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Supplementary Notes
1. Model and likelihood

The proposed model is

X =My + ZB + & )

y=n,+Z,Ba+7Z,y+e, (2)
Where the Equation (1) is for the gene expression data and the Equation (2) is for the GWAS data.
Here, p, and p, are the intercepts for the two models, respectively; B is a p-vector of
instrumental effect sizes on the explanatory variable; « is a scalar that represents the causal effect
of the explanatory variable on the outcome variable; y is a p-vector of horizontal pleiotropic effect
sizes of p instruments on the outcome variable; €, is an ny-vector of residual error with each
element independently and identically distributed from a normal distribution N(0,0); and ¢, is
an n,-vector of residual error with each element independently and identically distributed from a
normal distribution N(0,52). We note that while the above two equations are specified based on
two separate studies, they are joined together with the common parameter . We assume
B~N(0,021,).
Given B, we have x ~ N(p, + Z,B,0%1,,),y ~ N(n, + Z,Ba + Z,y,021,,)
Given Z,,Z,, the observed data are (x,y) and the observed likelihood function is
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the last equality is due to that given B, y and x are independent.
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Note that the last term is a Gaussian kernel
Thus
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Let 8 = (a,y,02,02,062, 1y, 1) indicate all model parameters.
The hypothesis test for ais Hy:a =0v.s.Hyi:a # 0
The likelihood ratio test (LRT) is given by

Ay =2 {logf(x,y ZxrZy, ﬁ) — logf(x,y|Zx,Zy, 6a=0)}
Where @ is the parameter estimator, and 8,-,is the estimator under a = 0. Similarly, the

hypothesis test for y is Hy:y =0 v.s. H;:y #0
The LRT is given by

A, =2 {logf(x,y ZxrZy, ﬁ) — logf(x,y|Zx,Zy, §y=0)}
Where §y=0is the parameter estimator under y = 0.

2. Estimation procedure
We develop an expectation-maximization (EM) algorithm for inference, where we treat the SNP

effect sizes B as missing data. Traditional EM algorithm converges very slowly while Newton’s
method may be unstable and sensitive to initial values. Therefore, we use a parameter-expanded
version of EM, i.e. PX-EM?, for estimation. PX-EM improves the convergence rate of traditional
EM algorithm while is simple to implement and enjoys the stability of traditional EM. To do so, we
consider the parameter expanded version of our model as follows

X =Wy +AZ,B + & @)

y=n,+Z,Ba+Z,y+eg, (4
Where 2 is the expanded parameter. Let © = (A, a,y, 02,02, 62, 1, ) denote all parameters
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for parameter expanded model. When A = 1, the expanded model is equal to the model for the
observated data. The reduction function can be defined as R(2, a,y, 02, 62,07, iy, 1) =

(0!//1’],’ 0'3%,0'3?,/12022, My, lly)

From the derivation similar as above, it is easy to obtain that, given x, y, Z,, Z, and @, the
distribution of the latent variable B is a normal distribution N(B|uﬁ,23), where
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The complete likelihood for the parameter expanded model can be calculated as
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In the E-step, we derive Q@ function by taking expectation of the complete-data log-likelihood with
respect to the distributionN(B|mg, £z). Remember thatE(BTAB) = pgApg + Tr(AZg)for any
symmetric matrix A, where Tr(M)denotes the trace of matrix M. We can get
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Given the current value 0,,; and the observed data, the @ function is
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In the M-step, by setting the derivative of @ function to zero, we obtain
the new updates for all parameters. Where
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Where 1, denote the length d vector with all elements to be 1.

In the Reduction step, we re-set the estimation of parameters using the reduction function R, and
re-assigned A = 1.

Finally, for TWAS applications, we note that some genes have close to zero heritability. For genes
whose expression levels are not affected by cis-SNP genotypes, not much information is available
for the estimation of B, which subsequently leads to an extremely large standard error of &.
Therefore, PMR-Egger can return the p value equal or close to 1 for these genes.

3. Causal effect identification
The causal interpretation of the parameter a and its identification can be derived under the
framework of decision-theoretic causal inference?®. We define the causal effect of gene expression
X on the phenotype Y as the difference between the expected values of Y under an intervention
that imposes on X a reference value x, and another intervention that imposes another value x.
Let the symbol Fy label the regime under which the value of X is generated, with Fy = x
indicating that X is fixed to value x by an intervention, and Fy = @ denoting the observational
regime under which the data have actually been generated. Then the average causal effect (ACE) of
X on the continuous phenotype Y is defined by

ACE = E(Y|Fy = x) — E(Y|Fy = %)
Let the notation ALB| C indicates that A is independent of B given C.
Our proposed MR model based on the observational data obtained under Fy = @ has been
presented in Figure S1. Note that we directly model the horizontal pleiotropic effects through the
Z — y arrow. Therefore, our model does not require the Exclusion Restriction condition of
traditional MR. However, the other two assumptions in tradtional MR must be satisfied; that is, Z
is associated with X, and UlLZ (1).
One must note that requirements relating only to the observational regime can never be sufficient to



estimate the causal effect of X on y, which is defined in terms of interventional regimes. Instead,
we need to make additional assumptions that relate the observational regime Fy = @ to the
interventional regimes Fy = x. Under the assumption that the unobserved U is a sufficient
covariate for the effect of X on y, we can do this by elaborating Figure S1 to explicitly include the
nonstochastic regime indicator Fy for X, as in the following Figure. For Fy = @, this recovers the
assumptions embedded in Figure S1, but in addition it relates the observational structure to what

would happen under an intervention to set X.

Fx U

NV

Z =X =y

Figure. The causal diagram of PMR-Egger with the nonstochastic regime indicator Fy

It is illustrated that an intervention on X will not affect Z or U, that is FyIL(U,Z) (2). And
conditional on Z and U, the distribution of y given X does not depend on whether the value of
X has been generated by passive observation or intervention; that is y L Fx|(X,Z,U) (3).
Furthermore, the formula (1) can be extended to U L Z| Fx (4).
We can describe the dependence of y on (X,U) (the same in all regimes by (3)) by a linear
model: E(y|X,Z,U0) =W + aX + yZ (5), where W is some function of U.
Because (5) holds in the interventional regime Fy = x, we deduce

E(y|Fx =x) = Wy + ax + Z,
where W,: = E(W|Fyx = x) and Z,: = yE(Z|Fyx = x) is a constant independent of x following
(2). Thus a can be interpreted causally, as it describs how the mean of y responds to manipulation
of X. Next we show how to estimate «a.
Again by (3), the formula (5) is also E(y|X,Z,U,Fy = @). Then

E(v|Z,Fy = ®) = E(W|Z,Fx = 0) + aE(X|Z,Fx = 0) + yZ

By (4), the first term on the right side is constant, thus
E(y|Z,Fx = @) = constant + aE(X|Z,Fx = @) + yZ (6)
Equation (6) relates two functions of Z, each of which can be identified from observational

data. Consequently, we can estimate the causal parameter a« from such data.

