
Reviewers' comments: 

Reviewer #1 (Remarks to the Author): 

Overview 

======= 

The manuscript describes an approach for identifying a causal effect of gene expression on a 

complex trait using a likelihood framework called PMR-Egger. 

The assumptions underlying the likelihood framework is relaxed compared with previous (strict) 

MR approaches in that it allows for a particular direct 

effect of SNPs on trait (ie single shared horizontal pleiotropic effect). The approach is sound and 

unifies various approaches in a single statistical model. 

The authors demonstrate that PRM-Egger is unbiased under various simulations and apply it to 

GWAS data from WTCCC, GERA, and UKBB studies. I think the 

approach is quite nice and the simulations are thorough; however, I do have some comments that 

should be addressed. 

Main comments 

============= 

1. Across all simulations the authors used a single gene, BACE1, as a basis for comparison. There 

is some justification for why this gene was selected, but 

I think it would be much more informative to see the performance of PMR-Egger (and its 

comparison) across genes selected at random. The reason 

being that LD patterns vary dramatically and I worry that results are not reflective of how it will be 

used in real data. 

2. It isn't clear to me if other methods are compared using respective individual-level approach or 

summary-based approaches. This should be 

much more explicit (both for simulations and real data). 

3. Why are results for LDA MR-Egger so extreme? LDA MR Egger is essentially TWAS but with an 

added intercept, which should reduce overall 

power. Based on my reading it also estimates an additional variance term compared with standard 

TWAS, which should further reduce its power in 

comparison. I understand that the authors did not design MR Egger, but the results seem more 

like a bug. 

4. The authors perform nice simulations demonstrating unbiased estimates of the pleiotropic effect 

under various perturbations to model assumptions. 

Can the authors perform a set of simulations that randomly flips the encoding at a subset of 

genotypes prior to the estimation procedure. It is not 

clear how the approach can know a-priori what the correct encoding is to estimate the directional 

effect over all data. 

5. In real data, authors should include genotyping PCs to minimize the impact of 

ancestry/stratification. While this doesn't fit the model as explicitly 

defined (single mu_x) it should be estimable and adjusted for under a fixed-effect model (mu_x = 

Xbeta) as is standard in other approaches. 

6. Why does TWAS have such a large average (and std) time for its first entry in Table 1? Is this 

the result of a single outlier? 

7. Genomic control estimates reflect differential power in WTCCC/GERA vs UKBB studies 



8. The manuscript describes several examples where associations go away after controlling for 

nearby genes as evidence in support of pleiotropic effects. 

An alternative and simpler explanation for these examples is that SNPs used in the model are 

simply tagging nearby eQTLs (or some molecular feature) 

rather than directly impacting downstream trait through other pathways. This approach is modeled 

in a recent method FOCUS. 

9. FOCUS is a recently published tool that attempts to control for pleiotropic effects in TWAS by 

jointly modelling multiple genes at a GWAS region. Can 

the authors compare, at a minimum, real-data results of PMR-Egger with FOCUS? 

10. The authors describe a very nice extension of their approach to estimate the causal (and 

pleiotropic) effect from summary data. Considering the summary 

based approach will likely be the most common use-case scenario it is important that the authors 

demonstrate its performance compared with the individual-level 

approach. 

Minor comments 

============ 

1. I would like to commend the authors for including their source code along with the manuscript. 

Reviewer #2 (Remarks to the Author): 

Thank you for the opportunity to review this manuscript. The authors have put together a method 

with the aim of distinguishing causality from horizontal pleiotropy in transcriptome-wide 

association studies. Whilst this is an area in the field where methods development is needed, I'm 

afraid that I have several concerns regarding this approach. This in particular is highlighted by the 

real data examples chosen in the study, amongst which the authors suggest their method 

implicates HERPUD1 as the causal gene responsible for an association signal with dyslipidemia on 

chromosome 16. This gene neighbors CETP, perhaps the most well-known of lipid gene to date. I 

have attached my more detailed comments below in case the authors find them useful in refining 

their manuscript. 

Major comments: 

Page 6 – The authors suggest that Cochran’s Q can test for horizontal pleiotropy, although this is 

misleading. This test is commonly used to assess heterogeneity in 2-sample MR analyses, however 

the presence of heterogeneity does not mean that a causal relationship does not underly an 

association. I recommend that this should be removed. 

Page 8 – At the start of the methods section the authors refer to gene expression as an 

‘explanatory variable’ in their analysis. I assume they mean it’s being treated as their ‘exposure’ in 

an MR setting? 

Page 10 – My main concern with this method is that it relies on an assumption used in rare variant 

analyses (i.e. the burden test method) that variants are independent. The authors state that under 

this assumption their model ‘reduces to the commonly used MR-Egger regression model’, which of 

course relies of the assumption of independent instruments. Moreover, in a conventional MR 

setting the MR-Egger approach only becomes powerful in terms of distinguishing horizontal 

pleiotropy when many (i.e. dozens) of independent genome-wide (strong) instruments are used. 

This is of course incredibly unrealistic for cis-eQTL, particularly using a sample size of n=465. 

I recommend that the authors test this implicitly in their paper i.e. simulating a correlation 

structure amongst eQTL and assessing whether false positive rates increase in the presence of 



higher correlation. If it does then perhaps incorporating a reference panel, similar to conventional 

2-sample MR analyses, may assist in removing tightly correlated instruments that may bias 

findings. 

Page 26 – In the real data application of their method, the authors state that ‘Overall, by 

controlling for horizontal pleiotropic effects, PMR-Egger detected many likely causal genes that the 

other methods failed to detect.’ Conventionally these sections of papers concern cherry-picked 

examples where their method outperforms competitors. However, I find the examples quite 

concerning. 

The first 2 examples are both in the HLA region of the genome (C2 & HLA-F), which is a region of 

the genome many previous approaches do not attempt to investigate due to the extensive LD 

structure here making disentangling causal genes extremely problematic. I am therefore very 

skeptical that these genes are likely the causal genes for association signals in this region, 

particularly giving concerns regarding independent eQTL not being accounted for. For example, did 

the authors assess whether eQTL for these genes in their dataset are also eQTL for various 

neighboring genes? My guess is that there would be a lot of genes where this is the case. I would 

strongly recommend choosing genes outside of HLA to showcase your method. 

Even more alarming is the third example – which is HERPUD1 and its association with dyslipidemia. 

The authors state this is a ‘well-known lipid-related gene’ and cite 2 genetic association studies. I 

was unable however to find this gene symbol in either study. It may be tucked away in the 

supplementary material somewhere. However, I stopped looking when discovering that this gene 

neighbors CETP, which is actually a well-known lipids gene. The association signal at the locus is 

therefore most likely due to CETP, and HERPUD1 I imagine is simply co-expressed with it. I would 

again strongly encourage the authors to take this example out of their manuscript and consider 

alternatives. Again, across ~20,000 coding genes some cherry-picking to best showcase a method 

is not uncommon in these types of studies. However, this makes the choice of these 3 examples 

slightly worrying. 

Minor comments: 

Page 5 – ‘multiple independent/near-independent SNP instruments’ – strictly instrumental 

variables for established 2-sample MR approaches should be independent – it’s only how one 

defines ‘independent’ that allows ‘near-independent’ SNPs to creep into analyses 

Page 5 – minor typo ‘suggest’ should be ‘suggests’ on last line 

Page 6 – ‘Cohran’s’ should be ‘Cochran’s’ 

Some of the grammer and language is slightly hard to follow throughout. 

Reviewer #3 (Remarks to the Author): 

The authors presented the developed method PMR-Egger, estimating both causal and pleiotropic 

effects simultaneously. PMR-Egger follows the framework and the assumptions of MR-Egger, but 

using likelihood test to do the tests and estimate the effects. The simulations showed PMR-Egger 

was well calibrated and had larger power than existing methods. The real data analysis showed 

more genes were detected by PMR-Egger. However, the underlying biological model is not clear to 

me. Therefore, I am not convinced about the results. 

Major comments 

1. The underlying biological model is unclear. From my understanding, there are not many causal 



variants that have effects on gene expressions. The PMR-Egger analyses were done under the 

assumption of polygenic model, which is opposite to what I thought. Moreover, they assumed 

many cis-SNPs may have pleiotropic effects, which I do not understand. 

1.1 We assume there are few causal variants, i.e. only a few top SNPs can capture most of the 

genetic variation. SMR assumes there is a single causal variant, selecting the top cis-SNP. In 

practice, the top cis-SNP may not capture all the genetic variation. Therefore, other methods, eg., 

“TWAS” or “PrediXcan” has larger power. I don’t think using all the cis-SNPs may gain much extra 

power. Even in the simulation where many causal variants were simulated, PMR-Egger does not 

show larger power under the causality model (Fig 2a). 

1.2 From my understanding, when there is a single causal variant, the causal variant has either 

causal (z->x->y) or pleiotropic effect (z->x, z->y). z represents SNP, x represents gene 

expression and y represents phenotype. We are unable to distinguish causality from pleiotropy. 

When there are multiple causal variants, the effect size of x on y (bxy) estimated at each causal 

variant can be various, linkage or multiple causal variants with distinct bxy. It is a complicated 

scenario, which is not easy to interpret. The proportion of multiple underlying causal variants 

seems to be smaller than a single causal variant. Using PMR-Egger under the assumption of 

polygenic model, the causal effect can be considered to be average of bxy at each causal variant. 

The horizontal effect can be considered to be deviation from the mean effect. In the manuscript, 

authors noticed that cis-SNPs were in high LD, “GSMR and MR-Egger are not feasible to obtain 

near independent SNPs”. Using GCTA-COJO, what is the proportion of genes that have multiple 

independent signals? 

1.3 The unrealistic assumptions may cause issues in the simulations and real data analysis. For 

example, 1) Fig 2a showed PMR-Egger had larger power than the other methods only when there 

was “horizontal pleiotropy”. The “horizontal pleiotropy” was not explicitly described in the 

manuscript. 2) The magnitude of horizontal pleiotropy was small, 1e-4 to 2e-3, which can be 

supposed to be deviation from the average bxy. 3) In the real data analysis, many genes 

described in the main text were from MHC region, e.g. C2, HLA-F, ZKSCAN4. The LD is 

complicated in MHC region, which is usually excluded in the analysis. 4) SMR results showed large 

p-values for HERPUD1 (p=0.1), ADAM15 (p=0.14) and DNAJC27-AS1 (p=0.05), which indicates 

GWAS p-values at the 3 top cis-SNPs are large. More analysis might be required to investigate 

whether genes have causal effects on phenotypes. 5) In terms of MAPT, I don’t think the 

horizontal pleiotropy can be concluded from the non-significance of PrediXcan analysis conditional 

on the flanking gene. Suppose two regression models, a) y = g1 + e and b) y | g2 = g1 + e, 

where y | g2 represents conditioning y on gene 2. I don’t think the non-significance of model (b) 

would indicate the horizontal pleiotropy. Is it because two genes are highly correlated? 6) without 

any regional figures for real data analysis, I am not convinced the identified genes have causal 

effects on phenotypes. 

