Melt Electrowriting of Complex 3D Anatomically Relevant Scaffolds

Navid T. Saidy1,2, Tara Shabab¹ , Onur Bas1,3 , Diana M. Rojas-González⁴ , Matthias Menne⁵ , Tim Henry¹ , Dietmar W. Hutmacher1,3,6 , Petra Mela4,7* and Elena M. De-Juan-Pardo8,9,1*

¹Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove 4059, QLD, Australia

²The University of Queensland, School of Dentistry, Herston, Queensland, Australia

³Department of Biohybrid & Medical Textiles (BioTex), AME-Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Forckenbeckstr. 55, 52074, Aachen, Germany

⁴ARC ITTC in Additive Biomanufacturing, Queensland University of Technology, Musk Avenue, Kelvin Grove, Brisbane, Queensland 4059, Australia

⁵Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Aachen, Germany

⁶Institute for Advanced Study, Technical University of Munich, D-85748 Garching, Germany

⁷Medical Materials and Implants, Department of Mechanical Engineering, Technical University of Munich, Boltzmannstr. 15, 85748 Garching, Germany

⁸Translational 3d Printing Laboratory for Advanced Tissue Engineering (T3mPLATE), Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia

⁹School of Engineering, The University of Western Australia, Perth, WA 6009, Australia

***Equal contribution and corresponding authors:**

Elena M. De-Juan-Pardo: elena.juanpardo@uwa.edu.au Petra Mela: petra.mela@tum.de

Keywords: Melt electrowriting, 3D printing, Biomimetic, Fused deposition modelling, Personalized scaffolds

Supplementary Figure S1. 3D model of the aortic root including the sinuses of Valsalva. A) Full model and the details of the dimensions. B) 2-part model designed for better removal of the scaffold from the model.

Supplementary Figure S2. Experimental investigation of the influence of mandrel material model and the associated electric field on MEW process: Images of MEW fiber deposition on Al-PLA and Al-Ti mandrels at various voltages and working distances.

 \bf{B}

 $\mathbf A$

Supplementary Figure S3. A) Collagen fiber angles of the three layers of native aortic roots and the established printing parameters for every layer (Schriefl et al., 2012). B) Scaffolds printed at constant and variable vector speed to maintain fiber diameters.

Supplementary Video 1 *In silico* electric field modelling for MEW on an AL-PLA aortic root model for translational movement

Supplementary Video 2 *In silico* electric field modelling for MEW on an AL-PLA aortic root model for rotational movement

Supplementary Video 3 *In silico* electric field modelling for MEW on an AL-Ti aortic root model for translational movement

Supplementary Video 4 *In silico* electric field modelling for MEW on an AL-Ti aortic root model for rotational movement

Supplementary Video 5 MEW performed on a Ti mandrel at 10 mm working distance and 10 kV

Supplementary Video 6 MEW performed on a Ti mandrel at 10 mm working distance and 8 kV

Supplementary Video 7 MEW performed on a Ti mandrel at 10 mm working distance and 6 kV

Supplementary Video 8 MEW performed on a Ti mandrel at 12 mm working distance and 8 kV

Supplementary Video 9. MEW performed on a Ti mandrel at 12 mm working distance and 6 kV

Supplementary Video 10. MEW performed on a Ti mandrel at 12 mm working distance and 10 kV