4. PMR-Egger model for summary statistics
We denote the LD structure of the cis-SNPs for one specific gene as 2, in gene expression data,

and X, in GWAS data; bothare p X p symmetric positive definite matrices. Note that 2; and X,
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may be from the same LD reference panels. The marginal estimates of Z, on x are B (eQTL
effects), the marginal estimates of Z,, on y are E; (GWAS effects). While the corresponding
conditional estimates are B, = X7'By, B, = 2718}
The corresponding model for summary statistics are
B.=B+E (3

{ﬁy=y+aB+E 4)
where B~N(0,021,),E;~N (0,27 02), E~N(0,2502), v is the pleiotropy effect vector with
each element equal to common parameter .

Given B, B, and B, are independent.
The observed likelihood function is
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Let @ = (a,y,02,02,02) indicate all model parameters.
The hypothesis test for ais Hy:a = 0v.s.Hy:a # 0.
The likelihood ratio test (LRT) is given by
A = 2 {logf (B By|®) — logf (B By|Ruco)}
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where @ is the parameter estimator, and Q,_,is the estimator under a = 0. Similarly, the
hypothesis test for yis Hy:y =0 v.s. H;:y # 0.
The LRT is given by

Ay =2 {logf(Bx ﬁym) — logf (B §y|ﬁy=0)}

where ﬁyzois the parameter estimator under y = 0.

5. PX-EM algorithm for summary statistics
The parameter expanded version of our model is

{j}‘x =B+E ()
By=v+aB+E (4
where A is the expanded scalar parameter. Let Q = (/1, a,y, af,a,?,azz) denote all parameters for
parameter expanded model. When A =1, the expanded model is equal to the model for the
observated data. The reduction function can be defined as R(,a,y,07 02 07)=

(a//l,y, oy, a,?,/lzazz).
Treating B as the missing variable, the complete data likelihood is
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Using formula E(BTAB) = npApg + Tr(AZg) for any symmetrix A.
The E-step can generate the following Q function

~ o~ p 1 p p 1 p p
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In the M-step, we set the derivative of the Q function to zero and obtain the following updated
equations for all parameters.
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where 1,is a length p vector with elements equal to 1.

In the Reduction step, we re-set the estimation of parameters using the reduction function R, and
re-assigned A = 1.

6. Sparse vs polygenic modeling assumptions in previous TWAS methods
Currently, almost all previous TWAS methods (TWAS?, PrediXcan’, COMM?®, DPR®, TIGAR™ etc.)
make a polygenic modeling assumption and assume that cis-SNPs have non-zero polygenic effects
on gene expression. Specifically, TWAS makes the BSLMM? polygenic modeling assumption: all
cis-SNPs have non-zero effects and their effect sizes follow a mixture of two normal distributions.
PrediXcan’ makes the ElasticNet modeling assumption: all cis-SNPs have non-zero effects a priori
and their effect sizes follows a mixture of Laplace (L1) and normal (L2) distributions. Both TIGAR
and DPR makes the Bayesian non-parametric polygenic modeling assumption: all cis-SNPs have
non-zero effects and their effect sizes follow a mixture of many normal distributions. CoOMM makes
the standard polygenic modeling assumption: all cis-SNPs have non-zero effects and their effect
sizes follow a normal distribution. Perhaps the only method previously used in TWAS setting that
makes a sparse modeling assumption is SMR2. Certainly, while the modeling assumption
underlying PrediXcan is polygenic, it does use an optimization algorithm that obtains the posterior
mode estimates (which is sparse) instead of the posterior mean estimates (which is polygenic).
However, it is important to distinguish the modeling assumption from the inference algorithm.
Overall, the polygenic modeling assumption made in most existing TWAS methods are consistent
with the previously known fact that polygenic models often outperform sparse models in gene
expression prediction*” and are also consistent with our current results showing that polygenic
models also outperform sparse models for TWAS applications.

7. Number of discoveries and the genomic control factor in real data applications
The number of genes identified above a genome-wide threshold is commonly used in the literature
as a measure of statistical power in real data applications. The genomic control factor A is
commonly used in the literature to measure type | error control for real data applications, as A4
captures approximately the type | error control at the level of 0.05. Power and A are two different
statistical terms that are not necessarily correlated with each other. A similar A among different
methods would suggest similar type | error control at the nominal level of 0.05, while a higher
number of genes identified by one method over another would suggests its higher power. Certainly,
for a data with a relatively large sample size (e.g. UK Biobank) and a trait with a highly polygenic
genetic architecture, then 1 may also be influenced by power of the method in addition to its type
I error control. In addition, the number of significant genes may not be a perfect measure of power
in certain cases and can be influenced by A, as a method that fails to control for type | error could
yield inflated p-values, leading to a high number of false discoveries.

8. Horizontal pleiotropic effect tests can help to explain the discrepancy in terms

of the causal associations detected by PMR-Egger and the other methods
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For example, for the trait of red blood cell count in UK Biobank, the MAPT gene on chromosome
17 shows a significant pleiotropy effect (p = 2.35 x 10~?) but displays no significant causal effect
(p=0.98) by PMR-Egger. In contrast, MAPT is detected to be significantly associated with red blood
cell count by PrediXcan (p = 8.11 x 10719), and, to a much lesser extent, by TWAS (p = 1.72 X
1073). However, no previous evidence suggests that MAPT is associated with red blood cell count.
Indeed, we found that the genomic location of MAPT (43,871,748-44,205,700) is close to and
partially overlapped with KANSL1 (44,007,282-44,402,733), which has been previously identified
to be associated with red blood cell traits'>4, The association between KANSL1 and red blood cell
count is also detected by PMR-Egger (p = 1.02 x 10~7), by COMM (p = 2.72 x 1078), and, to a
much lesser extent, by TWAS (p = 1.66 x 1073) in the present study. By controlling for the
expression level of the KANSL1 gene in the PrediXcan framework, the association between the
predicted MAPT expression level and red blood cell count is no longer significant (p = 0.10).
Therefore, the causal association between MAPT and red blood cell count detected by PrediXcan
likely reflects either the true horizontal pleiotropic effect of MAPT cis-SNPs on red blood cell count
through KANSL1 or their tagging effects of the neighboring eQTLs of KANSL1. As another example,
for height in the UK Biobank, the pseudogene RP11-9E13.2 (70,137,755-70,340,521) on
chromosome 10 has a significant pleiotropy effect (p = 1.08 x 10713) but displays no significant
causal effect (p=0.93) by PMR-Egger. In contrast, RP11-9E13.2 is detected to be significantly
associated with height by PrediXcan (p = 4.34 x 1071°), and, to a lesser extent, by TWAS (p =
9.05 x 107°). The pseudogene RP11-9E13.2 is in the neighborhood of MYPN (69,765,912-
70,071,774), which has been previously identified to be associated with height'®. The association
between MYPN and height is also detected by PMR-Egger (p = 1.82 x 10~7), COMM (p = 2.13 X
10~1%), and to a lesser extent, PrediXcan (p = 3.94 x 10~*) and TWAS (p = 1.55 X 1073), in the
present study. By controlling for the predicted expression level of MYPN gene in the PrediXcan
framework, the association between the predicted RP11-9E13.2 expression level and height is no
longer significant at the genome-wide threshold (p =3.37 x 10™*). Therefore, the causal
association between the pseudogene RP11-9E13.2 and height as detected by PrediXcan and TWAS
likely reflects either the horizontal pleiotropic effect of RP11-9E13.2 cis-SNPs on height through
MYPN or their tagging effects of the neighboring eQTLs of MYPN. The results suggest the practical
importance of testing and controlling for pleiotropic effects in TWAS applications. Certainly, we
acknowledge that, both these examples are focused on the special case where the false gene
association with the trait disappears when conditional on a neighboring gene. We did not provide
examples where the apparently false gene association with the trait may be explained by horizontal
pleiotropic effects acted upon/through a gene far away, as it is often challenging to convincingly
identify trans eQTL effects. In the special case we focused on, while it is possible that SNPs display
true horizontal pleiotropic effects through the neighboring gene, it is equally likely that SNPs used
in the model are simply tagging nearby eQTLs of the neighboring causal gene®!’ and thus display
apparent “horizontal pleiotropic effects” through the neighboring gene, as also mentioned above.
Subsequently, the horizontal pleiotropic effect term in PMR-Egger may represent the apparent
“horizontal pleiotropic effects” through SNP tagging to the nearby eQTLs of the causal gene, rather
than the truly horizontal pleiotropic effect acted through other molecular pathways. Regardless of
the interpretation of the horizontal pleiotropic effect term, we found it reassuring that by modeling
the horizontal pleiotropic effect term in PMR-Egger can reduce false discoveries in the case of SNP