2. The method requires the SNPs associated with gene expression. What is the threshold to select 

SNP instruments? 

3. Fig 1 showed p-values for SMR were strongly deflated, and p-values for LDA MR-Egger were 

largely inflated, which looks weird. P-value for SMR may be deflated, because SE is an 

approximation. Is the strong deflation because of weak instruments? The LDA MR-Egger is not too 

different from TWAS. For LDA MR-Egger, bxy = cov(gx, gy)/h2_x, where cov(gx, gy) = bzx*V^-

1*bzy, and h2_x = bzx*V^-1*bzx. For TWAS, rg_xy = Z_twas/sqrt(n*h2_y) = bzx*V^-1*bzy / 

sqrt(bzx*V^-1*bzx * bzy*V^-1*bzy) = cov(gx,gy)/sqrt(h2_x*h2_y). 

4. Table 1 shows PMR-Egger can deal with both individual-level and summary-level data. I am not 

sure whether “both” means accounting for sample overlap or simply accepting individual-level data 

and summary-level data as input. The summary-level data can be obtained from GWAS analysis. 

Therefore, all the methods are able to handle individual-level and summary-level data without 

accounting for sample overlap. 

5. Figure 4, 5 and 6 showed lambda for PMR-EGGER was not too different from SMR or PrediXcan, 

but the number of genes identified by PMR-Egger was much larger than the other methods. It is 

confusing to me. 

Minor comments: 



6. Page 8, “Methods – PMR-Egger overview”, I think it might be better to move the first 3 

paragraphs to results. 

7. Page 9, The authors stated “our model no longer requires the exclusion restriction condition of 

MR, because of fitted horizontal pleiotropy in the model”. The statement is not correct. PMR-Egger 

follows the assumptions of MR-Egger, e.g. INSIDE. Under INSIDE assumption, the causal effect is 

mediated by gene expression. 

8. Page 9, the font size for the last line is not the same. 

9. Page 10, the authors stated “at least one of two assumptions is not testable in practice.” I don’t 

think it is correct. For assumption 1), the method requires SNPs strongly associated with gene 

expression, at least genome-wide significant SNPs. 

10. Page 12, “N(0, PVE_zx/556)”, “PVE” was not described. 

11. Page 24, “increasing horizontal pleiotropy (Supplementary Fig. 2e, f)”, where are 

supplementary figure 2 e and f? 



Point-by-point Responses to Reviewer 1 

 

The manuscript describes an approach for identifying a causal effect of gene 

expression on a complex trait using a likelihood framework called PMR-Egger. 

The assumptions underlying the likelihood framework is relaxed compared with 

previous (strict) MR approaches in that it allows for a particular direct effect of 

SNPs on trait (ie single shared horizontal pleiotropic effect). The approach is 

sound and unifies various approaches in a single statistical model. The authors 

demonstrate that PRM-Egger is unbiased under various simulations and apply it 

to GWAS data from WTCCC, GERA, and UKBB studies. I think the approach is 

quite nice and the simulations are thorough; however, I do have some comments 

that should be addressed. 

 

Responses: Thank you for your positive review and constructive comments. Our 

detailed responses are listed below.  

 

Main comments 

1. Across all simulations the authors used a single gene, BACE1, as a basis for 

comparison. There is some justification for why this gene was selected, but I 

think it would be much more informative to see the performance of PMR-Egger 

(and its comparison) across genes selected at random. The reason being that LD 

patterns vary dramatically and I worry that results are not reflective of how it 

will be used in real data.  

 

Responses: Thank you for the comments. Following your suggestion, we have 

performed new cross-gene based simulations. Specifically, we randomly selected 

10,000 genes from the total 15,810 genes we analyzed. We extracted cis-SNPs for 

these genes, obtaining a median of 576 cis-SNPs per gene (min=11; max=7,409). For 

each gene in turn, we used its cis-SNPs in GEUVADIS to simulate its gene expression 

level. We also used the same set of cis-SNPs in GERA to generate the GWAS 

phenotype. Afterwards, we applied different methods to analyze these simulated data. 

By performing simulations in a cross-gene fashion, the new simulation results will 

reflect the varying LD pattern (and the varying number of cis-SNPs) across genes that 

we observe in real data sets. We performed cross-gene simulations under all 

simulation settings used for the single gene-based simulations, including settings with 

varying gene expression heritability, varying genetic architectures underlying gene 

expression, as well as varying causal and horizontal pleiotropy effects. The 

simulations details are provided in the updated Materials and Methods section (lines 

285-294 on page 14 and 15).  

The new results from cross-gene based simulations are consistent with (and 



almost identical to) the previous simulation results based on a single gene and are also 

consistent with previous real data results. These new cross-gene simulation results are 

provided in newly added Supplementary Fig. 7-12, 16-17, 19-20, 24-25, with results 

details provided in the updated Results section (lines 500-502 on page 24, lines 

538-540 on page 26, lines 564-566 on page 27, and lines 588-590 on page 28).     

 

2. It isn't clear to me if other methods are compared using respective 

individual-level approach or summary-based approaches. This should be much 

more explicit (both for simulations and real data). 

 

Responses: We apologize for not providing these important details, which are now 

provided in the updated Materials and Methods section (lines 399-408 on page 19 and 

20). Briefly, in all simulations and real data applications, methods that can use either 

individual-level data or summary statistics (PrediXcan and TWAS) are applied using 

individual-level data as input to ensure their optimal performance. Methods that can 

only use individual-level data (CoMM) are applied using individual-level data as 

input. Methods that can only use summary statistics (SMR and LDA MR-Egger) are 

applied using summary data as input. For PMR-Egger, we used individual-level data 

for all main analyses and used summary data only for validating the summary data 

version of our method described in the Discussion section.     

 

3. Why are results for LDA MR-Egger so extreme? LDA MR Egger is essentially 

TWAS but with an added intercept, which should reduce overall power. Based on 

my reading it also estimates an additional variance term compared with 

standard TWAS, which should further reduce its power in comparison. I 

understand that the authors did not design MR Egger, but the results seem more 

like a bug. 

 

Responses: Thank you for the comments. We had the exact same concern when we 

first saw our results from LDA MR-Egger a few years ago. We initially also thought it 

was a software coding bug, especially considering that LDA MR-Egger software was 

not publicly available when we started the project at that time and we had to 

implement our own version of LDA MR-Egger at the beginning. Therefore, we 

reached out to the first and last authors of the LDA MR-Egger paper last year. These 

authors kindly provided us with their code, which was used to produce all the results 

in the present study. We found that the results from authors’ code are identical to those 

obtained with our earlier implementation. In addition, we were also able to replicate 

all results in the LDA MR-Egger paper using either their code or our code. We further 

carefully investigated their model in detail and found out one key issue that makes 

LDA MR-Egger unsuitable for TWAS settings; that is, LDA MR-Egger treats the SNP 



effects on gene (the parameters β in our paper) as fixed effect. (Note that there is no 

variance component term in the LDA MR-Egger model. The “an additional variance 

term” mentioned in your comment perhaps is the standard error for the estimate of the 

marginal SNP on gene effects, which is denotated as ΣG in the LDA MR-Egger 

paper.) However, fixed effect size is not a good assumption for TWAS applications as 

the number of cis-SNPs is often on the same order as the number of individuals in the 

gene expression study. The fixed effect assumption, when paired with the two-stage 

inference procedure that ignores the estimation uncertainty in the first stage, makes 

LDA MR-Egger sensitive to the collinearity induced by SNP correlations caused by 

LD.  

Indeed, we found that the LDA MR-Egger results are ok if we follow the same 

simulation setting used in the LDA MR-Egger paper, where SNP genotypes are 

simulated based on an autoregressive covariance matrix with a relatively moderate 

correlation parameter. However, when such correlation parameter is set to be 

realistically high (>0.9) or if we use SNPs from real data to carry out the same set of 

simulations as described in the LDA MR-Egger paper, then the results from LDA 

MR-Egger software become extreme. Importantly, we can also recapitulate the 

extreme behavior of LDA MR-Egger in the real data applications as well as the new 

cross-gene based simulations described in the response to your first comment, 

suggesting that the LD pattern of BACE1 gene used in the previous single-gene based 

simulations is reasonably representative of LD structure across genes and is not the 

cause of extreme behavior of LDA MR-Egger.  

We showed these results described in the above paragraph in the Supplementary 

Fig. S2 in the previous version of manuscript. We also provided a short explanation of 

the extreme LDA MR-Egger behavior in the previous Results section. Based on the 

reviewer’s comments, we realized that the short explanation in the previous version of 

manuscript was not sufficient. Therefore, in the updated manuscript, we provided a 

more elaborated explanation in the Results section in line of what explained above 

(lines 456-468 on page 22).  

 

4. The authors perform nice simulations demonstrating unbiased estimates of the 

pleiotropic effect under various perturbations to model assumptions. Can the 

authors perform a set of simulations that randomly flips the encoding at a subset 

of genotypes prior to the estimation procedure. It is not clear how the approach 

can know a-priori what the correct encoding is to estimate the directional effect 

over all data. 

 

Responses: Thank you and we apologize for a potential miscommunication here. 

Previously, we performed simulations where we flipped the sign of the pleiotropic 

effect for a fixed proportion of SNPs; the proportions were set to be 10%, 30% or 50% 



to create three simulation settings. These three simulation settings include two 

approximately directional pleiotropy settings where the ratio of SNPs with negative vs 

positive effects is 1:9 (i.e. flip 10%) or 3:7 (i.e. flip 30%); and one balanced setting 

where the ratio of SNPs with negative vs positive effects is 5:5 (i.e. flip 50%). These 

flip sign simulations are effectively what you suggested above as flipping the 

genotype encoding.  

In these flip sign simulations, we found that the type I error for testing the causal 

effect remains calibrated in either the approximately directional pleiotropy settings or 

the balanced setting when horizontal pleiotropic effect is small or moderate 

(𝛾 = 1x10-4, 5x10-4, or 1x10-3; Supplementary Fig. 6a, b, c). However, when 

horizontal pleiotropic effect is large (𝛾 =2x10-3), as one would expect, the p-values 

from PMR-Egger becomes inflated, with the genomic control factor being 1.08, 1.31 

and 1.37, for settings where the ratio is 1:9, 3:7 and 5:5, respectively (Supplementary 

Fig. 6d). We did not previously examine estimates for the pleiotropic effect in the flip 

sign simulations since a single scalar 𝛾 employed in our model is no longer expected 

to capture the complex pleiotropic effects. Thus, we previously only showed that, in 

the presence of directional pleiotropic effect (i.e. absence of sign flipping), 

PMR-Egger can estimate the horizontal pleiotropic effect size accurately 

(Supplementary Fig. 23).  

