6**, 327–333 (2005).
- 12. U.K. Laemmli, Cleavage of structural proteins during the assembly of the head of bacteriophage T4. *Nature*, **227**(5259), 680-685 (1970).
- C. Huard-Chauveau, L. Perchepied, M. Debieu, S. Rivas, T. Kroj, I. Kars, J. Bergelson, F. Roux, D. Roby, An atypical kinase under balancing selection confers broad-spectrum disease resistance in Arabidopsis. *PLoS Genet.* 9(9):e1003766. (2013).
- R. Oughtred, C. Stark, B.J. Breitkreutz, J. Rust, L. Boucher, C. Chang, N. Kolas, L. O'Donnell, G. Leung, R. McAdam, F. Zhang, S. Dolma, A. Willems, J. Coulombe-Huntington, A. Chatr-aryamontri, K. Dolinski, M. Tyers, The BioGRID interaction database: 2019 update. *Nucl. Acid Res.*, 47(D1) D529–D541 (2019).