tagging.
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Supplementary Figures

/—Iorizontal PIeiotrom

SNPs Gene Expression Trait
Z X y
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U

Supplementary Figure 1. An illustrative diagram for Mendelian randomization analysis.
Mendelian randomization analysis in the TWAS setting attempts to estimate the causal
effect of gene expression (x) on the trait of interest (y) in the presence of confounding
factors (U) by using cis-SNPs (Z) as instrumental variables. An important requirement of
Mendelian randomization analysis is to model and control for horizontal pleiotropic
effects.
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simulations. LDA MR-Egger tests for either causal effect (a) or horizontal pleiotropic effect (b). We follow
the same simulation design in the original LDA MR-Egger paper to perform simulations. The simulation
design assumes that the SNP covariance matrix is an AR(1) covariance structure, where we set the
autocorrelation parameter to be either 0.9 (turquoise), 0.95 (magenta), 0.96 (blue), 0.97 (black), 0.98
(orange), and 0.99 (purple). The p-values from LDA MR-Egger are reasonably well calibrated when the
autocorrelation parameter is set to be moderate as used in the original paper. However, when the correlation
parameter is set to be realistically high (>0.9) or if we used SNPs from real data to carry out the same set of
simulations, then LDA MR-Egger p-values become inflated. The LD decay pattern under these covariance
structures are plotted together with the realistic LD pattern of the BACE gene (pink). The LD pattern of the
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Supplementary Figure 3. Quantile-quantile plot of -logl0 p-values from different methods for testing
the causal effect under the null simulations, in various sparse settings where only a small proportion of
SNPs are associated with the gene expression level. Compared methods include CoMM (turquoise),
PMR-Egger (magenta), TWAS (blue), LDA MR-Egger (black), SMR (orange), and PrediXcan (purple).
Simulations are performed either in the absence (y=0; a, ¢, e) or in the presence of horizontal pleiotropic
effect (y=0.001; b, d, f). Either one SNP (a, b), 1% of SNPs (¢, d), or 10% SNPs (e, f) have non-zero
effects on gene expression. Only p-values from PMR-Egger adhere to the expected diagonal line across a
range of settings.
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Supplementary Figure 4. Quantile-quantile plot of -log10 p-values from different methods for testing
the causal effect under the null, across different gene expression heritability values. Compared methods
include CoMM (turquoise), PMR-Egger (magenta), TWAS (blue), LDA MR-Egger (black), SMR
(orange), and PrediXcan (purple). Simulations are performed or in the presence of horizontal
pleiotropic effect (y=0.001) with gene expression heritability being either (a) PVE,=1% or (b)
PVE,.=5%. Only p-values from PMR-Egger adhere to the expected diagonal line across a range of
settings.
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Supplementary Figure 5. Quantile-quantile plot of -log10 p-values of PMR-Egger in null simulations.
Results are shown under simulations where the SNP effects on the gene expression are either
correlated (pink) or independent (blue). The p-values for testing the causal effect under the null
(PVE,~0) are shown in the absence (y=0; a) or presence (y=0.0005; b) of horizontal pleiotropic
effects. The p-values for testing the pleotropic effect under the null (y=0) are shown in the absence
(PVE,=0; ¢) or presence (PVE,,=0.6%; d) of causal effect.
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Supplementary Figure 6. Quantile-quantile plot of -log10 p-values from PMR-Egger for testing the
causal effect under the null, under various sparse horizontal pleiotropic effect settings. Simulations
are performed under different horizontal pleiotropic effect sizes: (a) y=0.0001; (b) y=0.0005; (c)
y=0.001; (d) y=0.002. In each panel, only a fixed proportion of SNPs (10%, 30%, or 50%) have non-
zero horizontal pleiotropic effects. P-values from PMR-Egger behave well across a range of sparse
horizontal pleiotropic effect settings.
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Supplementary Figure 7. Quantile-quantile plot of -logl0 p-values from PMR-Egger for testing the
causal effect under the null, under various directional horizontal pleiotropic effect assumptions.
Simulations are performed under different horizontal pleiotropic effect sizes: (a) y=0.0001; (b)
y=0.0005; (¢) y=0.001; (d) y=0.002. In each panel, a fixed proportion of SNPs (10%, 30%, or 50%)
have positive horizontal pleiotropic effects while the remaining proportion of SNPs have negative
horizontal pleiotropic effects. P-values from PMR-Egger behave reasonably well across a range of
directional or balanced horizontal pleiotropic effect settings, except in the extreme case where
horizontal pleiotropic effect size is very large (y=0.002) and where the effect size signs across SNPs
are approximately balanced.
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Supplementary Figure 8. Quantile-quantile plot of -logl0 p-values from cross-gene simulations for
different methods for testing the causal effect either in the absence or in the presence of horizontal
pleiotropic effect under null simulations. Compared methods include CoMM (turquoise), PMR-Egger
(magenta), TWAS (blue), LDA MR-Egger (black), SMR (orange), and PrediXcan (purple). Null
simulations are performed under different horizontal pleiotropic effect sizes: (a) y=0; (b) y=0.0001;
(¢) y=0.0002; (d) y=0.0003; (e) y=0.0005; (f) y=0.001. Only p-values from PMR-Egger adhere to the
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Supplementary Figure 9. Quantile-quantile plot of -logl0 p-values from cross-gene simulations of different
methods for testing the causal effect under the null simulations, in various sparse settings where only a small
proportion of SNPs are associated with the gene expression level. Compared methods include CoMM (turquoise),
PMR-Egger (magenta), TWAS (blue), LDA MR-Egger (black), SMR (orange), and PrediXcan (purple).
Simulations are performed either in the absence (y=0; a, d, g) or in the presence of horizontal pleiotropic effect
(y=0.0003; b, e, h; y=0.001; ¢, f, i). Either one SNP (a, b, ¢), 1% of SNPs (d, e, f), or 10% SNPs (g, h, i) have non-
zero effects on gene expression. Only p-values from PMR-Egger adhere to the expected diagonal line across a
range of settings.
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Supplementary Figure 10. Quantile-quantile plot of -logl0 p-values from cross-gene simulations of
different methods for testing the causal effect under the null, across different gene expression heritability
values. Compared methods include CoMM (turquoise), PMR-Egger (magenta), TWAS (blue), LDA MR-
Egger (black), SMR (orange), and PrediXcan (purple). Simulations are performed or in the presence of
horizontal pleiotropic effect (y=0.0003, a, b; y=0.001, ¢, d;) with gene expression heritability being either
PVE,=1% (a, ¢) or PVE,=5% (b, d). Only p-values from PMR-Egger adhere to the expected diagonal
line across a range of settings
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Supplementary Figure 11. Quantile-quantile plot of -logl0 p-values from PMR-Egger under cross-
gene simulations for testing the causal effect under the null, under various sparse horizontal
pleiotropic effect settings. Simulations are performed under different horizontal pleiotropic effect
sizes: (a) y=0.0001; (b) y=0.0005; (c) y=0.001; (d) y=0.002. In each panel, only a fixed proportion of
SNPs (10%, 30%, or 50%) have non-zero horizontal pleiotropic effects. P-values from PMR-Egger
behave well across a range of sparse horizontal pleiotropic effect settings.
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Supplementary Figure 12. Quantile-quantile plot of -log10 p-values from PMR-Egger under cross-
gene simulations for testing the causal effect under the null, under various directional horizontal
pleiotropic effect assumptions. Simulations are performed under different horizontal pleiotropic effect
sizes: (a) y=0.0001; (b) y=0.0005; (¢) y=0.001; (d) y=0.002. In each panel, a fixed proportion of SNPs
(10%, 30%, or 50%) have positive horizontal pleiotropic effects while the remaining proportion of
SNPs have negative horizontal pleiotropic effects. P-values from PMR-Egger behave reasonably well
across a range of directional or balanced horizontal pleiotropic effect settings, except in the extreme
case where horizontal pleiotropic effect size is very large (y=0.002) and where the effect size signs
across SNPs are approximately balanced.
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Supplementary Figure 13. Quantile-quantile plot of -log10 p-values from cross-gene simulations of PMR-Egger
for testing the causal effect under null simulations, when randomly flipping the encoding at a fixed proportion of
cis-SNPs, the proportion equals 10% (a, b, ¢), 30% (d, e, f) and 50% (g, h, i). Simulations are performed under
different pleiotropy effect sizes, y=0 (a, d, g), y=0.0005 (b, e, h) or y=0.001 (e, f, i). P-values from PMR-Egger
behave reasonably well across most of the scenarios, and it is a little inflated in the case where the flipping