Following your comment, we performed additional analysis to examine in detail 

the consequences of effect size flipping (newly added Supplementary Fig. 15). We 

found that (1) the causal effect estimates remain reasonably unbiased in both the 

approximately directional pleiotropy settings and the balanced setting (results added 

to lines 536-538 on page 25 and 26); (2) as expected, in the absence of directional 

pleiotropy, the estimates of pleiotropic effects are under-ward biased, more so in the 

balanced setting than in the approximately directional pleiotropy settings (results 

added to lines 586-588 on page 28); (3) the power for detecting pleiotropic effects in 

the hypothesis test also reduces in the absence of directional pleiotropy (results added 

to lines 582-583 on page 27). We have added these new results to the Results section.  

We also fully agree with the reviewer that we do not know a priori whether the 

directional pleiotropy assumption is correct or not. We have previously attempted to 

alleviate this restrictive modeling assumption by imposing an alternative modeling 

assumption on the horizontal effect sizes based on variance component assumption 

(which we termed as PMR variance component model in the Discussion). 

Unfortunately, we spent more than half a year on the PMR variance component model 

but couldn’t obtain calibrated p-values for causal effect testing at the genome-wide 

threshold for TWAS applications. We previously mentioned this important drawback 

of PMR-Egger in the second paragraph of Discussion. Following your comment, we 

modified that second paragraph to emphasize this important issue further (lines 

814-845 on pages 38-39).  



 

5. In real data, authors should include genotyping PCs to minimize the impact of 

ancestry/stratification. While this doesn't fit the model as explicitly defined 

(single mu_x) it should be estimable and adjusted for under a fixed-effect model 

(mu_x = Xbeta) as is standard in other approaches. 

 

Responses: Thank you for the comments. In the previous manuscript, we failed to 

mention that we regressed phenotypes on the top 10 genotyping PCs to obtain the 

phenotype residuals, which we used further to conduct TWAS analysis with different 

methods. Following your suggestion, we have added these important details in the 

Materials and Methods section (lines 324-330 on page 16; lines 345-350 on page 17; 

lines 364-366 on page 18). In addition, following your suggestion, we have performed 

additional analysis where we used the original phenotypes and included the top 10 

genotyping PCs as covariates in the model, in parallel to the previous analysis using 

phenotype residuals. The new results are largely consistent with previous results. The 

new results with PCs added as covariates are also provided in the updated 

Supplementary Fig. 29-31 and briefly described in the updated Results section (lines 

604-608 on pages 28-29). 

 

6. Why does TWAS have such a large average (and std) time for its first entry in 

Table 1? Is this the result of a single outlier? 

 

Responses: Thank you for spotting the error (due to typo), which we have corrected 

in the revised Table 1 (the correct result is 1.97+/-0.86).  

 

7. Genomic control estimates reflect differential power in WTCCC/GERA vs 

UKBB studies 

 

Responses: Indeed, the genomic control estimates reflect at least in part the different 

power in WTCCC/GERA vs UKBB studies under polygenic genetic architectures. We 

have mentioned this point in the revised manuscript (lines 621-624 on page 29).  

 

8. The manuscript describes several examples where associations go away after 

controlling for nearby genes as evidence in support of pleiotropic effects. An 

alternative and simpler explanation for these examples is that SNPs used in the 

model are simply tagging nearby eQTLs (or some molecular feature) rather than 

directly impacting downstream trait through other pathways. This approach is 

modeled in a recent method FOCUS.  

 

Responses: Thank you and we fully agree. In the updated Results section, we 



acknowledge that these listed examples are all focused on the special case where the 

false gene association with the trait disappears when conditional on a neighboring 

gene. It is not straightforward to provide general examples where the apparently false 

gene association with the trait may be explained by horizontal pleiotropic effects 

acted upon a gene far away, as it is extremely challenging to convincingly identify 

trans eQTL effects. Subsequently, we fully acknowledge that, in these examples we 

focused on, while it is possible SNPs display true horizontal pleiotropic effects 

through the neighboring gene, it is equally or more likely that SNPs used in the model 

are simply tagging nearby eQTLs of the causal gene (as employed in the approach of 

FOCUS1) and thus display apparent “horizontal pleiotropic effect” through the 

neighboring gene. Subsequently, the horizontal pleiotropic effect term in PMR-Egger 

may represent the apparent “horizontal pleiotropic effect” through SNP tagging to the 

nearby eQTLs of the causal gene, rather than the truly pleiotropic effect acted through 

other molecular pathways. Regardless of the interpretation of the pleiotropic effect 

term, however, we found it reassuring that by modeling the pleiotropic effect term in 

PMR-Egger can reduce false discoveries in the case of SNP tagging. We have updated 

the Results section to mention this important point and cited the FOCUS paper there 

(lines 771-784 on page 36). In addition, we have added FOCUS into the real data 

applications (more details in the response to your next comment below).  

 

9. FOCUS is a recently published tool that attempts to control for pleiotropic 

effects in TWAS by jointly modelling multiple genes at a GWAS region. Can the 

authors compare, at a minimum, real-data results of PMR-Egger with FOCUS? 

 

Responses: Thank you. Following your suggestion, we applied the recently published 

method FOCUS to all real data applications. During this analysis, we realized that it is 

not straightforward to directly compare the results of PMR-Egger with that of FOCUS, 

as the two are focused on two completely different tasks and thus use different 

analytic procedures. Specifically, PMR-Egger and the other TWAS/MR methods are 

directly applied to analyze all genes. In contrast, FOCUS is a fine mapping method 

that is used to analyze a small subset of genomic regions that contain at least one 

candidate gene and at least one significant SNP. As a result, FOCUS is often used to 

analyze a much smaller set of genes as compared to the other TWAS/MR methods. 

Besides this important difference, FOCUS is also a Bayesian approach that outputs a 

posterior inclusion probability for each gene instead of a p-value as its association 

evidence. Subsequently, it is not straightforward to compare PMR-Egger with FOCUS 

directly in terms of type I error control and power. However, through fine mapping, 

the identified genes in the credible set output by FOCUS likely represent the truly 

causal genes. Therefore, we can treat the FOCUS output results as the ground truth 

and compare different methods with FOCUS to infer their power in the real data 



applications.  

In each real data set, following the original FOCUS paper and the default setting of 

FOCUS, we focused on regions that harbor at least one genome-wide-significant SNP 

(𝑝 < 5 × 10−8), and for each TWAS/MR method (i.e. PMR-Egger, TWAS, PrediXcan, 

CoMM, or SMR), also harbor at least one TWAS gene that is declared significant by 

the given method. We analyzed a total of 653 genes in 30 regions in WTCCC, 892 

genes in 47 regions in GERA, and 35345 genes in 1441 regions in UK Biobank. We 

detected a total of 15, 35, and 2083 genes in the 90% credible set by FOCUS in 

WTCCC, GERA, and UK Biobank, respectively. Due to the small number of genes 

detected in the credible set in WTCCC, we focus our main comparison in the GERA 

and UK Biobank data. The FOCUS analysis details are provided in the Materials and 

Methods section (lines 409-417 on page 20).  

 In these real data applications, we found that the results from PMR-Egger is 

largely consistent with that of FOCUS, more so than the other TWAS/MR methods. 

Specifically, the average PMR-Egger -log10(p-value) for genes in the FOCUS 90% 

credible set is 22.43 in GERA and 10.67 in UK Biobank. The average -log10(p-value) 

of PMR-Egger is higher than CoMM (13.83 and 10.43), TWAS (5.71 and 7.55), 

PrediXcan (4.66 and 7.06) and SMR (NA for GERA, as no gene in the credible set is 

detected by SMR; 1.78 for UK Biobank). In addition, the difference of the average 

PMR-Egger -log10(p-value) between genes in the FOCUS credible set and genes 

outside is large (16.61 in GERA and 7.43 in UK Biobank). The -log10(p-value) 

difference is again larger than CoMM (8.41 and 6.02), TWAS (4.52 and 5.35), 

PrediXcan (3.50 and 4.74) and SMR (NA and 0.28). Similarly, the proportion of 

significant genes detected by PMR-Egger in the FOCUS credible set is 78% in GERA 

and 60% in UK Biobank. The proportion of significant genes by PMR-Egger is higher 

than CoMM (75% and 53%), TWAS (50% and 47%), PrediXcan (50% and 48%) and 

SMR (NA and 8%). In addition, the difference in the proportion of significant genes 

detected by PMR-Egger between genes in the FOCUS credible set and genes outside 

is high (53% in GERA and 41% in UK Biobank). This proportion difference by 

PMR-Egger is again higher than CoMM (51% and 39%), TWAS (46% and 36%), 

PrediXcan (50% and 35%) and SMR (NA and 1%). The new results are shown in 

Supplementary Table 3 and Supplementary Figure 41, with details provided in the 

Results section (lines 698-723 on page 33 and 34).  

 

10. The authors describe a very nice extension of their approach to estimate the 

causal (and pleiotropic) effect from summary data. Considering the summary 

based approach will likely be the most common use-case scenario it is important 

that the authors demonstrate its performance compared with the individual-level 

approach.  

 



Responses: Thank you for the comment. Following your suggestion, we validated our 

implementation of the summary statistics-based approach in simulations. Simulation 

details are provided in the updated Materials and Methods section (lines 274-284 on 

pages 14). Briefly, in the comparison, we constructed the SNP by SNP correlation 

matrix from three different reference panels: all individuals from the GWAS data; 10% 

randomly selected individuals from the GWAS data; individuals of European ancestry 

from the 1,000 Genomes project. We then applied the summary statistics based 

approach of PMR-Egger to each reference panel and compared results with the 

individual level data based approach of PMR-Egger that was applied to the complete 

data. As expected, we found that the p-values for testing the causal effects and the 

p-values for testing the pleiotropy effects are consistent between the summary 

statistics based approach and the individual data based approach. These new results 

demonstrate the correct implementation and effectiveness of the summary statistics 

based approach of PMR-Egger. The results are provided in the new Supplementary 

Fig. 43, with details provided in the Discussion section (lines 863-874 on pages 

40-41). The summary statistics based approach of PMR-Egger is also implemented in 

the open source software package along with the individual level data based approach.  

 

Minor comments 

1. I would like to commend the authors for including their source code along 

with the manuscript. 

 

Responses: Thank you. In addition to including the PMR-Egger source code along 

with the manuscript, we have also posted the software on R CRAN for easy 

installation and usage (https://cran.r-project.org/web/packages/PPMR/index.html). We 

will also keep updating the software in the previously provided github link.  
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Point-by-point Responses to Reviewer 2 

 

Thank you for the opportunity to review this manuscript. The authors have put 

together a method with the aim of distinguishing causality from horizontal 

pleiotropy in transcriptome-wide association studies. Whilst this is an area in the 

field where methods development is needed, I'm afraid that I have several 

concerns regarding this approach. This in particular is highlighted by the real 

data examples chosen in the study, amongst which the authors suggest their 

method implicates HERPUD1 as the causal gene responsible for an association 

signal with dyslipidemia on chromosome 16. This gene neighbors CETP, perhaps 

the most well-known of lipid gene to date. I have attached my more detailed 

comments below in case the authors find them useful in refining their 

manuscript. 

 

Responses: Thanks for your positive review and constructive comments. Our detailed 

responses are provided below.  

 

Page 6 – The authors suggest that Cochran’s Q can test for horizontal pleiotropy, 

although this is misleading. This test is commonly used to assess in 2-sample MR 

analyses, however the presence of heterogeneity does not mean that a causal 

relationship does not underly an association. I recommend that this should be 

removed. 

 

Responses: Thank you and we apologize for the error. We have removed that part of 

the sentence on Cochran’s Q (line 107-109 on page 6).  

 

Page 8 – At the start of the methods section the authors refer to gene expression 

as an ‘explanatory variable’ in their analysis. I assume they mean it’s being 

treated as their ‘exposure’ in an MR setting? 

 

Responses: Yes, indeed. For consistency, we have replaced “explanatory variable” 

with “exposure” throughout the text.  

 

Page 10 – My main concern with this method is that it relies on an assumption 

used in rare variant analyses (i.e. the burden test method) that variants are 

independent. The authors state that under this assumption their model ‘reduces 

to the commonly used MR-Egger regression model’, which of course relies of the 

assumption of independent instruments. Moreover, in a conventional MR setting 

the MR-Egger approach only becomes powerful in terms of distinguishing 

horizontal pleiotropy when many (i.e. dozens) of independent genome-wide 



(strong) instruments are used. This is of course incredibly unrealistic for 

cis-eQTL, particularly using a sample size of n=465.  

 

Response: We apologize for this miscommunication and for creating a false 

impression that our method only handles independent SNPs. In contrast, a key 

innovation of our method is its use of correlated SNPs and its ability to account for 

SNP correlation. Because PMR-Egger relies on a likelihood framework to account for 

SNP correlation, our method is able to extend the commonly applied MR-Egger to 

TWAS settings where SNPs are all highly correlated with each other. Through the 

likelihood framework, PMR-Egger also unifies many existing TWAS and MR 

methods into the same probabilistic modeling framework. We previously used a large 

proportion of the 3rd paragraph in the Introduction section to emphasize the 

importance of using correlated SNPs for TWAS applications. We previously listed this 

key modeling innovation in Table 1 along with many existing MR and TWAS 

methods. We previously described the use of correlated SNPs in the Methods section 

(method overview, simulations, and real data applications subsections). All our 

previous simulations and real data applications used all cis-SNPs that are correlated 

and in LD with each other. We also tried to convey this key message multiple times 

through Abstract, Results and Discussion sections.  

Following your comment, we realize that our previous emphasis was insufficient. 

We re-examined our text and we suspected this key miscommunication stems from a 

long sentence in the Methods section: “With the burden test assumption on 𝛾, in the 

special case where instruments are independent and treated as fixed effects and where 

a two-stage estimation procedure is used for inference, our model reduces to the 

commonly used MR-Egger regression model.”. When the middle part of the sentence, 

“in the special case where instruments are independent and treated as fixed effects 

and where a two-stage estimation procedure is used for inference”, is ignored, then 

this sentence does give the false impression that PMR-Egger is a simple probabilistic 

extension of MR-Egger and that PMR-Egger can only handle independent SNPs like 

MR-Egger does. The middle part, specifically “in the special case where instruments 

are independent and treated as fixed effects”, was trying to emphasize that only in 

these special cases PMR-Egger would reduce to MR-Egger; but PMR-Egger can 

accommodate more general cases and effectively extends MR-Egger to accommodate 

correlated instruments. To avoid miscommunication, we have rewritten that sentence 

into four short sentences: “With the burden test assumption on 𝛾, our model becomes 

a generalization of the commonly used MR-Egger regression model. In the special 

case where instruments are independent and treated as fixed effects and where a 

two-stage estimation procedure is used for inference, our model reduces to MR-Egger. 

However, our method can handle general cases where MR-Egger does not apply to. 

In particular, unlike MR-Egger, our method can handle multiple correlated 



instruments and perform inference in a likelihood framework.” (lines 197-203 on 

pages 10-11). In addition, we have added message related to correlated SNPs to 

multiple places throughout the text to emphasize the importance of modeling 

correlated SNPs. For example, we now explicitly mention that we used all cis-SNPs 

for PMR-Egger in all our analyses (lines 149-151 on page 8; lines 399-400 on page 

19). 

 

I recommend that the authors test this implicitly in their paper i.e. simulating a 

correlation structure amongst eQTL and assessing whether false positive rates 

increase in the presence of higher correlation. If it does then perhaps 

incorporating a reference panel, similar to conventional 2-sample MR analyses, 

may assist in removing tightly correlated instruments that may bias findings. 

 

Responses: Thank you. Indeed, as explained in the response to your previous 

comment, all our previous simulations and real data applications all cis-SNPs – these 

SNPs are all highly correlated with each other due to LD. Following TWAS tradition, 

we did not perform any pruning for most TWAS methods including 

PMR-Egger/TWAS/PrediXcan/CoMM. In the simulations, the eQTLs were always 

simulated at random; thus, in the simulation setting where there are multiple eQTLs, 

these eQTLs were also correlated with each other due to LD. In the summary statistics 

version of our method, we also used a reference panel to compute SNP correlations. 

To avoid future confusion, we have further emphasized this important point of 

modeling correlated SNPs throughout the text (details in the response to your previous 

comments). For example, we now explicitly mention that we used all cis-SNPs for 

PMR-Egger in all our analyses (lines 149-151 on page 8; lines 399-400 on page 19). 

 

Page 26 – In the real data application of their method, the authors state that 

‘Overall, by controlling for horizontal pleiotropic effects, PMR-Egger detected 

many likely causal genes that the other methods failed to detect.’ Conventionally 

these sections of papers concern cherry-picked examples where their method 

outperforms competitors. However, I find the examples quite concerning. The 

first 2 examples are both in the HLA region of the genome (C2 & HLA-F), which 

is a region of the genome many previous approaches do not attempt to 

investigate due to the extensive LD structure here making disentangling causal 

genes extremely problematic. I am therefore very skeptical that these genes are 

likely the causal genes for association signals in this region, particularly giving 

concerns regarding independent eQTL not being accounted for. For example, did 

the authors assess whether eQTL for these genes in their dataset are also eQTL 

for various neighboring genes? My guess is that there would be a lot of genes 

where this is the case. I would strongly recommend choosing genes outside of 



HLA to showcase your method. Even more alarming is the third example – 

which is HERPUD1 and its association with dyslipidemia. The authors state this 

is a ‘well-known lipid-related gene’ and cite 2 genetic association studies. I was 

unable however to find this gene symbol in either study. It may be tucked away 

in the supplementary material somewhere. However, I stopped looking when 

discovering that this gene neighbors CETP, which is actually a well-known lipids 

gene. The association signal at the locus is therefore most likely due to CETP, 

and HERPUD1 I imagine is simply co-expressed with it. I would again strongly 

encourage the authors to take this example out of their manuscript and consider 

alternatives. Again, across ~20,000 coding genes some cherry-picking to best 

showcase a method is not uncommon in these types of studies. However, this 

makes the choice of these 3 examples slightly worrying. 

 

Responses: Thank you. We really appreciate this comment and we apologize for not 

being careful in selecting these previous examples. Following your suggestion, we 

have re-run all our real data analysis by excluding the MHC region and have removed 

all the three examples. We have listed three new gene examples that have convincing 

previous biological literature support on their causality. These three examples include:   

1. The LNK/SH2B3 gene (111,743,752-111,989,427 on chr 12) is only identified by 

PMR-Egger to be associated with platelet count in the UK Biobank (PMR-Egger 𝑝 =

1.17 × 10−221; CoMM p=0.98; TWAS 𝑝 = 8.6 × 10−5; PrediXcan p=0.68; SMR 

p=0.024). The association between LNK and plate count is consistent with results 

from recent large-scale GWASs1-3. LNK/SH2B3 encodes the lymphocyte adaptor 

protein (LNK) that is primarily expressed in hematopoietic and endothelial cells4. In 

hematopoietic cells, LNK functions as a negative regulator of cell proliferation as 

well as the thrombopoietin-mediated cytokine signaling pathway, which is a key 

signaling pathway that promotes megakaryocytes to form platelets4,5. Indeed, platelets 

are overproduced and accumulated in LNK knockdown cells as well as Lnk knockout 

mouse6-8, supporting a causal role of LNK in platelets production.  

2. The NOD2 gene (50,627,514-50,866,988 on chr 16) is identified by PMR-Egger 

to be associated with Crohn’s disease (CD; 𝑝 = 6.1 × 10−19), and, with a slightly 

less significance, also by CoMM (𝑝 = 7.8 × 10−15). The association between NOD2 

and CD was not identified by the other methods (TWAS p=0.005; PrediXcan p=0.92; 

SMR p=0.15). NOD2 encodes a cytosolic pattern recognition receptor that acts both 

as a cytoplasmic sensor of microbial products and as an important mediator of innate 

immunity and inflammatory response9 The NOD2 gene is a well-known susceptible 

gene for CD and is perhaps one of the first genes ever implied for CD10. Multiple 

SNPs in NOD2 have been found to be associated with CD in both early linkage 

studies11-13 and many recent GWASs14,15. NOD2 variants associated with CD often 

reside in the ligand recognition domain of NOD2 and can lead to aberrant bacterial 



handling and antigen presentation16. Indeed, NOD2-deficient mice displays 

dysregulated bacterial community in the ileum and NOD2-deficient ileal epithelia 

exhibit impaired ability of inducing immune responses for bacteria elimination17. It is 

thus hypothesized that mis-regulation of NOD2 can causally lead to altered 

interactions between ileal microbiota and mucosal immunity, resulting in increased 

disease susceptibility to CD17.  