proportion reached 50% and horizontal pleiotropic effect size is large (y=0.001).
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Supplementary Figure 14. Simulation results of PMR-Egger for causal effect test when randomly
flipping the genotype encoding at 50% of cis-SNPs. The ‘orientation’ strategy is that genotypes are
oriented so that the estimated SNP marginal effects of the gene expression are all positive. The p-values
for testing the causal effect under the null are shown under different pleiotropy effect sizes, y=0 (a),
y=0.0005 (b), y=0.001 (¢). Power (y-axis) at a false discovery rate of 0.1 to detect the causal effect
(PVE,;~0.6%) is plotted against different horizontal pleiotropy effect size (d).
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Supplementary Figure 15. Power for testing causal effect by different methods in various sparse settings
where only a small proportion of SNPs are associated with the gene expression level. Power (y-axis) at a
false discovery rate of 0.1 to detect the causal effect is plotted against different causal effect size
characterized by PVE,, (x-axis). Compared methods include CoMM (turquoise), PMR-Egger (magenta),
TWAS (blue), LDA MR-Egger (black), SMR (orange), and PrediXcan (purple). Simulations are performed
either in the absence (y=0; a, ¢, e) or in the presence of horizontal pleiotropic effect (y=0.001; b, d, f).
Either one SNP (a, b), 1% of SNPs (¢, d), or 10% SNPs (e, f) have non-zero effects on gene expression.



1Y
o

S - CoMM < -
C | PI(\)/IR—Egger e
—o— TWAS
1O _[{—e— LDA MR-Egger 0 |
o SMR o
—e— PrediXcan
< ° <
o ° o
8 o & :
5 o] / 2 / .
o o
o\ o\
S ] /. o 0/
[ ]
A u A °
S / S /
8 /0 s . .
© e L4 S e
© T T T T © T T T T
0.002 0.003 0.004 0.005 0.006 0.002 0.003 0.004 0.005 0.006
PVEZy PVEZy
c d
© ©
o ] o ]
To) To)
o ] o ]
< <
o o
o o
(% g n ¢ % g ] )
o o
N / N - /
o o
g | / g | /
/.
o |8 —1 —_— o s 1
© T T T T © T T T T
0.002 0.003 0.004 0.005 0.006 0.002 0.003 0.004 0.005 0.006
PVEZy PVEZy
e f
<
S 2 e . .
o\.
o ° o
5 g L | .
(q\] \
§ ° i .\. § g ] )
-
. N
o o
—o— PMR-Egger
© _|—e— LDA MR-Egger o |
© T T T T © T T T T
0.002 0.003 0.004 0.005 0.006 0.002 0.003 0.004 0.005 0.006
PVEZy PVEZy