3. The TFRC gene (195,654,054-195,909,060 on chr 3) is identified by PMR-Egger 

to be associated with red blood cell distribution width (RDW) in the UK Biobank 

(𝑝 = 3.3 × 10−17). Such association is not identified by the other methods (CoMM 

p=0.95; TWAS p=0.76; PrediXcan p=0.97; SMR p=0.38). TFRC encodes the classical 

transferrin receptor that is involved in cellular iron uptake18,19. Multiple SNPs in 

TFRC have been established to be associated with various erythrocyte phenotypes in 

GWASs20,21. These associated erythrocyte phenotypes include the mean corpuscular 

hemoglobin (MCH) and mean corpuscular volume (MCV, the average volume of red 

blood cells) which is directly related to RDW19,20. The variants in TFRC likely lead to 

decreased iron availability for red cell precursors, as has been observed in mice 

deficient in TFRC, thus resulting in a compensatory increase of red blood cell size as 

measured by RDW22.  

Details of these are updated in the Results section (lines 661-697 on page 31-32). In 

addition, the regional association plots (i.e. locus zoom plots) for these three genes are 

also presented (the newly added supplementary Fig.33-35). 

 

Minor comments: 

 

Page 5 – ‘multiple independent/near-independent SNP instruments’ – strictly 

instrumental variables for established 2-sample MR approaches should be 

independent – it’s only how one defines ‘independent’ that allows 

‘near-independent’ SNPs to creep into analyses 

 

Responses: Thank you for the comment. We completely agree with the reviewer that 

the use of “near-independent” is not scientifically rigor. We used this terminology 

only because this is what was used in the original GSMR paper. Following the 

comment, we have deleted “near-independent” throughout the text and Table 1.    

 

Page 5 – minor typo ‘suggest’ should be ‘suggests’ on last line 

Responses: Thank you for pointing out this error, which we have corrected in the 

revised version. 

 

Page 6 – ‘Cohran’s’ should be ‘Cochran’s’ 

Responses: Thank you for pointing out this error, which we have corrected in the 



revised version. 

 

Some of the grammer and language is slightly hard to follow throughout. 

 

Responses: Thank you. We have made minor text modifications throughout the paper 

to make it easier to follow.  
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Point-by-point Responses to Reviewer 3 

 

The authors presented the developed method PMR-Egger, estimating both causal 

and pleiotropic effects simultaneously. PMR-Egger follows the framework and 

the assumptions of MR-Egger, but using likelihood test to do the tests and 

estimate the effects. The simulations showed PMR-Egger was well calibrated and 

had larger power than existing methods. The real data analysis showed more 

genes were detected by PMR-Egger. However, the underlying biological model is 

not clear to me. Therefore, I am not convinced about the results.  

 

Responses: Thank you for your constructive comments. Our detailed responses are 

provided below. Reading through your comments, we realized that our previous 

manuscript must have failed to provide sufficient introduction and background for 

standard TWAS applications, which lead to reviewer’s confusion of our “underlying 

biological model”, resulting in the reviewer “not convinced about the results”. In 

fact, as we will explain in more details to your comment 1, our method makes the 

standard polygenic modeling assumptions that are directly in line with the polygenic 

modeling assumptions made in almost all previous TWAS methods (TWAS1, 

PrediXcan2, CoMM3, DPR4, TIGAR5 etc.). We sincerely apologize for this 

unfortunate miscommunication we made in the previous manuscript that leads to 

reviewer’s main concern. We hope the detailed responses to your comments and the 

updated text can now provide more clarity on this important issue.  

 

Major comments 

1. The underlying biological model is unclear. From my understanding, there are 

not many causal variants that have effects on gene expressions. The PMR-Egger 

analyses were done under the assumption of polygenic model, which is opposite 

to what I thought. Moreover, they assumed many cis-SNPs may have pleiotropic 

effects, which I do not understand.  

 

Responses: We apologize for not providing enough background for TWAS analysis in 

the previous manuscript, which leads to this misunderstanding. Contrast to what the 

reviewer thought, almost all previous TWAS methods (TWAS1, PrediXcan2, CoMM, 

DPR4, TIGAR5 etc.) make a polygenic modeling assumption and assume that 

cis-SNPs have non-zero polygenic effects on gene expression. Specifically, TWAS 

makes the BSLMM polygenic modeling assumption: all cis-SNPs have non-zero 

effects and their effect sizes follow a mixture of two normal distributions. PrediXcan 

makes the ElasticNet modeling assumption: all cis-SNPs have non-zero effects a 

priori and their effect sizes follows a mixture of Laplace (L1) and normal (L2) 

distributions. Both TIGAR and DPR makes the Bayesian non-parametric polygenic 



modeling assumption: all cis-SNPs have non-zero effects and their effect sizes follow 

a mixture of many normal distributions. CoMM makes the standard polygenic 

modeling assumption: all cis-SNPs have non-zero effects and their effect sizes follow 

a normal distribution. Perhaps the only method previously used in TWAS setting that 

makes a sparse modeling assumption is SMR. However, as has been demonstrated in 

the previous literature (e.g. S-PrediXcan6 and here, SMR is not as powerfully as the 

methods that make polygenic modeling assumptions for TWAS applications. The 

modeling assumptions of all these methods were previously listed in the Table 1. 

Following your comment, we have also added a short sentence in Introduction (lines 

84-90 on page 5) and created a short literature survey in the Supplementary Text 

(lines 214-233 on page 8-9) to introduce this background of previous TWAS methods. 

The polygenic modeling assumption made in most existing TWAS methods are 

consistent with the previously known fact that polygenic models often outperform 

sparse models in gene expression prediction4,7 and are also consistent with our current 

results showing that polygenic models also outperform sparse models for TWAS 

applications. Therefore, it is important to make polygenic/omnigenic modeling 

assumptions on 𝜷 for TWAS applications.  

 We suspect the reviewer’s misconception originates from two places. First, while 

the modeling assumption underlying PrediXcan is polygenic, it does use an 

optimization algorithm that obtains the posterior mode estimates (which is sparse) 

instead of the posterior mean estimates (which is polygenic). However, it is important 

to distinguish the modeling assumption from the inference algorithm. In addition, as 

we explain more below to your comment 1.3.1, using the sparse posterior mode 

estimates does make PrediXcan less powerful as compared to the other TWAS 

methods that obtain polygenic estimates (e.g. PMR-Egger/TWAS/CoMM).  

 Second, the current eQTL mapping studies all have small sample sizes and thus 

have limited power in identifying all eQTLs. Subsequently, the small number of 

eQTLs identified per gene thus far may have created a false impression that the 

genetic architecture underlying gene expression must be sparse. However, as we will 

explain more below to your comment 1.2.2, being only able to identify a small 

number of independent cis-eQTLs does not imply that there is only a small number of 

causal SNPs underlying gene expression. Indeed, the currently identified top cis-SNPs 

can only explain a small proportion of cis-heritability, suggesting that many more 

eQTLs remain to be discovered in the future larger eQTL mapping studies. Therefore,  

the genetic architecture underlying gene expression may be highly polygenic or even 

omnigenic.  

 In any case, we would like to quote George Box’s famous saying: “all models are 

wrong, but some are useful”. Regardless whether the polygenic modeling assumption 

is “correct” or not, we hope the reviewer at least agree that the polygenic modeling 

assumption made in most TWAS methods is a useful modeling assumption for TWAS 



applications.  

  

1.1 We assume there are few causal variants, i.e. only a few top SNPs can capture 

most of the genetic variation. SMR assumes there is a single causal variant, 

selecting the top cis-SNP. In practice, the top cis-SNP may not capture all the 

genetic variation. Therefore, other methods, eg., “TWAS” or “PrediXcan” has 

larger power. I don’t think using all the cis-SNPs may gain much extra power. 

Even in the simulation where many causal variants were simulated, PMR-Egger 

does not show larger power under the causality model (Fig 2a). 

 

Responses: This comment appears to contain two independent messages that the 

reviewer wants to convey. We answer these two messages separately below: 

 First, with regard to “In practice, the top cis-SNP may not capture all the 

genetic variation. Therefore, other methods, eg., “TWAS” or “PrediXcan” has 

larger power. I don’t think using all the cis-SNPs may gain much extra power.”, 

we apologize for not providing enough background on TWAS and thus misleading the 

reviewer into this incorrect statement. As we explained in the response to your early 

comment, most TWAS methods (TWAS/CoMM/PMR-Egger/DPR/TIGAR) model all 

cis-SNPs jointly and estimate the SNP effect size for every single SNP; PrediXcan 

also models all cis-SNPs jointly but assign non-zero effects to a small set of SNPs (as 

it obtains the posterior mode estimates instead of the posterior mean estimates); only 

SMR selects the top cis-SNP for analysis. Therefore, the fact that 

PMR-Egger/CoMM/TWAS performs better than SMR (and PrediXcan) highlights the 

importance of using all cis-SNPs.  

 Second, with regard to “I don’t think using all the cis-SNPs may gain much 

extra power”, as “even in the simulation where many causal variants were 

simulated, PMR-Egger does not show larger power under the causality model 

(Fig 2a).”, we are unsure which part of the figure 2a misleads the reviewer into this 

incorrect statement. Fig 2a clearly shows that PMR-Egger also outperforms SMR (and 

PrediXcan), highlighting the importance of modeling all cis-SNPs.  

We are wondering whether the reviewer’s second point is referring to a separate 

issue of comparing PMR-Egger vs TWAS/CoMM, as also mentioned in your 

comment 1.3.1 below. As we explained previously in the manuscript, the slightly 

lower power of PMR-Egger as compared to TWAS/CoMM in the absence of 

horizontal pleiotropy is expected: this is not related to our polygenic modeling 

assumption on 𝜷  (since all these three methods make a polygenic modeling 

assumption), but is simply due to the loss of degree of freedom inevitably occurs 

when we introduce parameters to model the horizontal pleiotropic term. It is well 

recognized in the statistical literature that any modeling assumption can lead to a 

small power loss when the modeling assumption is not satisfied – after all, there is no 



free lunch with any statistical models. Because of the additional term to model 

horizontal pleiotropy, PMR-Egger will lose degrees of freedom in the absence of 

horizontal pleiotropy. Following your comment, we have now also highlighted this 

explanation in red to make it apparent to the reviewer (lines 506-512 on page 24). 

 

1.2.1 From my understanding, when there is a single causal variant, the causal 

variant has either causal (z->x->y) or pleiotropic effect (z->x, z->y). z represents 

SNP, x represents gene expression and y represents phenotype. We are unable to 

distinguish causality from pleiotropy. When there are multiple causal variants, 

the effect size of x on y (bxy) estimated at each causal variant can be various, 

linkage or multiple causal variants with distinct bxy. It is a complicated scenario, 

which is not easy to interpret.  

 

Responses: We fully agree with the reviewer that it is not possible to distinguish 

causality from pleiotropy when there is only a single variant. We also agree with the 

reviewer that it can be a complicated scenario when there are multiple variants, 

especially when one attempts to build a model through the marginal effect size 

estimates (bxy) as used in SMR/GSMR. However, we found that it is much easier, at 

least conceptually, to think on modeling the causal effects through our likelihood 

framework in Equations 1-4. Specifically, the causal effects are now represented by 

the vector 𝜷; the horizontal pleiotropic effects are represented by the vector 𝜸; and 

linkage disequilibrium is automatically accounted for in the model as we jointly 

model all cis-SNPs together. You can make different modeling assumptions on 𝜷 and 

𝜸 , and these different modeling assumptions correspond to different existing 

TWAS/MR approaches (Table 1). Indeed, as the reviewer #1 also pointed out 

(summary statement there), our likelihood framework unifies many existing MR and 

TWAS methods, thus facilitating the understanding and interpretation of different MR 

and TWAS methods for TWAS applications.  

 

1.2.2 The proportion of multiple underlying causal variants seems to be smaller 

than a single causal variant. Using PMR-Egger under the assumption of 

polygenic model, the causal effect can be considered to be average of bxy at each 

causal variant. The horizontal effect can be considered to be deviation from the 

mean effect. In the manuscript, authors noticed that cis-SNPs were in high LD, 

“GSMR and MR-Egger are not feasible to obtain near independent SNPs”. 

Using GCTA-COJO, what is the proportion of genes that have multiple 

independent signals? 

 

Responses: This comment appears to contain two independent messages that the 

reviewer wants to convey. We answer these two messages separately below: 



 First, with regard to “The proportion of multiple underlying causal variants 

seems to be smaller than a single causal variant”, we apologize for not providing 

enough background for existing eQTL mapping studies or TWAS that lead to this 

incorrect statement. As far as we are aware, current eQTL studies are all of small 

sample sizes. The largest eQTL mapping study we are aware of is the TOPMed eQTL 

mapping study, which only consists of ~2,000 individuals. With small samples, there 

is limited statistical power to identify independent cis-SNPs associated with gene 

expression. As a result, existing studies can only identify one or a few independent 

eQTLs for the eGenes. However, being only able to identify a small number of 

independent cis-eQTLs does not imply that there is only a small number of causal 

SNPs underlying gene expression. Indeed, following your suggestion of “using 

GCTA-COJO”, we found that, the top associated independent SNPs can only explain 

a small proportion of cis-heritability, suggesting that a large fraction of eQTLs 

remains to be discovered. Specifically, we applied GCTA-COJO8 to analyze all 

15,810 genes in GEUVADIS data and identified the top 10 independent signals for 

each gene regardless of their genome-wide significance. We found that the 

independent signals in total can only explain a medium of 16%-53% cis-heritability 

(the proportion of heritability explained by cis-SNPs), with the proportion increasing 

with the number of top independent SNPs included (i.e. 16% when only the top SNP 

is included; and 53% when the top 10 independent SNPs are included). The boxplot 

below visualizes the proportion of cis-heritability explained (y-axis) versus the 

number of included independent top SNPs used in the model (x-axis) across genes.   

 

The results in GEUVADIS data is also largely consistent with our recent work in 



the GENOA eQTL mapping study (n=1,032; African American samples; manuscript 

to be submitted soon), where we found that the primary eQTLs can only explain a 

small proportion of cis-SNP heritability (median = 7.9%) and that the primary eQTLs 

together with additional independent eQTLs (passing the genome-wide significance 

and obtained through GCTA-COJO) in total can only explain a small fraction of 

additional cis-SNP heritability (median = 13.2%). These heritability estimation results 

suggest that the genetic architecture underlying gene expression is highly polygenic or 

even omnigenic, consistent with the previously known fact that polygenic models 

often outperform sparse models in gene expression prediction4,7 and also consistent 

with our current results showing that polygenic models also outperform sparse models 

for TWAS applications. Therefore, it is important to make polygenic/omnigenic 

modeling assumptions on 𝜷 for TWAS applications.  

 Second, with regard to “Using PMR-Egger under the assumption of polygenic 

model, the causal effect can be considered to be average of bxy at each causal 

variant. The horizontal effect can be considered to be deviation from the mean 

effect.”, we are unsure if this statement is correct. This statement is certainly correct 

when the cis-SNPs are independent. However, cis-SNPs in the real data are all highly 

correlated with each other due to linkage disequilibrium. The high correlation among 

cis-SNPs in TWAS applications makes it almost impossible to derive any simple 

equivalence between the marginal effect estimates and causal effect or horizontal 

pleiotropic effect.  

 

1.3.1 The unrealistic assumptions may cause issues in the simulations and real 

data analysis. For example, Fig 2a showed PMR-Egger had larger power than 

the other methods only when there was “horizontal pleiotropy”. The “horizontal 

pleiotropy” was not explicitly described in the manuscript.  

 

Responses: This comment appears to contain two independent messages that the 

reviewer wants to convey. We answer these two messages separately below: 

First, with regard to “The “horizontal pleiotropy” was not explicitly described 

in the manuscript”, we apologize for not making our modeling assumption and 

simulation details for the horizontal pleiotropy apparent to the reviewer in the 

previous manuscript. Horizontal pleiotropy occurs when the SNPs affect the outcome 

through paths other than the exposure. Horizontal pleiotropy is modeled using 

parameter vector 𝛄 as shown in Equation 3 (and 4) in the Methods section, which 

unifies previous ways of modeling horizontal pleiotropy (Table 1). In the simulations, 

we simulated 𝛄 in multiple different ways to capture various possible horizontal 

pleiotropic effects. Following your comment, we have now highlighted the simulation 

section for 𝛄 in red to make it apparent to the reviewer (lines 263-270 on page 13).  

 Second, with regard to “The unrealistic assumptions may cause issues in the 



simulations and real data analysis. For example, Fig 2a showed PMR-Egger had 

larger power than the other methods only when there was “horizontal 

pleiotropy””, we do not follow the logic of this statement. Fig 2a clearly shows that 

PMR-Egger has much higher power than SMR (and PrediXcan) across all settings, 

supporting the importance of making polygenic assumptions on 𝜷 and modeling all 

cis-SNPs together for TWAS applications. Fig. 2a only shows that PMR-Egger has 

slightly less power as compared to TWAS/CoMM. As we explained previously in the 

manuscript, the slightly lower power of PMR-Egger as compared to TWAS/CoMM in 

the absence of horizontal pleiotropy is expected: this is not related to our polygenic 

modeling assumption on 𝜷  (since all these three methods make a polygenic 

modeling assumption), but is simply due to the loss of degree of freedom inevitably 

occurs when we introduce parameters to model the horizontal pleiotropic term. It is 

well recognized in the statistical literature that any modeling assumption can lead to a 

small power loss when the modeling assumption is not satisfied – after all, there is no 

free lunch with any statistical models. Because of the additional term to model 

horizontal pleiotropy, PMR-Egger will lose degrees of freedom in the absence of 

horizontal pleiotropy. Following your comment, we have now also highlighted this 

explanation in red to make it apparent to the reviewer (lines 506-512 on page 24).   

 

1.3.2 The magnitude of horizontal pleiotropy was small, 1e-4 to 2e-3, which can 

be supposed to be deviation from the average bxy.  

 

Responses: As we previously stated in the Methods section, we used the horizontal 

pleiotropy values in the range of 1e-4 to 2e-3 as these values are the estimates 

obtained from real data. Using larger values does not influence the performance of our 

method but will make the p-value inflation of all other methods much more extreme. 

Following your comment, we have now highlighted the reasoning for choosing these 

𝛄 in red to make it apparent to the reviewer (lines 267-270 on page 13).  

 (As mentioned in the responses to your earlier comment 1.2.2, we are unsure how 

the horizontal pleiotropy can easily be linked to marginal SNP effect estimates when 

SNPs are correlated with each other. Therefore, we are unsure whether the horizontal 

pleiotropy effect can be simply viewed as a deviation from the average marginal 

effect estimates bxy.) 

 

1.3.3 In the real data analysis, many genes described in the main text were from 

MHC region, e.g. C2, HLA-F, ZKSCAN4. The LD is complicated in MHC region, 

which is usually excluded in the analysis.  

 

Responses: Thank you and we fully agree. Following your comment, we have 

removed the MHC region in all our analyses in the updated manuscript to avoid 



complication. Subsequently, we have provided new causal gene examples in the 

Results section, with detailed molecular mechanisms and previous literature support 

on how these identified genes may have causal effects on the phenotypes (lines 

661-697 on pages 31-32). 

 

1.3.4 SMR results showed large p-values for HERPUD1 (p=0.1), ADAM15 

(p=0.14) and DNAJC27-AS1 (p=0.05), which indicates GWAS p-values at the 3 

top cis-SNPs are large. More analysis might be required to investigate whether 

genes have causal effects on phenotypes.  

 

Responses: Thank you and we fully agree. It is indeed hard to investigate these genes 

due to a lack of existing molecular biology literature on these genes. Therefore, we 

now provide three new gene examples in the updated Results, with detailed molecular 

mechanisms and previous literature support on how these identified genes may have 

causal effects on the phenotypes (lines 661-697 on pages 31-32). 

 

1.3.5 In terms of MAPT, I don’t think the horizontal pleiotropy can be concluded 

from the non-significance of PrediXcan analysis conditional on the flanking gene. 

Suppose two regression models, a) y = g1 + e and b) y | g2 = g1 + e, where y | g2 

represents conditioning y on gene 2. I don’t think the non-significance of model 

(b) would indicate the horizontal pleiotropy. Is it because two genes are highly 

correlated?  

 

Responses: Thank you and we apologize for a potential misuse of the terminology 

“horizontal pleiotropy” that causes your confusion. As reviewer #1 also pointed out 

(8th comment there), the presence of true horizontal pleiotropy is only one of the two 

possible explanations for these two examples where the associations go away after 

controlling for nearby genes. The other alternative explanation for these examples is 

that the SNPs used in the model are simply tagging nearby eQTLs and exhibiting their 

apparent “horizontal pleiotropy” through the neighboring causal genes. Therefore, in 

the updated text, we fully acknowledge that, in these two examples we focused on, 

while it is possible that SNPs display true horizontal pleiotropic effects through the 

neighboring gene, it is equally or more likely that SNPs used in the model are simply 

tagging nearby eQTLs of the causal gene and thus displaying apparent “horizontal 

pleiotropic effects” through the neighboring gene. Subsequently, the horizontal 

pleiotropic effect term in PMR-Egger may represent the apparent “horizontal 

pleiotropic effects” through SNP tagging to the nearby eQTLs of the causal gene, 

rather than the truly horizontal pleiotropic effect acted through other molecular 

pathways. Regardless of the interpretation of the horizontal pleiotropic effect term, 

however, we found it reassuring that by modeling the horizontal pleiotropic effect 



term in PMR-Egger can reduce false discoveries in the case of SNP tagging. We have 

updated the Results section to mention this important point (lines 771-784 on page 

36).  