Supplementary Figure 16. Power of different methods under various cross-gene simulation scenarios.
Power (y-axis) at a false discovery rate of 0.1 to detect the causal effect (a-d) or the horizontal pleiotropic
effect (e-f) 1s plotted against different causal effect size characterized by PVE,, (x-axis). Compared
methods include CoMM (turquoise), PMR-Egger (magenta), TWAS (blue), LDA MR-Egger (black), SMR
(orange), and PrediXcan (purple). Simulations are performed under different horizontal pleiotropic effect
sizes: (a) y=0; (b) y=0.0001; (c, e) y=0.0005; (d, f) y=0.001.
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Supplementary Figure 17. Power for testing causal effect by different methods under various cross-gene
simulation sparse settings where only a small proportion of SNPs are associated with the gene expression
level. Power (y-axis) at a false discovery rate of 0.1 to detect the causal effect is plotted against different
causal effect size characterized by PVE,, (x-axis). Compared methods include CoMM (turquoise), PMR-
Egger (magenta), TWAS (blue), LDA MR-Egger (black), SMR (orange), and PrediXcan (purple).
Simulations are performed either in the absence (y=0; a, ¢, e) or in the presence of horizontal pleiotropic
effect (y=0.001; b, d, f). Either one SNP (a, b), 1% of SNPs (¢, d), or 10% SNPs (e, f) have non-zero
effects on gene expression.
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Supplementary Figure 18. Boxplot displays causal effect estimates by PMR-Egger in the absence
or presence of horizontal pleiotropic effect. Simulations are performed under different horizontal
pleiotropic effect sizes (x-axis: y=0, y=0.0005 or y=0.001). For each horizontal pleiotropic effect
size, we examined three true causal effect sizes o=0 (magenta), 0.2 (turquoise), or 0.245 (purple),
which corresponds to PVE,~0, 0.4% and 0.6%, respectively. The horizontal blue dashed lines
represent the three true values of a. The box is drawn from the first and third quantile (25th and
75th percentile) with a horizontal line drawn in the middle to denote the median. The lowest point is
the minimum and the highest point is the maximum. PMR-Egger produces approximately unbiased
causal effect size estimates across different scenarios. 10000 replicates are included for each
simulation scenario.
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Supplementary Figure 19. Boxplot displays causal and horizontal pleiotropic effect estimates in cross-gene simulations by PMR-Egger when
randomly flipping the encoding at a fixed proportion of cis-SNPs, the proportion equals 10% (a, b), 30% (¢, d) and 50% (e, f). Simulations are
performed under different causal effect sizes (=0 (PVEzy=0), a=0.2(PVEzy=0.4%) or a=0.245 (PVEzy=0.6%)) and pleiotropy effect sizes (y=0,
y=0.0005 or y=0.001). The horizontal blue dashed lines represent the three true values of a (a, ¢, e) and y (b, d, ). In the boxplot, each box is drawn
from the first and third quantile (25th and 75th percentile) with a horizontal line drawn in the middle to denote the median. The lowest point is the
minimum and the highest point is the maximum. 10,000 replicates are included for each simulation scenario. The causal effect estimates are always
unbiased regardless of the pleiotropy effect size and the proportion of flipping coding. When there is no pleiotropy effect (y=0), the estimation of
pleiotropy effect is always unbiased regardless of the causal effect size and the proportion of flipping encoding. However, in the presence of
pleiotropy effect (y=0.0005,0.001), PMR-Egger seems to underestimate the pleiotropy effect, and more so with the increasing proportion of flipping
encoding. As expected, when the proportion of flipping encoding is 50%, the estimation of pleiotropy effect is always close to 0. Furthermore, the
strencth of underestimation seems unrelated with the causal effect size.
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Supplementary Figure 20. Quantile-quantile plot of -logl0 p-values from different methods for
testing the horizontal pleiotropic effect under null simulations, in various sparse settings where only a
small proportion of SNPs are associated with the gene expression level. Compared methods include
PMR-Egger (magenta) and LDA MR-Egger (black). Simulations are performed either in the absence
(PVE,~0; a, ¢, e) or in the presence of causal effect (PVE,,=0.6%; b, d, f). Either one SNP (a, b), 1%
of SNPs (¢, d), or 10% SNPs (e, f) have non-zero effects on gene expression. Only p-values from
PMR-Egger adhere to the expected diagonal line across a range of settings. Note that we do not
include MR-PRESSO into comparison here due to the relatively higher computation burden and it is
difficult in MR-PRESSO to pre-specify the number of simulated expected distribution and obtain the
exact p-values.
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Supplementary Figure 21. Quantile-quantile plot of -log10 p-values from cross-gene simulations of
different methods for testing the horizontal pleiotropic effect either in the absence or in the presence
of causal effect under null simulations. Compared methods include PMR-Egger (magenta), LDA
MR-Egger (black), and MR-PRESSO (dodger blue). Null simulations are performed under different
causal effect sizes characterized by PVE,,: (a) PVE,,~0; (b) PVE,~0.2%; (¢) PVE,~0.4%; and (d)
PVE,~0.6%. Only p-values from PMR-Egger adhere to the expected diagonal line across a range of
horizontal pleiotropic effect sizes. Due to heavy computational burden, we are only able to run
10,000 permutations for MR-PRESSO. Therefore, the minimal p-value from MR-PRESSO is 10-4.
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Supplementary Figure 22. Quantile-quantile plot of -logl10 p-values from cross-gene simulations of
different methods for testing the horizontal pleiotropic effect under null simulations, in various sparse
settings where only a small proportion of SNPs are associated with the gene expression level.
Compared methods include PMR-Egger (magenta) and LDA MR-Egger (black). Simulations are
performed either in the absence (PVE,,=0; a, ¢, e) or in the presence of causal effect (PVE,,=0.6%; b,
d, f). Either one SNP (a, b), 1% of SNPs (¢, d), or 10% SNPs (e, f) have non-zero effects on gene
expression. Only p-values from PMR-Egger adhere to the expected diagonal line across a range of
settings. Note that we do not include MR-PRESSO into comparison here due to the relatively higher
computation burden and it is difficult in MR-PRESSO to pre-specify the number of simulated
expected distribution and obtain the exact p-values.
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Supplementary Figure 23. Power of different methods for identifying horizontal pleiotropic effect, in various
sparse settings where only a small proportion of SNPs are associated with the gene expression level. Compared
methods include PMR-Egger (magenta) and LDA MR-Egger (black). Power (y-axis) at a false discovery rate
of 0.1 to detect the horizontal pleiotropic effect is plotted against sparsity levels, either in the absence
(PVE,,=0; a) or in the presence of causal effect (PVE,=0.6%; b). In terms of sparsity level (x-axis), either one
SNP, 1% SNPs, 10% SNPs and 100% SNPs have non-zero effects on gene expression.
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Supplementary Figure 24. Power of different methods for identifying horizontal pleiotropic effect under
various model misspecifications of the horizontal pleiotropic effect. Compared methods include PMR-Egger
(magenta) and LDA MR-Egger (black). On both panels, power (y-axis) to detect the horizontal pleiotropic
effect is measured at a false discovery rate of 0.1 for a fixed horizontal pleiotropic effect size y=0.001. (a)
Power is plotted against the proportion of SNPs displaying zero horizontal pleiotropy effects (10%, 30%, or
50%). (b) Power is plotted against the proportion of SNPs exhibiting negative horizontal pleiotropy effects
(10%, 30%, or 50%), whereas the remaining proportion of SNPs exhibiting positive effects.
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Supplementary Figure 25. Power of different methods for identifying horizontal pleiotropic effect, in various
cross-gene simulation sparse settings where only a small proportion of SNPs are associated with the gene
expression level. Compared methods include PMR-Egger (magenta) and LDA MR-Egger (black). Power (y-
axis) at a false discovery rate of 0.1 to detect the horizontal pleiotropic effect is plotted against sparsity levels,
cither in the absence (PVE,,~0; a) or in the presence of causal effect (PVE,=0.6%; b). In terms of sparsity
level (x-axis), either one SNP, 1% SNPs, 10% SNPs and 100% SNPs have non-zero effects on gene
expression.
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Supplementary Figure 26. Power of different methods for identifying horizontal pleiotropic effect in cross-
gene simulations under various model misspecifications of the horizontal pleiotropic effect. Compared
methods include PMR-Egger (magenta) and LDA MR-Egger (black). On both panels, power (y-axis) to
detect the horizontal pleiotropic effect is measured at a false discovery rate of 0.1 for a fixed horizontal
pleiotropic effect size y=0.001. (a) Power is plotted against the proportion of SNPs displaying zero
horizontal pleiotropy effects (10%, 30%, or 50%). (b) Power is plotted against the proportion of SNPs
exhibiting negative horizontal pleiotropy effects (10%, 30%, or 50%), whereas the remaining proportion of
SNPs exhibiting positive effects.
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Supplementary Figure 27. Boxplot displays horizontal pleiotropic effect estimates by PMR-Egger in
the absence or presence of causal effect. Simulations are performed under different causal effect sizes
(x-axis: a=0 (PVEzy=0), 0=0.2 (PVEzy=0.4%) or 0=0.245 (PVEzy=0.6%)). For each causal effect
size, we examined three true horizontal pleiotropic effect sizes y=0 (magenta), 0.0005 (turquoise), or
0.001 (purple). The horizontal blue dashed lines represent the three true values of y. In the boxplot,
each box is drawn from the first and third quantile (25th and 75th percentile) with a horizontal line
drawn in the middle to denote the median. The lowest point is the minimum and the highest point is the
maximum. PMR-Egger produces approximately unbiased pleiotropy effect size estimates across
different scenarios. 10,000 replicates are included for each simulation scenario.
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Supplementary Figure 28. Quantile-quantile plot of -logl0 p-values from different methods in the TWAS
application to WTCCC. Compared methods include CoMM (turquoise), PMR-Egger (magenta), TWAS
(blue), LDA MR-Egger (black), SMR (orange), and PrediXcan (purple). Top panels: Quantile-quantile plot
of -log10 p-values from different methods for testing the causal effect for five traits (CAD, CD, HT, RA and
T2D). Bottom panels: Quantile-quantile plot of -logl0 p-values from different methods for testing the
horizontal pleiotropic effect for the same five traits.
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Supplementary Figure 29. Quantile-quantile plot of -logl0 p-values from different methods for testing
causal effect in the TWAS application to 20 traits in GERA. Compared methods include CoMM (turquoise),
PMR-Egger (magenta), TWAS (blue), LDA MR-Egger (black), SMR (orange), and PrediXcan (purple).
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Supplementary Figure 30. Quantile-quantile plot of -logl10 p-values from different methods for testing
causal effect in the TWAS application to 8§ traits in UK Biobank. Compared methods include CoMM
(turquoise), PMR-Egger (magenta), TWAS (blue), LDA MR-Egger (black), SMR (orange), and