 

1.3.6 without any regional figures for real data analysis, I am not convinced the 

identified genes have causal effects on phenotypes.  

 

Responses: Thank you for your kind reminder. We have now provided regional 

figures in the form of LoucsZoom plots for these real data examples (Supplementary 

Figures 33-35). In addition, we have now provided detailed molecular mechanisms 

and previous literature support on how these identified genes may have causal effects 

on the phenotypes in the updated Results section (lines 661-697 on pages 31-32).  

  

2. The method requires the SNPs associated with gene expression. What is the 

threshold to select SNP instruments? 

 

Responses: We apologize for the miscommunication here. Our method follows 

existing TWAS methods (e.g. TWAS, TIGAR, DPR, CoMM etc.) and uses all 

cis-SNPs. Therefore, unlike SMR, our method does not perform SNP selection and 

does not use any selection threshold. We added a couple sentences in the Methods 

section to clarify this issue (lines 149-151 on page 8; lines 399-400 on page 19). 

    

3. Fig 1 showed p-values for SMR were strongly deflated, and p-values for LDA 

MR-Egger were largely inflated, which looks weird. P-value for SMR may be 

deflated, because SE is an approximation. Is the strong deflation because of weak 

instruments? The LDA MR-Egger is not too different from TWAS. For LDA 

MR-Egger, bxy = cov(gx, gy)/h2_x, where cov(gx, gy) = bzx*V^-1*bzy, and h2_x 

= bzx*V^-1*bzx. For TWAS, rg_xy = Z_twas/sqrt(n*h2_y) = bzx*V^-1*bzy / 

sqrt(bzx*V^-1*bzx * bzy*V^-1*bzy) = cov(gx,gy)/sqrt(h2_x*h2_y). 

 

Responses: Thank you for the comments. The deflation of SMR p-values we 

observed in both simulations and real data is consistent with previous literature (e.g. 

Figure 5 in the S-PrediXcan paper6). The deflation of SMR p-values is likely either 

due to the uncertainty in selecting the instrumental SNP (i.e. the top SNP with the 

largest marginal association evidence may not be the causal SNP even if there is only 

one causal SNP for the gene) or due to the small eQTL effects across majority of 

genes (i.e. the top SNP with the largest marginal association evidence can only 

explain a small proportion of cis-heritability, even in eGenes). We have added a short 

explanation for SMR p-value deflation in the revised Results section (line 453-456 on 

page 22).  



For LDA MR-Egger, different from the reviewer’s impression, LDA MR-Egger is 

actually very different from TWAS in terms of modeling assumption. Specifically, as 

we previously summarized in Table 1, LDA MR-Egger makes a fixed effect size 

assumption on 𝜷 (the p-vector of SNP effects on gene expression) while TWAS 

makes a BSLMM assumption on 𝜷. The fixed effect size assumption in LDA 

MR-Egger is unfortunately not a good assumption for TWAS applications as the 

number of (highly correlated) cis-SNPs is often on the same order as the number of 

individuals in the gene expression study. The fixed effect assumption in LDA 

MR-Egger, when paired with the two-stage inference procedure that ignores the 

estimation uncertainty in the first stage, makes LDA MR-Egger sensitive to the 

collinearity induced by cis-SNP correlations caused by LD. We previously provided a 

short explanation on the extreme LDA MR-Egger behavior in the Results. Based on 

the reviewer’s comments, we realized that the short explanation in the previous 

version of manuscript was insufficient. Therefore, in the updated manuscript, we 

provided a more elaborated explanation in the Results section for LDA MR-Egger 

(lines 456-468 on page 22). Please also refer to our response to reviewer #1’s 2nd 

comment for more detailed explanation on LDA MR-Egger.  

(As a side note, the LDA MR-Egger equation provided in your comment appears 

to be incorrect and appears to be a TWAS equation. For LDA MR-Egger modeling 

assumptions, please refer to section 2.6 in the LDA MR-Egger paper as well as their 

source code for details.) 

 

4. Table 1 shows PMR-Egger can deal with both individual-level and 

summary-level data. I am not sure whether “both” means accounting for sample 

overlap or simply accepting individual-level data and summary-level data as 

input. The summary-level data can be obtained from GWAS analysis. Therefore, 

all the methods are able to handle individual-level and summary-level data 

without accounting for sample overlap. 

 

Responses: We apologize for not providing this background information. We 

previously followed existing TWAS method papers (e.g the TWAS and S-PrediXcan 

papers) and used the term “summary statistics” to refer to a method accepting/using 

summary-level data as input. In the field of TWAS, A method using summary-level 

data as input is often distinguished from a method that use individual-level data as 

input. For example, one key innovation of TWAS over PrediXcan as stated in the 

original TWAS paper is its use of summary-level data as input. One key innovation of 

S-PrediXcan over PrediXcan as stated in the recent S-PrediXcan paper is its use of 

summary-level data as input. Reviewer #1 also viewed the use of summary data in our 

method as an important contribution (10th comment there). However, following your 

comment, we realize that different researchers may have different opinion on the 



significance of the use of summary-level data. Therefore, we have deleted that last 

column of Table 1 to avoid the controversy.  

 

5. Figure 4, 5 and 6 showed lambda for PMR-EGGER was not too different from 

SMR or PrediXcan, but the number of genes identified by PMR-Egger was much 

larger than the other methods. It is confusing to me. 

 

Responses: We apologize for not providing this background information. The number 

of genes identified above a genome-wide threshold is commonly used in the literature 

as a measure of statistical power in real data applications. The genomic control factor 

lambda is commonly used in the literature to measure type I error control in real data 

applications, as lambda captures approximately the type I error control at the level of 

0.05. Power and lambda are two different statistical terms that are not necessarily 

correlated with each other. A similar lambda among PMR-Egger/SMR/PrediXcan 

would suggest similar type I error control at the nominal level of 0.05, while a higher 

number of genes identified by PMR-Egger over SMR/PrediXcan would suggests its 

higher power. Certainly, for a data with a relatively large sample size (e.g. UK 

Biobank) and a trait with a highly polygenic genetic architecture, then lambda may 

also be influenced by power of the method in addition to its type I error control. In 

addition, the number of significant genes may not be a perfect measure of power in 

certain cases and can be influenced by lambda: a method that fails to control for type I 

error could yield inflated p-values, leading to a high number of false discoveries. To 

avoid future confusion, we have added a small section in the Supplementary Text to 

provide this background information (lines 235-247 on page 9).  

 

Minor comments: 

6. Page 8, “Methods – PMR-Egger overview”, I think it might be better to move 

the first 3 paragraphs to results.  

 

Responses: Thank you. The first three paragraphs of the method overview contain 

several equations, so we are a bit worried that these paragraphs might be a bit too 

technical for a general audience. Therefore, instead of moving them to the Results 

section, we followed the main idea of your suggestion and added a short sentence at 

the beginning of the Results section to link the readers to the method overview 

subsection in Methods (line 424-425 on page 21).  

 

7. Page 9, The authors stated “our model no longer requires the exclusion 

restriction condition of MR, because of fitted horizontal pleiotropy in the model”. 

The statement is not correct. PMR-Egger follows the assumptions of MR-Egger, 

e.g. INSIDE. Under INSIDE assumption, the causal effect is mediated by gene 



expression.  

 

Responses: Thank you and we apologize for the confusion in the existing literature 

on the term “exclusion restriction condition” that leads you to believe our previous 

statement was incorrect. Following your suggestion, we have reworded the sentence 

to distinguish the general/strong exclusion restriction assumption we used in that 

sentence (that instruments only influence the outcome through the path of exposure) 

from the weak exclusion restriction assumption that people sometimes used to call the 

InSIDE assumption (that instruments can influence the outcome through the path of 

exposure and that the instrument-exposure effects and instrument-outcome effects are 

independent of each other). The updated sentence is in lines 178-181 on pages 9-10.  

 

8. Page 9, the font size for the last line is not the same.  

 

Responses: Thank you for pointing out this error, which we have corrected in the 

updated manuscript. 

 

9. Page 10, the authors stated “at least one of two assumptions is not testable in 

practice.” I don’t think it is correct. For assumption 1), the method requires 

SNPs strongly associated with gene expression, at least genome-wide significant 

SNPs.  

 

Responses: Thank you. Following your comment, we have reworded the whole 

sentence in the updated manuscript to “Because the causal effect interpretation of 𝛼 

depends on MR assumptions as well as other explicit modeling assumptions, many of 

which are often not testable in practice, MR analysis in observational studies likely 

provides weaker causality evidence than randomized clinical trials.” (lines 183-185 

on page 10). 

 

10. Page 12, “N(0, PVE_zx/556)”, “PVE” was not described. 

 

Responses: We apologize for not making our previous definition of PVE obvious to 

the reviewer. We previously defined 𝑃𝑉𝐸𝑧𝑥 five lines above the cited place on the 

same page. Following your comment, we have moved the definition of 𝑃𝑉𝐸𝑧𝑥 to the 

same line of the cited place (lines 240-241 on page 12).  

 

11. Page 24, “increasing horizontal pleiotropy (Supplementary Fig. 2e, f)”, where 

are supplementary figure 2 e and f? 

 

Responses: Thank you for pointing out an error here. It should be “Fig. 2e, f” instead 



of “Supplementary Fig. 2e, f”. We have corrected this error in the revised manuscript. 

In addition, we have carefully examined through the entire manuscript to correct for 

these typos.   
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Reviewers' comments: 

Reviewer #1 (Remarks to the Author): 

I would like to commend the authors for performing a considerable amount of effort in their 

revision. The updated version has improved in clarity, and quality. 

All of my concerns have been addressed and I have no further comments at this time. 

Reviewer #3 (Remarks to the Author): 

Thanks a lot to the authors. I am appreciated that the authors made such detailed responses. I 

agree that PMR-EGGER is better than the existing methods. But I have some questions from the 

responses. I hope the discussion may further improve the understanding of PMR-EGGER. 

1. Intercept. The authors’ response reminds me that bzx (SNP effects on exposure) in MR-EGGER 

or LDA MR-EGGER are all positive orientated. There was a discussion in terms of orientation in 

Burgess et al. 2017 Eur. J Epidemiol (doi: 10.1007/s10654-017-0255-x). Because the orientation 

is arbitrary and might affect the horizontal pleiotropy and the power of detecting causality, could 

the authors point out that bzx are orientated or not? 

2. Summary stats. As many GWAS results are published every year, methods using summary stats 

are commonly used. PMR-EGGER is able to utilize summary stats in addition to individual-level 

data. In the supplementary note, Σ_1 represents LD for cis-SNPs and Σ_2 represents LD for GWAS 

SNPs. If neither eQTL nor GWAS datasets is available, I guess Σ_1=Σ_2=Σ , where Σ represents 

LD of reference SNPs. Could the authors clarify it in the methods and/or supplementary note? 

3. Random model. My understanding of “random model” is that PMR-EGGER corrects SNP effects 

for allele frequency and LD, in addition to taking the SEs of estimations into account. Therefore, 

there would be accumulated errors for fixed model (e.g. LDA MR-EGGER). And the accumulated 

errors might be large when SNPs are in high LD (fig. 1a). If my understanding is correct, it is great 

when LDs are consistent between reference samples and discovery datasets. But would it be a 

caveat if the LD from the LD reference sample is not consistent with the eQTL or GWAS data (due 

to imputation error or other unknown reasons)? 

4. Polygenicity. I agree that the cis-eQTLs may be polygenic. I think 2 causal variants might have 

biologically related functions if the 2 causal variants are in LD. Thus, if all the cis-SNPs are causal 

variants, the SNP effects might be correlated and it may appear that there are only a few causal 

variants, because of LD. In the simulation setting, effects at the causal variants seem to be 

independent. Although it does not affect the conclusion of the simulations, could the authors clarify 

it or improve the simulation setting? 

5. The authors showed many good examples of PMR-EGGER analysis in real data. In practice, 

given an eQTL dataset, if phenotype (y) is a low-prevalence disease or sample size of y is small, it 

is great that PMR-EGGER is able to identify more causal genes, because few significant GWAS 

SNPs would be detected and the power to detect gene is limited. If the phenotype is a quantitative 

trait, there might be millions of individuals (e.g. 23 and me, UK Biobank). There are many 

significant GWAS SNPs. Therefore, all the other methods may identify many genes for follow-up 

analysis. And PMR-EGGER may identify more genes on top of that. It would be still great. But 

scientists may be puzzled because it might not be easy to choose one for follow-up analysis or 

experiment. Could the authors discuss a bit about the PMR-EGGER in practice?



Point-by-point Responses to Reviewer 3’s Comments 

 

Thanks a lot to the authors. I am appreciated that the authors made such detailed 

responses. I agree that PMR-EGGER is better than the existing methods. But I 

have some questions from the responses. I hope the discussion may further 

improve the understanding of PMR-EGGER. 

 

Responses: Thank you for your positive feedback and the constructive remaining 

comments. Our detailed responses to your remaining comments are provided below.  

 

1. Intercept. The authors’response reminds me that bzx (SNP effects on exposure) 

in MR-EGGER or LDA MR-EGGER are all positive orientated. There was a 

discussion in terms of orientation in Burgess et al. 2017 Eur. J Epidemiol (doi: 

10.1007/s10654-017-0255-x). Because the orientation is arbitrary and might affect 

the horizontal pleiotropy and the power of detecting causality, could the authors 

point out that bzx are orientated or not? 

 

Responses: Thank you for the comment. Your comment here is very closely related 

to the comment 4 previously raised by reviewer #1. The genotype orientation is indeed 

arbitrary. We previously used allele frequency in the GWAS data to orient genotypes. 

Following the comment 4 previously raised by reviewer #1, we previously examined 

the robustness of PMR-Egger in the presence of incorrect genotype orientation. 

Specifically, we performed a set of simulations where we randomly flipped the 

genotype encoding at a subset of SNPs prior to the inference procedure, so that the 

genotype coding does not match between simulations and analysis. In the previous 

analyses, we found that the p values from PMR-Egger for testing causal effect behaved 

reasonably well across a wide range of scenarios (currently lines 150-153 on page 9; 

Supplementary Figure 13).  

Note that we have substantially shortened the current manuscript per editor’s request, 

so the page numbers cited in previous response letter have all been updated.  

Following your comment and Burgess et al. 20171, we have added new simulation 

analysis where we oriented SNP genotypes based on its effect sign on the exposure (e.g. 

gene expression here). Unlike the GWAS MR settings, the sample size in the gene 

expression study is often very small in the TWAS setting, making it challenging to 

accurately determine the correct sign of SNP effects on the exposure variable. 

Consequently, we might expect the “positive orientation” strategy in Burgess et al. 2017 

to not work very well in the TWAS setting. Indeed, we found that the ‘positive 

orientation’ approach behaves quite similarly as the allele frequency orientation 

approach in terms of type I error control for testing the causal effect. In addition, such 

‘positive orientation’ approach loses power substantially compared to the allele 



frequency orientation approach, presumably because the ‘positive orientation’ strategy 

violated our normality assumption on the SNP effects on the gene expression. These 

new results are shown in Supplementary Figure 14, with details provided in Results 

section (lines 153-155 on page 9; lines 181-183 on page10). We also explained that we 

primarily used genotype coding/orientation approach in the Methods (lines 428-430 on 

pages 22-23) and described the positive orientation approach in the Methods (lines 551-

553 on page 28). 

 

2. Summary stats. As many GWAS results are published every year, methods using 

summary stats are commonly used. PMR-EGGER is able to utilize summary stats 

in addition to individual-level data. In the supplementary note, Σ_1 represents 

LD for cis-SNPs and Σ_2 represents LD for GWAS SNPs. If neither eQTL nor 

GWAS datasets is available, I guess Σ_1=Σ_2=Σ , where Σ represents LD of 

reference SNPs. Could the authors clarify it in the methods and/or supplementary 

note? 

 

Response: Thank you for your comment. Indeed, if neither eQTL nor GWAS data is 

available, thenΣ_1=Σ_2=Σ . We have added one sentence to clarify this in the 

supplementary note (lines 147-148 on page 6 in Supplementary Note).  

 

3. Random model. My understanding of “random model” is that PMR-EGGER 

corrects SNP effects for allele frequency and LD, in addition to taking the SEs of 

estimations into account. Therefore, there would be accumulated errors for fixed 

model (e.g. LDA MR-EGGER). And the accumulated errors might be large when 

SNPs are in high LD (fig. 1a). If my understanding is correct, it is great when LDs 

are consistent between reference samples and discovery datasets. But would it be 

a caveat if the LD from the LD reference sample is not consistent with the eQTL 

or GWAS data (due to imputation error or other unknown reasons)? 

 

Responses: Thank you for the comment. Your comment here is very closely related to 

the comment 10 previously raised by reviewer #1. Indeed, for any methods using 

summary statistics, it is important to match the LD pattern in the reference sample with 

that in the GWAS (or eQTL) data 2-7. Previously we followed reviewer #1’s comment 

10 and examined whether the inference results are sensitive to the choice of the 

reference panel. Specifically, we previously constructed the SNP by SNP correlation 

matrix from three different reference panels: all individuals from the GWAS data; 10% 

randomly selected individuals from the GWAS data; individuals of European ancestry 

from the 1,000 Genomes project. We then applied the summary statistics based 

approach of PMR-Egger to each reference panel and compared results with the 

individual level data based approach of PMR-Egger that was applied to the complete 



data. Both p-values for testing the causal effects and the p-values for testing the 

pleiotropy effects are consistent between the summary statistics based approach and the 

individual data based approach. These results were previously shown in the Results 

section (currently Supplementary Figure 45). 

Following your suggestion, we conducted additional simulations by examining the 

most extreme case, where we constructed the reference panel using the individuals of 

African ancestry from the 1,000 Genomes phase 3 project. As expected, the results 

obtained using summary version of PMR-Egger with the African reference panel are 

less consistent with the results obtained using European individual-data, at least when 

compared to the previous results using summary version of PMR-Egger based on the 

other three reference panels. The new results based on a reference panel consists of 

individuals of African ancestry are provided in Supplementary Figure 45, with details 

described in the Discussion section (lines 389-393 on page 20) and Methods section 

(lines 567-572 on page 29). 

 

4. Polygenicity. I agree that the cis-eQTLs may be polygenic. I think 2 causal 

variants might have biologically related functions if the 2 causal variants are in 

LD. Thus, if all the cis-SNPs are causal variants, the SNP effects might be 

correlated and it may appear that there are only a few causal variants, because of 

LD. In the simulation setting, effects at the causal variants seem to be independent. 

Although it does not affect the conclusion of the simulations, could the authors 

clarify it or improve the simulation setting? 

 

Responses: Thank you for the comment. Following your suggestion, we have 

conducted additional simulations with correlated causal effects on the gene expression. 

The new results are largely consistent with the main results where causal effects are 

independent of each other. The new results are shown in Supplementary Figure 5, with 

details provided in the Results section (lines 134-135 on page 8; lines 200-201 on page 

11) and Methods section (lines 537-539 on page 27).  

 

5. The authors showed many good examples of PMR-EGGER analysis in real data. 

In practice, given an eQTL dataset, if phenotype (y) is a low-prevalence disease or 

sample size of y is small, it is great that PMR-EGGER is able to identify more 

causal genes, because few significant GWAS SNPs would be detected and the 

power to detect gene is limited. If the phenotype is a quantitative trait, there might 

be millions of individuals (e.g. 23 and me, UK Biobank). There are many 

significant GWAS SNPs. Therefore, all the other methods may identify many genes 

for follow-up analysis. And PMR-EGGER may identify more genes on top of that. 

It would be still great. But scientists may be puzzled because it might not be easy 

to choose one for follow-up analysis or experiment. Could the authors discuss a bit 



about the PMR-EGGER in practice? 

 

Responses: Thank you for the comment. Indeed, this is a general question that we as 

the GWAS community should all think hard on. As you pointed out, given that there 

are many significant GWAS SNPs discovered at biobank scale data, which set of SNPs 

should we follow up experimentally? TWAS, including our study, attempts to prioritize 

genes for follow up studies. Increasing the power of TWAS, liked our method does, 

would effectively increase the number of true positives and reduce the number of false 

positives one would get in the top set of genes. Therefore, even we can only follow up 

with the top genes immediately due to resource limitation, high TWAS power can 

ensure that these genes being followed up are likely true positives, leading to better 

results replication and success of experimental validation. Finally, TWAS fine mapping 

methods, such as recently developed FOCUS8 (cited and explored in the present 

manuscript), can be a useful option for refining results and identify the most likely 

causal genes for follow up experiments. Following your comment, we have added these 

discussions to the Discussion section (line 340-343 on page 18). (Note again that we 

can only briefly discuss this issue in the text due to the strict word limitation required 

by the editor for this revision.) 
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REVIEWERS' COMMENTS: 

Reviewer #3 (Remarks to the Author): 

Thank you very much for the authors' response. It is very clear to me and I do not have any 

further question.