PrediXcan (purple).
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Supplementary Figure 31. The scatter plots of -logl0 p-values across genes for the 7 WTCCC
traits. The p-values from phenotype residual analysis (y-axis) is plotted against the p-values from
analysis that treating the top 10 PCs as fixed covariates.
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Supplementary Figure 32. The scatter plots of -log10 p-values across genes for the 22 GERA traits.
The p-values from phenotype residual analysis (y-axis) is plotted against the p-values from analysis
that treating the top 10 PCs as fixed covariates.
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Supplementary Figure 33. The scatter plots of -logl0 p-values across genes for the 10 UKBB
traits. The p-values from phenotype residual analysis (y-axis) is plotted against the p-values from
analysis that treating the top 10 PCs as fixed covariates. Note that we only used the genes locating
at first 5 chromosomes (4977 total) given the relatively high computation burden for the large
sample UKBB data.
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Supplementary Figure 34. Bar plots display overlap of genes detected by PMR-Egger and CoMM. (a)
Jaccard index measures relatively high overlap between genes detected by PMR-Egger and genes detected
by CoMM. (b) Mean of the estimated |a/y| for the set of genes that are detected by both CoMM and PMR-
Egger (“overlapped”), and for the set of genes that only detected by CoMM (“CoMM only”), across 13 traits
that have at least 2 detected associations. In (b), data are presented as meantstandard error of the mean
(SEM), with p-values calculated based on Wilcoxon rank sum test. The traits on x-axis are: Ast, Asthma;
Dys, Dyslipidemia; MD, Macular Degeneration; PC, Platelet count; BMD, Bone mineral density; RBC, Red
blood cell count; FFC, FEV1-FVC ratio; EC, Eosinophils count; FVC, Forced vital capacity; WBC, White
blood cell count.
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Supplementary Figure 35. Regional association plots with lead variants indicated by a purple diamond at
12924.12. The association of an individual variant is plotted as -logl0 p-value against chromosomal
position. The y axis shows the recombination rate estimated from 1000 Genomes Project EUR data. The
identified gene SH2B3 by PMR-Egger for Platelet count is highlighted in yellow with p-value showing in
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Supplementary Figure 37. Regional association plots with lead variants indicated by a purple diamond at
3929. The association of an individual variant is plotted as -logl0 p-value against chromosomal position.
The y axis shows the recombination rate estimated from 1000 Genomes Project EUR data. The identified

gene TFRC by PMR-Egger for RDW is highlighted in yellow with p-value showing in the top right.
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Supplementary Figure 38. Bar plots display comparison of standard TWAS/MR methods with the TWAS fine-
mapping method FOCUS. Results are shown for the GERA data (a, b) and the UKBiobank data (¢, d). (a,
¢): For each method (x-axis), we computed the average -logl0 p-value for genes in the 90% FOCUS credible
gene set (red bars) and the average -logl0 p-value for genes outside the FOCUS credible gene set (green
bars). For both (a) and (c), data are presented as meantSEM. (b, d): For each method (x-axis), we also
computed the proportion of genes in the 90% FOCUS credible gene set that are detected by the method
(red bars) and the proportion of genes outside the FOCUS credible gene set detected by the method (green
bars). The significant genes detected by each method is declared based on the Bonferroni threshold
(0.05/15810). The number of significant genes/total genes in each category is also shown on top of the bars.
Note that the number of total genes inside or outside the credible set is different across different methods, as
FOCUS analyzes independent non-overlapping genomic regions that harbor at least one significant TWAS gene
declared by the corresponding method. Overall, the PMR-Egger results are highly consistent with that of
FOCUS, more so than the other methods.
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Supplementary Figure 39. Quantile-quantile plot of -logl0 p-values from different methods for testing
horizontal pleiotropic effect in the TWAS application to 20 traits in GERA. Compared methods include
CoMM (turquoise), PMR-Egger (magenta), TWAS (blue), LDA MR-Egger (black), SMR (orange), and

PrediXcan (purple).
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Supplementary Figure 40. Quantile-quantile plot of -logl0 p-values from different methods for testing
horizontal pleiotropic effect in the TWAS application to 8 traits in UK Biobank. Compared methods
include CoMM (turquoise), PMR-Egger (magenta), TWAS (blue), LDA MR-Egger (black), SMR
(orange), and PrediXcan (purple).
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Supplementary Figure 41. Scatter plot of -log10 p-values by PMR-Egger for testing causal effect
versus -logl10 p-values by PMR-Egger for testing horizontal pleiotropic effect across genes for each
of four traits in WTCCC. Each dot represents one gene. Only traits with at least one gene that has
either a significant causal effect or a significant horizontal pleiotropic effect are displayed.
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Supplementary Figure 42. Scatter plot of -logl0 p-values by PMR-Egger for testing causal effect
versus -logl0 p-values by PMR-Egger for testing horizontal pleiotropic effect across genes for each of
10 traits in GERA. Each dot represents one gene. Only traits with at least one gene that has either a

significant causal effect or a significant horizontal pleiotropic effect are displayed.
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Supplementary Figure 43. Scatter plot of -log10 p-values by PMR-Egger for testing causal effect versus -
log10 p-values by PMR-Egger for testing horizontal pleiotropic effect across genes for each of 10 traits in
UK Biobank. Each dot represents one gene. Only traits with at least one gene that has either a significant

causal effect or a significant horizontal pleiotropic effect are displayed.
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Supplementary Figure 44. Quantile-quantile plot of -log10 p-values for testing the causal effect in
null simulations, under a variance component modeling assumption for the horizontal pleiotropic
effects. In simulations, each y follows the normal distribution with variance equals 0.001/556. The p-
values are calibrated if we knew the true hyper-parameters (a). However, due to the uncertainty in

hyper-parameter estimates, p-values become are overly conservative when we estimate hyper-
parameters (b).
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Supplementary Figure 45. Comparison of the summary-data version of PMR-Egger with the individual-data version of
PMR-Egger. The LD matrix in the eQTL data is directly computed using the individual level from the eQTL study. The LD
matrix in the GWAS data is computed through four different ways: by using individual-level genotypes from either all
individuals in the GWAS (n=2,000; red), 10% of randomly selected individuals from the GWAS (n=200; black), the
individuals with European ancestry from the 1,000 Genomes project (n=503; blue), or the individuals with African ancestry
from the 1,000 Genomes project (n=611; inset; yellow). We examined both the causal gene association test (a, c, e, g) and the
pleiotropy test (b, d, f, h). In each case, we plotted -log10 p-values from the summary-data version of PMR-Egger (y-axis)
versus-logl0 p-values from the summary-data version of PMR-Egger (x-axis). Simulations are performed under different
causal effect and horizontal pleiotropic effect sizes: PVE,,=0,y=0 (a, b); PVE,~0,y=0.0005 (¢, d); PVE,~0.6%,y=0 (e, f);
PVE,~=0.6%, y=0.0005 (g, h). As expected, except for the African reference panel, the results from the summary-data version
of PMR-Egger are consistent with that from the individual-data version of PMR-Egger.



Supplementary Tables

Supplementary Table 1. Genomic inflation factor for three GWAS data.

Causal gene effect

Pleiotropy_effect

Trat FGene CoMM Eg"gi; TWAS  PrediXcan L%’Sg’:}"f‘ SMR Eg"gRer "DE'SQ'\:rR'
TID 15584 114 095 120 1.21 1826 106 101 3553
cD 15584 114 104 123 1.24 1773 1.09 097 3459
RA 15580 113 094 122 1.23 1760 109 096  34.80
wTCCC BD 15582 122 094 125 1.26 1776 1.02 096  34.22
T2D 15583 114 095 122 1.21 1809 098 101  36.00
CAD 15584 120 093 128 1.26 1856 094 093  34.00
HT 15581 123 096 131 131 1821 097 096 3411
Asthma 15162 125 105 110 1.06 3360 098 109 7219
Allergic Rhinitis 15154 111 095  1.06 1.05 3213 099 096 7218
CARD 15146 112 096  1.09 111 3374 102 099 7219
Cancers 15135 126 113  1.09 1.07 3436 102 100 7219
Depressive 15931 095 102  1.05 1.02 3395 096 093 7001
Disorder
Dermatophytosis 15128  0.95 093  1.01 1.02 3364 095 105 7218
T2D 15123 126 098 115 1.10 3423 105 102 7219
Dyslipidemia 15119 113 1.07 114 1.16 3289 105 106 7219
HT 15117 162 099 116 1.15 3474 105 104 7219
Hemorrhoids 15110 1.02 095  1.05 1.03 3340 097 095 7219
Abdominal Hernia 15104  0.99 1.01 1.03 1.03 33.65 0.97 1.03 72.19
GERA Insomnia 15094 094 096  1.06 1.07 3371 096 104 7219
Iron Deficiency ~ 15088 1.09 093  1.05 1.05 3354 098 097 7219
'”istflgfrfm"‘éve' 15080 097 095 102 101 3302 096 104 7218
De'g';feﬁzon 15075 118 1.08 1.03 1.03 3340 099 104 7219
Osteoarthritis 15072 0.94 0.93 1.08 1.06 33,51 1.01 0.96 72.19
Osteoporosis 15069 1.08 092  1.04 1.03 3233 097 105 7219
PVD 15065 111 093 101 1.02 3330 097 105 7219
PepticUlcer 15061 096 094  1.03 1.03 3364 095 093 7218
Pj.yc"iat”c 15057 094 095 107 107 3389 101 101  69.82
isorders
Stress Disorders 15055 1.07  0.92  0.98 1.00 3247 096 092 7219
Varicose Veins 15051 1.01  0.96  1.06 1.02 3334 094 093 7219
Height 15761 161 118 217 1.46 1665 171 171  29.85
Platelet Count 15765 1.87 131 146 1.26 1525 141 145  26.07
Bone Mineral - 5761 945 113 127 11 1048 113 113 17.75
Density
Red Eg’u"ndt Cell 15751 171 118 164 1.22 1412 136 138 2345
Ukbipae FEVIFVCrato 15747 159 117 13 111 1291 119 119 1948
BMI 14633 168 112 138 1.16 1459 129 135 2595
RDW 15744 165 116 142 1.09 1393 118 122 2259
Eosinophils Count 15740 1.9 134  1.46 1.14 1433 123 131 2242
Forced Vital 45755 978 13 138 113 1301 125 114 2217
Capacity
Whiteblood cell 15709 176 125 138 112 1393 117 132 2289

count




Supplementary Table 2. Number of significant genes for three GWAS data under
Bonferroni correction.

Causal gene effect Pleiotropy_effect

et YO comm YR was precixean OAMR sy PR LDAMR:
TiD 15584 151 137 62 42 4539 4 11 6860
CD 15584 14 10 7 7 4586 0 0 6797
RA 15580 81 81 16 10 4601 1 11 6773
WTCCC BD 15582 0 0 0 0 4712 0 0 6890
T2D 15583 1 0 1 0 4565 0 0 6851
CAD 15584 1 1 1 1 4953 0 0 7206
HT 15581 0 0 0 0 5512 0 0 8020
Asthma 15162 6 5 3 4 6468 4 0 8928
Allergic Rhinitis 15154 3 2 0 1 6356 0 0 9010
CARD 15146 0 0 0 0 6358 0 0 8943
Cancers 15135 34 28 8 4 6500 1 1 9017
Depressive Disorder 15131 0 0 0 0 6480 0 0 8752
Dermatophytosis 15128 0 0 0 0 6465 0 1 8876
T2D 15123 3 1 2 1 6529 0 0 8979
Dyslipidemia 15119 63 57 11 8 6392 0 10 9139
HT 15117 4 3 1 0 6564 0 0 9042
Hemorrhoids 15110 0 0 0 0 6422 0 0 8801
Abdominal Hernia 15104 2 2 0 0 6508 0 1 8894
GERA Insomnia 15094 0 0 1 0 6483 0 0 8884
Iron Deficiency 15088 0 0 0 0 6451 0 0 8855
rdone 15080 0 0 0 0 6384 0 0 8918
Macular Degeneration 15075 32 28 1 2 6458 0 8 8900
Osteoarthritis 15072 0 0 0 0 6460 0 0 8895
Osteoporosis 15069 1 0 0 0 6404 0 0 8797
PVD 15065 1 1 0 0 6386 0 0 8909
Peptic Ulcer 15061 0 0 0 0 6449 0 0 8888
Psychiatric disorders 15057 0 0 0 0 6443 0 0 8693
Stress Disorders 15055 0 0 0 0 6318 0 0 8834
Varicose Veins 15051 0 0 1 0 6464 0 0 8945
Height 15761 1295 1008 285 172 3802 26 170 5509
Platelet Count 15765 645 499 155 101 3606 13 123 5171
Bone Mineral Density 15761 146 108 29 14 2933 3 15 4036
Red Blood Cell Count 15751 497 353 145 81 3417 8 92 4928
UKBiobank FEV1-FVC ratio 15747 97 51 28 12 3258 1 27 4520
BMI 14633 240 173 47 31 3533 2 28 4971
RDW 15744 247 183 78 51 3413 7 57 4835
Eosinophils Count 15740 295 223 111 48 3548 8 57 4800
Forced Vital Capacity 15735 118 82 26 16 3243 3 11 4574
White blood cell count 15729 182 116 54 34 3363 4 46 4793




Supplementary Table 3. Summary of gene-based fine mapping results in three GWAS

data by FOCUS
#Analyzed regions . .
. #Analyze  with multivariate . .#.T WAS- . #genes in #igenes in
Trait - RN significant gene in  analyzed  90% credible
dregions TWAS- significant . :
gene analyzed regions regions gene sets
TiD 7 6 28 210 4
CD 3 2 7 24 1
WTCCC
RA 2 2 11 42 1
CAD 1 1 1 12 0
Allergic Rhinitis 1 1 2 5 0
Cancers 4 4 27 81 4
GERA
Dyslipidemia 9 9 42 167 8
Abdominal Hernia 1 1 2 9 1
Macular Degeneration 2 2 4 15 0
Height 169 150 946 3559 247
Platelet Count 86 75 462 1991 140
Bone Mineral Density 28 24 97 461 32
Red Blood Cell Count 56 50 343 1426 89
FEVI-FVC ratio 15 13 a7 309 20
UKBiobank
BMI 33 30 171 923 62
RDW 45 33 199 1196 76
Eosinophils Count 48 38 210 1223 54
Forced Vital Capacity 15 14 83 422 30
White blood cell count 20 19 127 495 29

Summary of fine mapping results from FOCUS in three GWAS data sets. For each trait in turn
(listed in rows), we performed FOCUS analysis on independent non-overlapping genomic regions
that harbor on least one genome-wide-significant SNP (p < 5 x 1078) and at least a significant
TWAS gene under Bonferroni correction. In this table, the significant TWAS genes are declared
based on PMR-Egger results; the other parallel FOCUS analyses based on the other corresponding
MR methods are not shown in this table. The table lists the number of analyzed regions (3 column),
number of analyzed regions that contain multiple significant genes detected by PMR-Egger (4"
column), number of significant TWAS genes in the analyzed regions (5" column), the number of
total genes analyzed in these regions (6™ column) and the number of genes in the 90% credible set

by FOCUS (7" column).



10

11

12

13

14

15

16

17

Supplementary References

Liu, C., Rubin, D. B. & Wu, Y. N. Parameter expansion to accelerate EM: the PX-EM algorithm.
Biometrika 85, 755-770 (1998).

Berzuini, C., Guo, H., Burgess, S. & Bernardinelli, L. A Bayesian approach to Mendelian
randomization with multiple pleiotropic variants. Biostatistics, 1-16 (2018).

Berzuini, C., Dawid, P. & Bernardinell, L. Causality: Statistical perspectives and applications.
(John Wiley & Sons, 2012).

Dawid, A. P. Causal inference without counterfactuals. Journal of the American statistical
Association 95, 407-424 (2000).

Dawid, A. P. Statistical causality from a decision-theoretic perspective. Annual Review of
Statistics and Its Application 2, 273-303 (2015).

Gusey, A. et al. Integrative approaches for large-scale transcriptome-wide association studies.
Nature genetics 48, 245-252 (2016).

Gamazon, E. R. et al. A gene-based association method for mapping traits using reference
transcriptome data. Nature genetics 47, 1091-1098 (2015).

Yang, C. et al. CoMM: a collaborative mixed model to dissecting genetic contributions to
complex traits by leveraging regulatory information. Bioinformatics,
doi:10.1093/bioinformatics/bty865 (2018).

Zeng, P. & Zhou, X. Non-parametric genetic prediction of complex traits with latent Dirichlet
process regression models. Nature communications 8, 456 (2017).

Nagpal, S. et al. TIGAR: An Improved Bayesian Tool for Transcriptomic Data Imputation
Enhances Gene Mapping of Complex Traits. The American Journal of Human Genetics (2019).
Zhou, X., Carbonetto, P. & Stephens, M. Polygenic Modeling with Bayesian Sparse Linear Mixed
Models. Plos Genetics 9, : €1003264. (2013).

Zhu, Z. et al. Integration of summary data from GWAS and eQTL studies predicts complex trait
gene targets. Nature genetics 48, 481-487 (2016).

Kanai, M. et al. Genetic analysis of quantitative traits in the Japanese population links cell
types to complex human diseases. Nat Genet 50, 390-400, doi:10.1038/s41588-018-0047-
6 (2018).

Astle, W. J. et al. The Allelic Landscape of Human Blood Cell Trait Variation and Links to
Common Complex Disease. Cell 167, 1415-1429 e1419, doi:10.1016/j.cell.2016.10.042
(2016).

Wood, A. R. et al. Defining the role of common variation in the genomic and biological
architecture of adult human height. Nat Genet 46, 1173-1186, doi:10.1038/ng.3097
(2014).

Wainberg, M. et al. Opportunities and challenges for transcriptome-wide association
studies. Nat Genet 51, 592-599, doi:10.1038/s41588-019-0385-z (2019).

Mancuso, N. et al. Probabilistic fine-mapping of transcriptome-wide association studies.
Nat Genet 51, 675-682, d0i:10.1038/s41588-019-0367-1 (2019).



	Supplementary text
	aFigS1
	aFigS2
	aFigS3
	aFigS4
	aFigS5
	aFigS6
	aFigS7
	aFigS8
	aFigS9
	aFigS10
	aFigS11
	aFigS12
	aFigS13
	aFigS14
	aFigS15
	aFigS16
	aFigS17
	aFigS18
	aFigS19
	aFigS20
	aFigS21
	aFigS22
	aFigS23
	aFigS24
	aFigS25
	aFigS26
	aFigS27
	aFigS28
	aFigS29
	aaFigS30
	aFigS31
	aFigS32
	aFigS33
	aFigS34
	aFigS35
	aFigS36
	aFigS37
	aFigS38
	aFigS39
	aFigS40
	aFigS41
	aFigS42
	aFigS43
	aFigS44
	aFigS45
	Supplementary text (Table)
	Supplementary reference



